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Dense packings of granular systems are of fundamental importance in the manufacture of hard ceramics and
ultra strong concrete. We generalize the reversible parking lot model to describe polydisperse dynamic packings.
The key ingredient lies in the size distribution of grains. In the extreme case of perfect filling of spherical beads
(density one), one has Apollonian tilings with a powerlaw distribution of sizes. We will present the recent
discovery of 3D packings which also have the freedom to rotate (bearings) in three dimensions.
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I. INTRODUCTION

The search for the perfect packing has a long history [1] and
although much is known about monodisperse or bidisperse
systems, the real challenge lies in polydispersity. Materials
of very high resistance made of an originally granular mix-
ture as it is the case for high performance concrete (HPC) [2]
and for hard ceramics are manufactured by trying to reach the
highest possible densities. From the fracture mechanics point
of view, higher densities imply less and smaller micro-cracks
and therefore higher resistance and reliability. This goal can
be reached as shown clearly for the case of HPC by mixing
grains of very different sizes (gravel, sand, ordinary cement,
limestone filler, silica fume), where the size distribution of the
mixture follows as closely as possible a powerlaw distribution.
In fact it is known that configurations of density one are ob-
tained for spherical particles in so-called Apollonian packings
(albeit not yet physically realisable) and constitute the ideal-
ized final goal of a completely space filling packing having
absolutely no defects.

In the studies presented here, on the one hand we general-
ize a toy model for granular compaction, namely the reversible
parking lot model to size distributions following a powerlaw.
On the other hand we will discuss possible different realisa-
tions and self similar packings in three dimensions.

II. A REVERSIBLE PARKING LOT MODEL FOR
POLYDISPERSE SIZE DISTRIBUTIONS

Parking lot models have served as simple representations
of compaction phenomena. Ben-Naim and Krapivski [3] in-
troduced a reversible parking lot model to describe the com-
paction dynamics of monodisperse packings. They found an
asymptotically logarithmic approach to a final density which
was confirmed experimentally by Knight et al. [4]. The model
is defined within a one-dimensional interval on which parti-
cles of fixed size are randomly absorbed with a rate k+ and
desorbed with a rate k−. The density reached after an infinite
time depends on the ratio k−/k+ and is unity when this ratio
vanishes.

For strongly polydisperse size distributions, this model
must be considerably modified in order to still make sense [5].

• A finite reservoir of particles must be considered in or-
der to keep the distributions the same and this reservoir
must be essentially not larger than the actual particles
one would need to fill the interval.

• The system must be initialized very carefully by putting
first the large particles, otherwise small particles will
create huge voids.

• A size dependent desorption probability must be con-
sidered, otherwise the large particles will easily leave
the system without being able to be reinserted.

Our model is defined in the following way: Let ri be the di-
ameter of the ith-particle. Then the reservoir is filled with
K particles following a distribution proportional to r−b

i for
ri ∈ [rmin,rmax] and fulfilling the constraint ∑K

i ri = l where
l is the length of the interval. The system is initialized by in-
serting the particles according to their size, starting with the
largest one. Each particle gets I attempts to find a free space in
the interval and when it does, it will be left there. If I is large
enough, most particles will actually already be placed in this
initial state. Once this procedure is finished, i.e. all particles
in the reservoir have had their I attempts, the real compaction
dynamics is switched on by choosing randomly one of the re-
maining particles from the reservoir and attempting to absorb
it and then choosing randomly a particle in the interval with
probability p(r) in order to desorb it. Each such step is called
a time unit and typically we perform t = 109 such units. The
desorption probability is defined through

p(r) =
K1

∑
i=1

′(hi− r)/l (1)

where K1 is the number of particles on the interval, hi the size
of the ith-hole and the prime at the sum denotes that the sum
only goes over positive terms and the negative ones are dis-
carded.

