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Wang-Landau Sampling of an Asymmetric Ising Model: A Study of the Critical
Endpoint Behavior
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We use the Wang-Landau algorithm to calculate a density of states for an asymmetric Ising model on a
triangular lattice with two- and three-body interactions in an external field. An accurate density of states allows
us to determine the phase diagram and to study the critical behavior of this model at and near the critical
endpoint. We observe a divergence of the curvature of the spectator phase boundary at the critical endpoint in
accordance with theoretical predictions.
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I. INTRODUCTION

A critical endpoint (CE) is a point in the phase diagram
where a critical line meets and is truncated by a first-order
transition line. Critical endpoints appear in the phase diagram
of many physical systems such as binary fluid mixtures, super-
fluids, binary alloys, liquid crystals, certain ferromagnets, etc.
The bulk critical exponents are believed[1] to be unchanged
at CE, but this has not been checked beyond phenomenologi-
cal theory and renormalization calculations.[2] (However, the
universal character of a double critical endpoint has been nu-
merically determined from extensive Monte Carlo simulations
[3].) Moreover, a new singularity in the first-order phase tran-
sition line was shown to arise at CE. [1, 4] This prediction was
confirmed by Fisher and Barbosa’s phenomenological studies
on an exactly solvable spherical model[4].

The critical endpoint behavior in a symmetrical binary
fluid mixture was studied by Wilding[5] using a large scale
Monte Carlo simulation[6] with multicanonical[7] and his-
togram reweighting[8] methods. He showed the first numer-
ical evidence of a singularity at CE for the diameter of the
liquid-gas coexistence curve and for the curvature of the spec-
tator phase boundary.

In this paper we study a two-dimensional Ising model on
a triangular lattice with two- and three-body interactions in
a uniform external field. For a range of coupling parame-
ters, this model has a critical endpoint.[9] We use the Wang-
Landau sampling technique[10, 11] with a two-dimensional
random walk to determine the density of states and thereby
the phase diagram with great accuracy. The high resolution
of this simulation allowed us to compute the curvature of the
first-order phase transition line and observe the singularity
that arises at CE. We were also able to determine the criti-
cal exponents along the second-order transition line and we
confirm that these exponents indeed do not change as CE is
approached.
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II. MODEL AND METHODS

The model considered here is described by the Hamiltonian

H =−J ∑
<i j>

SiS j−P ∑
<i jk>

SiS jSk−H ∑
i

Si (1)

where Si =±1 is an Ising spin on site i of a two-dimensional
triangular lattice, < i j > denotes pairs of nearest-neighbor
spins, and < i jk > represents the three spins on the elemen-
tary triangles. The parameters J and P are two- and three-body
nearest-neighbor spin couplings, respectively, and H is an ex-
ternal magnetic field. The model is asymmetric because the
Hamiltonian is not invariant when H →−H. Periodic bound-
ary conditions are used in this work.

Previous Monte Carlo simulations by Chin and Landau [9]
showed that this model exhibits critical endpoints for a range
of values of parameters J and P. In particular, there is a crit-
ical endpoint in the T and H phase diagram when J = 1 and
P = 2; this is the set of parameters used in this paper. We per-
form Wang-Landau sampling[10, 11] to determine the phase
diagram of this model and to study its behavior at the phase
transition lines and at the critical endpoint.

Unlike conventional Monte Carlo methods[6] that directly
generate a canonical distribution at a given temperature T , the
Wang-Landau method estimates the density of states directly
and accurately via a random walk that produces a flat his-
togram in the random walk parameter space. Wang-Landau
sampling has proven very useful and efficient in many differ-
ent applications, including studies of complex systems with
rough energy landscapes. For example, this method has been
used in studies of a Potts antiferromagnet[12], random spin
systems[13], quantum systems[14–16], fluids[17, 18], binary
Lennard-Jones glass[19], liquid crystals[20], polymers[17,
21], proteins[22, 23], other molecular systems[24, 25], atomic
clusters[26], optimization problems[27], and combinatorial
number theory[28]. Generalizations and further studies of
this sampling technique have also been carried out by several
authors[29–33].

