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Wang-Landau Sampling in Three-Dimensional Polymers
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Monte Carlo simulations using Wang-Landau sampling are performed to study three-dimensional chains of
homopolymers on a lattice. We confirm the accuracy of the method by calculating the thermodynamic properties
of this system. Our results are in good agreement with those obtained using Metropolis importance sampling.
This algorithm enables one to accurately simulate the usually hardly accessible low-temperature regions since
it determines the density of states in a single simulation.
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I. INTRODUCTION

With the rapid development of computer processors, nu-
merical simulations using the Monte Carlo method have be-
come a well established tool for the study of proteins, poly-
mers and spin-glass models. When a Monte Carlo simulation
using Metropolis importance sampling [1] is carried out at a
fixed temperature, the quality of the data depends on the dis-
tance from criticality, and therefore, multiple computer runs
should be performed for each temperature. In order to speed
up the simulation several methods have been suggested to
overcome problems such as slow dynamics which makes the
Metropolis algorithm inefficient, and to study systems with a
rough energy landscape with multiple local minima in free en-
ergy. Important examples are the cluster-flip Swendsen-Wang
algorithm [2], which has been used to reduce critical slow-
ing down at second order phase transitions, the multicanon-
ical method [3] which was introduced to overcome the bar-
rier between coexisting phases at first order phase transitions,
the broad histogram method [4] which directly calculates the
density of states with only one computer run, and the flat his-
togram method [5] which generates a flat histogram in energy
space similar to multicanonical simulations. The drawback
of the flat histogram method is the slow diffusion of the ran-
dom walk which is the same as in the multicanonical method.
Nevertheless, no method is more efficient than that recently
proposed by Wang and Landau [6–9] which allows one to get
around these difficulties even for large systems.

In this work we present results of simulations of three-
dimensional lattice polymer chains [10] using Wang-Landau
sampling, and calculate thermodynamic properties of the sys-
tem. The method is described in Sec. II. Sec. III provides a
brief background on the algorithm. The results are given in
Sec. IV and we summarize and conclude in Sec. V.

II. THE MODEL

We consider a homopolymer consisting of N monomers
which may assume any self avoiding walk (SAW) config-

uration on a three-dimensional lattice. Assuming that the
polymer is in a bad solvent, there is an effective monomer-
monomer attraction in addition to the self-avoidance con-
straint representing excluded volume. For every pair of non-
bonded nearest-neighbor monomers the energy of the polymer
is reduced by ε (See Fig. 1).
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FIG. 1: Interaction Self Avoiding Walk.

Therefore, the interaction between two nonbonded
monomers i and j is given by

ui, j =





∞ r < δ
−ε r = δ
0 r > δ

(1)

where δ is the lattice constant.
The Hamiltonian for the model can be written as

H =−ε ∑
<i, j>

σiσ j (2)

where σ = 1 (0) if the site i is occupied (vacant), and the sum
is over nearest-neighbor pairs [11]. (The sum is understood
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to exclude pairs of bonded segments along the chain). We are
interested in the equilibrium properties at temperature T . (In
the following, temperature is measured in units of ε/kB, where
kB is the Boltzman’s constant.)

In order to generate a Markov process for sampling con-
figurations we have first to define a protocol of movements.
We used the so-called reptation or “slithering snake” move
which consists of randomly adding a monomer to one end of
the chain and removing a monomer from the other end, main-
taining the size of the polymer constant. We define one Monte
Carlo step as N attempted moves. At certain moments, one
end of the chain may not be able to move, but successive mo-
tions of the other end release it from the trap.

III. THE METHOD

The Wang-Landau algorithm calculates the density of states
g(E) by carrying out a random walk in energy space with
an acceptance probability proportional to 1/g(E) instead of
the usual Boltzmann weight e−E/kBT used in the conventional
Monte Carlo simulation. The probability of energy E changes
therefore from g(E)e−E/kBT in the Metropolis scheme to an
almost constant probability in the Wang-Landau method. As
a result the probability minimum which appears at first order
phase transitions, for example, practically vanishes. The sim-
ulation is performed such that if E1 is the energy of the current
configuration and E2 is the energy of a possible new configu-
ration, the acceptance probability is given by

p(E1 → E2) = min
[

g(E1)
g(E2)

,1
]
. (3)

For each accepted configuration we accumulate an energy his-
togram H(E). Since the density of states is not known a pri-
ori, Wang and Landau proposed to set g(E) = 1 initially, for
all energy levels.

To study large systems the energy space is divided into bins
and the random walk is carried out independently in each seg-
ment. As the random walk in energy space is performed,
whenever a move to a configuration with energy E is accepted
the density of states is updated by multiplying it by a “modi-
fication factor” f > 1 that accelerates the diffusion of the ran-
dom walk, and an unit is added to the histogram H(E), i.e.

g(E)→ g(E) · f ; and H(E)→ H(E)+1. (4)

The initial choice of f is f0 = e = 2.71828.... The density
of states is multiplied by f until the accumulated histogram
H(E) is flat. We then reduce f by setting

f →
√

f , (5)

and resetting H(E) = 0 for all energy values.
This process is repeated; the simulation converges to the

true value of g(E) when f is approximately 1. In our simu-
lations the criterion of flatness was taken as each value of the
histogram reaching at least 80% of the mean value 〈H(E)〉.
The histograms are generally checked after each 1000 Monte
Carlo steps.
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FIG. 2: Density of states for a chain of N = 50 monomers. The
ground state of this chain is Eg =−58.