To overcome the barriers in both energy and magnetization
spaces for the asymmetric Ising model, we have to perform a
two-dimensional (2D) random walk as it was done in the spin
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glass problem [11]. We restrict P/J to an integer m (m = 2 in
this paper); therefore we can rewrite the Hamiltonian in Eq.
(1) as a sum of two parts,

H = −JE ′−HM′

E ′ = ∑
<i j>

SiS j +m ∑
<i jk>

SiS jSk (2)

M′ = ∑
i

Si

where E ′ is proportional to the energy due to the two- and
three-body interactions, and M′ is the magnetization of the
system. We perform a 2D random walk in the E ′-M′ space
using the Wang-Landau algorithm [10, 11] to estimate the
density of states g(E ′,M′), which is defined as the number of
spin configurations for any given E ′ and M′. The estimate for
g(E ′,M′) is improved at each step of the random walk, using
a carefully controlled modification factor, to produce a result
that converges to the real value very quickly, even for large
system sizes. The thermodynamic quantities can then be ex-
tracted by applying canonical average formulas in statistical
physics.

We provide a succinct description of the sampling method
here, more details can be found elsewhere[10, 11]. At the
start of the simulation, the density of states is unknown, so we
simply set g(E ′,M′) = 1 for all possible (E ′,M′). Then we
begin our random walk in E ′−M′ space by choosing a site
randomly and flipping its spin with a probability proportional
to the inverse of the density of states. If we denote A′(E ′,M′)
and A′′(E ′′,M′′) as the points before and after a spin is flipped,
respectively, the transition probability from A′ to A′′ is:

p(A′→ A′′) = min
[

g(A′)
g(A′′)

,1
]
. (3)

If the point A′′(E ′′,M′′) is accepted we multiply the ex-
isting density of states by a modification factor f > 1,
that is, g(E ′′,M′′) → f g(E ′′,M′′), and we update the his-
togram h of visited states, that is h(E ′′,M′′) → h(E ′′,M′′) +
1. If A′′(E ′′,M′′) is not accepted, we update g(E ′,M′) →
f g(E ′,M′) and h(E ′,M′)→ h(E ′,M′)+1.

We continue performing the random walk until the his-
togram h(E ′,M′) is flat in E ′−M′ space. The modification
factor f introduces a systematic error for the estimated den-
sity of states. The magnitude of this error for ln[g(E ′,M′)]
is proportional to ln( f ). To reduce this source of error, we
systematically reduce the modification factor to a finer one
using a function like fi+1 = fi

1/n (n > 1) where i here de-
notes the number of iterations in the algorithm (each iter-
ation is a 2D random walk in the E ′ −M′ space). To be
explicit, when iteration i generates a flat histogram, we re-
set the histogram to zero, and begin the next iteration with
a new factor fi+1. We end the simulation when the mod-
ification factor is smaller than a predefined value (such as
ffinal = exp(10−8)' 1.00000001 used here). To speed up the
convergence of the density of states to the true value, the initial
modification factor was as large as f = f0 = e ' 2.71828...,
and n = 4 in our simulations. We perform the random walk on
all possible (E ′,M′) space with a single computer processor.

It takes from about a few minutes to 2 days on a 1.3 GHz Ita-
nium processor to obtain g(E ′,M′) for the lattices with linear
sizes L = 6 to L = 30 used here.

We should point out that it is impossible to obtain a per-
fectly flat histogram. A histogram may be considered flat if
h(E ′,M′) for all possible (E ′,M′) is not less than x% of the
average histogram, where x% is chosen according to the size
and complexity of the system and the desired accuracy of the
density of states. However, in this work we use a less stringent
criterion: the histogram is considered flat when the number of
entries larger than or equal to 2000 remains unchanged for
L2×106 spin flip trials.

With an accurate estimate of the density of states g(E ′,M′),
we can calculate thermodynamic quantities at any temperature
T , external magnetic field H, and coupling J for the system
with Hamiltonian given in Eq.(1). The spontaneous magneti-
zation per lattice site as a function of T and H is given by

M(T,H) = 〈M〉=
∑

E ′,M′
M′g(E ′,M′)e−(−JE ′−HM′)/kBT

N ∑
E ′,M′

g(E ′,M′)e−(−JE ′−HM′)/kBT
(4)

where we assume J = 1 > 0 (ferromagnetic coupling), N = L2

is the number of lattice sites; and T is in unit of 1/kB (kB is
the Boltzmann constant).

The susceptibility χ(T,H) also can be calculated from the
density of states by:

χ(T,H) = dM/dH = N(〈M2〉−〈M〉2)/kBT. (5)

III. RESULTS

Figure 1 shows the phase diagram in the T an H plane for a
finite lattice with L = 30 (and the reader should remember that
the entire phase diagram was obtained from a single simula-
tion). There are three distinct phases with different values of
magnetization at T = 0: ferromagnetic phase A(+ + +) with
M(0,H) = 1 (all spins are up), ferromagnetic phase B(- - -
) with M(0,H) = −1 (all spins are down) and ferrimagnetic
phase C(- - +) with M(0,H) =−1/3 (the spins on two sublat-
tices are down and on the other are up).

The transitions between A and B as well as between A and
C are first order, whereas the phase transition between B and
C is second order. The critical endpoint, (T,H)CE, is defined
as the point where the critical line Tc(H) separating phases B
and C meets, and is truncated by the first-order transition line
Hσ(T ) separating phase A from phases B and C. The Hσ(T )
line is also called the spectator phase boundary. At the end
of Hσ(T ) is a critical point (T,H)c. Our simulational results
Tc(H = −6) = 0 and Hσ(T = 0) = −3 are consistent with
the exact solutions at zero temperature and early simulational
data [9].

Though the spontaneous magnetization is a good parame-
ter to characterize the three different phases, M(T,H) is not
the order parameter for the phase transitions because it does
not vanish at any phase. For the transition between A and C
phases as well as the transition between B and C phases, we
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FIG. 1: Phase diagram for L = 30.

define order parameters that are similar to those used for the
Q = 3 Potts model [34], because the degeneracy of the ground
state in C phase is 3. We define two components (P1, P2) and a
vector order-parameter P from the magnetizations per site of
the three sublattices M1, M2 and M3:

P1 =
1
2

(
M1− M2 +M3

2

)

P2 =
√

3
4

(M2−M3) (6)

P =
√

P2
1 +P2

2

P1(T,H), P2(T,H) and P(T,H) approach zero in the phases
A(+ + +) and B(- - -), and finite values in the ferrimagnetic
phase C(- - +).

To calculate thermodynamic quantities P(T,H), we have to
accumulate microscopic P(E ′,M′) during the random walk in
the E ′-M′ space. If P(E ′,M′) is the microscopic average value
during a random walk at (E ′,M′), the thermodynamic quantity
P(T,H) can be calculated as:

P(T,H) =
∑

E ′,M′
P(E ′,M′)g(E ′,M′)e−(−JE ′−HM′)/kBT

∑
E ′,M′

g(E ′,M′)e−(−JE ′−HM′)/kBT
. (7)

The phase diagram in Fig.1 is determined by the locations
where the susceptibility χp(T,H) = dP/dH has the maximum
value for a given value of T for a lattice with L = 30.

We determine the critical line Tc(H) separating phase B and
C with great accuracy, except when this line reaches CE. It is
very difficult to determine Tc(H) near CE, because the first-
order transitions are so strong. However, Tc(H) is a smooth
line and we extend it from low values of H to where it meets
the first-order transition line. We then take this meeting point
as an estimate of the critical endpoint for the finite lattice L.
For L = 30 we estimate the critical endpoint as (T,H)CE =
(2.48±0.02,−2.93±0.02); this value will be used in the data
analysis below.