IV. RESULTS

In this section we present results obtained for chains of
lattice homopolymers using the Wang-Landau algorithm and
compare them with those obtained using Metropolis algorithm
importance sampling. In Fig. 2 we show the density of states
for a chain of 50 monomers.

The ground state is achieved by shaping a configuration
rolled up like a snail (see Fig. 3). The energy of this con-
figuration is obtained by counting the number of nonbonded
nearest-neighbor pairs. In our simulations the polymer was
always set initially in this configuration and, using the algo-
rithm described above, the density of states was estimated as
a result of a random walk in the energy space.
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FIG. 3: A ground state configuration for N = 50. In this case the
energy is Eg =−58.

Knowing the density of states, one can calculate any ther-
modynamic property A of the system through the canonical
average

〈A〉T = ∑E〈A〉Eg(E)e−E/kBT

Z
(6)

where 〈A〉E is the microcanonical average of observable A ob-
tained during the simulation, g(E) is the density of states for
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FIG. 4: Temperature dependence of the internal energy for a chain of
N = 50 monomers.

each energy level E, and Z is the partition function

Z = ∑
E

g(E)e−E/kBT . (7)

In Monte Carlo simulations using Metropolis sampling we
fix the temperature and determine the thermodynamic average
〈A〉T . Therefore a new simulation is needed for each value
of temperature. In Wang-Landau sampling we estimate the
density of states and then calculate any thermodynamic prop-
erty of interest by means of a simple algebraic operation. The
computational time in our simulations was about ten times
smaller using the Wang-Landau method as compared with the
Metropolis algorithm.

In Fig. 4 we show the result for the internal energy via
Wang-Landau sampling, evaluated using the relation

U(T ) = ∑E Eg(E)e−E/kBT

∑E g(E)e−E/kBT ≡ 〈E〉, (8)

and compare it with that obtained via the Metropolis algo-
rithm.

The specific heat can be determined from the fluctuations
in the internal energy

Cv(T ) =

〈
E2

〉
T −〈E〉2T
kBT 2 . (9)

The temperature dependence of the specific heat is shown
in Fig. 5. Much more CPU time would be needed to ob-
tain significantly better results using the Metropolis algorithm.
One can see clearly from these results that the Wang-Landau
method yields a better description in the low-temperature
regime.

The temperature dependence of the mean square end-to-end
distance, given by

〈
R2〉 =

〈
[(xN − x0)2 +(yN − y0)2 +(zN − z0)2]

〉
(10)

is shown in Fig. 6.
Differentiating expression 6 with regard to temperature us-

ing
〈
R2

〉
as the observable A, we obtain the fluctuation of the

mean square end-to-end distance as

d
〈
R2

〉
T

dT
=

〈
ER2

〉
T −〈E〉T

〈
R2

〉
T

T 2 . (11)
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FIG. 5: Specific heat vs. temperature for a chain of N = 50
monomers.
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FIG. 6: Mean square end-to-end distance vs. temperature for a chain
of N = 50 monomers.
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FIG. 7: Derivative of the mean square end-to-end distance vs. tem-
perature. The curve with a peak resembles a second-order phase tran-
sition.

The temperature dependence of the derivative of the mean
square end-to-end distance is shown in Fig. 7. The coil-
globule phase transition is characterized by a peak in the
derivative of

〈
R2

〉
similar to the specific heat. We believe that

the low-temperature peak corresponds to excitations of the
surface of the typically compact, folded configuration. This
effect is more pronounced in short chains.

An advantage of this algorithm is that we can readily calcu-
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FIG. 8: Free energy vs. temperature for a chain of N = 50 monomers.

late the free energy and entropy, quantities that are not directly
accessible in conventional Monte Carlo simulations. In terms
of the density of states, the free energy can be calculated from
the partition function

F(T ) =−kBT ln(Z) =−kBT ln

(
∑
E

g(E)e−E/kBT

)
. (12)
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FIG. 9: Entropy vs. temperature for a chain of N = 50 monomers.

The temperature dependence of the free energy obtained

from our simulation is shown in Fig. 8 for a homopolymer
with N = 50 monomers.

The entropy is a key thermodynamic quantity that cannot
be calculated directly by conventional Monte Carlo simula-
tion. It can be estimated by integration over other thermody-
namic quantities, such as specific heat, but these calculations
are somewhat unreliable since the specific heat itself is not
easy to estimate accurately. With an accurate density of states
estimated by the Wang-Landau method, the entropy can be
calculated simply using

S(T ) =
E(T )−F(T )

T
. (13)

In Fig. 9 we show our result for the temperature depen-
dence of the entropy for a homopolymer chain of N = 50
monomers.

V. CONCLUSIONS

We study the thermodynamic behavior of a three-
dimensional homopolymer chain in lattice using the Wang-
Landau sampling. We show that the density of states directly
obtained by this algorithm enables one to calculate thermody-
namic properties even for large systems with only one com-
puter run. We also note from the temperature dependence of
the specific heat and the mean square end-to-end distance that
the low-temperature region is better explored by this method
than by standard Monte Carlo simulation. Finally, thermo-
dynamic quantities such as the free energy and the entropy,
which are not easily accessible by conventional methods, are
directly estimated from the density of states.
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