The critical line Tc(H) for this asymmetric Ising model
studied here should be in the same universality class as the
two-dimensional Q = 3 Potts model, because the two mod-
els have the same symmetry. We recall that the conjectured
values[35] for the critical exponents of the latter model are
α = 1/3, β = 1/9, γ = 13/9, and ν = 5/6. In order to verify
that our data are consistent with these conjectured exponents,
we study finite size scaling of derivatives of the order parame-
ter along Tc(H). Because the order-parameter P behaves as
P(T ) ∝ |(T −Tc(H))/Tc(H)|β near the critical line Tc(H), the
finite-size behavior of dP/dT at Tc(H) is

dP(L)
dT

∣∣∣∣
Tc(H)

∝ L(1−β)/ν (8)

The finite-size scaling behavior of the susceptibility dP/dH
at the critical line is

dP(L)
dH

∣∣∣∣
Tc(H)

∝ Lγ/ν (9)

Figure 2(a) shows dP/dT along Tc(H) for several lattice
sizes. Characteristic error bars shown for the L = 30 data
are obtained from several independent runs. In the inset of
Fig.2(a), the absolute value of dP/dT versus L at three criti-
cal points in a wide region of external field (H = −4.8, −4.0
and −3.2) can be fitted well to the scaling form in Eq.(8) with
(1− β)/ν = 48/45 ' 1.07, where we used the conjectured
critical exponents for the 2D Q = 3 Potts model [35].

The susceptibility dP/dH along Tc(H) is shown in Fig.2(b)
for several values of L. The finite-size behavior of dP/dH in
the inset of Fig.2(b) for different values of H scale well ac-
cording to the relation given in Eq.(9), using the 2D Q = 3
Potts critical exponents γ/ν = (13/9)/(5/6) ' 1.73. The
finite-size scaling shown in the insets of Figs.2(a) and 2(b)
confirms that the transition between phase C(- - +) and phase
B(- - -) is in the same universality class as the 2D Q = 3 Potts
model. Moreover, these results show that the critical expo-
nents do not change when we approach the critical endpoint
along the critical line Tc(H).

For the first-order transitions along Hσ(T ), finite-size
analysis indicates that both at and away from CE the max-
imum of thermodynamics quantities are proportional to Ld

for finite-size systems (where d is the dimensionality of the
lattice). In particular, the susceptibility χ = dM/dH and the
specific heat C scale as

χ(L)|Hσ(T ) ∝ Ld

C(L)|Hσ(T ) ∝ Ld (10)

Figures 3(a) and 3(b) show the susceptibility and the specific
heat, respectively, along Hσ(T ) for several lattice sizes. The
insets in these figures confirm that the scaling relations in
Eq.(10) are satisfied both at CE and away from it (for example,
at T = 1.6TCE ).

With an accurate estimate of the phase boundaries, we
can calculate the curvature of the spectator phase boundary
Hσ(T ). In Fig. 4, the curvature d2Hσ(T )/dT 2 of the spectator
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FIG. 2: Dependence of (a) dP/dT and (b) dP/dH on H along the
critical line Tc(H) for several lattice sizes. The insets show the sin-
gularity in the respective thermodynamic quantities for three values
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phase boundary has a very clear singularity at CE. According
to a general finite-size scaling argument [1, 5], this curvature
diverges at CE as

d2Hσ(T,L)
dT 2

∣∣∣∣
CE

= cLα/ν (11)

where α and ν are critical exponents defined on the critical
line Tc(H). The lattice sizes used here are not large enough
to give a good estimate of the scaling exponent α/ν predicted
by theory. For a binary fluid mixture, Wilding[5] observed a
clear divergence of the curvature of the spectator phase bound-
ary; however the system sizes he considered in his simulations
were also not large enough to determine the finite-size scaling
exponent accurately.

IV. CONCLUSION

We used the Wang-Landau algorithm with a two-
dimensional random walk to determine the density of states
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g(E ′,M′) for an asymmetric Ising model with two- and three-
body interactions on a triangular lattice, in the presence of an
external field. With an accurate density of states we were able
to map out the phase diagram accurately and observe a clear
divergence of the curvature of the spectator phase boundary at
the critical endpoint. However, larger systems have to be stud-
ied to obtain an accurate estimation of the scaling exponent of
this divergence.

We show that the critical line separating phases B and C is
indeed in the two-dimensional Q = 3 Potts universality class
and that the critical exponents do not change along the critical

line. Thermodynamic quantities along the first-order line are
shown to scale with lattice size as Ld both at and away from
the critical endpoint.
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