In Fig. 1 we see an example for the evolution of the density
as function of time. The first part with the steepest increase
corresponds to the initialization (up to t = 107) and the density
reached at this point is called ρinit. From there we continue
using the dynamics with desorption plotting the data along
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FIG. 1: Density as function of time.

the same time scale until t = 109. The full line is a fit using
the equation

ρinit(I) = ρmax− ∆ρ
1+B · ln(1+ I/τ)

I− fn (2)

while the dotted line is obtained when the quotient in Eq. (2)
is removed, ∆ρ,B,τ and fn are essentially fit parameters. One
sees that on a logarithmic time scale eventually densities close
to unity can be obtained. A particularly interesting result of
this model is presented in Fig. 2 where the finally reached
density at fixed I is shown as a function of the exponent of the
powerlaw size distribution. We see that there exists an opti-
mal value for b around 1.6. Generalising the above model to
higher dimensions should therefore be a way to help design-
ers of stronger materials optimizing the size distribution of the
grain mixture.
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FIG. 2: Density after the initialization as function of the exponent b
of the size distribution.

III. SPACE FILLING PACKINGS

In this section, we show how the, so-called, inversion al-
gorithm [7] can be used to construct four new packings of
spheres, including a packing with the important property of
having only two classes of spheres such that no spheres from
the same class touch each other. We refer to this packing as
the bichromatic packing [8]. As we will see, for special con-
figurations of angular velocities of the spheres, this packing
acts like a three dimensional bearing.

FIG. 3: Apollonian packing of circles. The dashed circles are the
inversion circles.

A. Packings in two dimensions

Figure III B illustrates how the inversion algorithm can be
employed to construct a simple packing of circles within an
envelopping circle of unit radius. Initially three mutually
touching circles are inscribed inside a circular space which
is to be filled. Four inversion circles are set such that each of
them is perpendicular to three of the four circles (three initial
circles and an envelopping unit circle.)

Beginning with this configuration, if all points outside an
inversion circle are mapped inside, one new circle is gener-
ated, since the image of a circle perpendicular to the inversion
circle falls on itself [10]. If the same is done for the other in-
version circles, four new circles are generated inside the cor-
responding inversion circle. In this way in the limit of infinite
iterations we obtain the well-known Apollonian packing, in
which the circular space is completely filled with circles of
many sizes.

By changing the configuration of initial and inversion cir-
cles one can get different space filling packings. In addition,
with careful choosing the size of initial circles, one can obtain
different space-filling bearings in two dimensions. A detailed
discussion on their construction can be found in Ref. [9].
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B. Generalization to three dimensions

As a first guess for extending inversion algorthim to three
dimension, one can set the initial spheres on vertices of a reg-
ular polyhedron, namely, the five Platonic Solids, all inside a
unit sphere. In this case, there will be one inversion sphere
correspoding to each face of the Platonic Solid, perpendicular
to the unit sphere plus the initial spheres forming that face. In
addition, an inversion sphere is set in the center perpendicu-
lar to all initial sphere. Using this configuration of initial and
inversion spheres, the process of filling space is similar to in
two dimensions, that is, iterative inversion of initial spheres
and their images.

This algorithm was first used by Peikert et al [7] to re-
produce the classic Apollonian, the only previously-known,
packing of spheres, which is tetrahedron-based. Examining
other Platonic Solids, we could produce four new packings;
two based on octahedron, one based on cube, one based on
octahedron and none based on icosahedron.

Figures ?? and 5 show two of obtained packings. The im-
age on the left of each figure shows the packing after one gen-
eration and the one on the right shows the same packing in-
cluding all spheres with radii larger than 2−7. The spheres are
grouped into different classes (assigned by different colours)
such that no spheres having the same colour touch each other.

Among the packings, there is one with only two colours
(see Fig. 5.) We call this packing bichromatic. This has an
immediate implication, that every loop of spheres in this pack-
ing contains an even number of spheres. We now show that
this is a sufficient condition for the spheres in contact to rotate
without slip or even twist, which leads us to construction of
the first space filling bearing in three dimension.

FIG. 4: The cube-based packing.

C. Space-filling bearings in three dimensions

In this section, we discuss the existence of a space filling
bearing in three dimensions. We find out that the only topo-

FIG. 5: The bichromatic packing which is the second octahedron-
based packing. No spheres of the same colour touch each other.

logical condition, under which the packing can work like a
bearing, is that the packing be bichromatic, or equivalently,
any loop of touching spheres consists of even number of
spheres. Fulfilling this condition, one needs only to choose
the right angular velocities for each sphere in order to no two
spheres slip on each other, as will be discuss below.

First, we consider a single loop of n spheres. The no-slip
condition implies each pair of touching spheres have the same
tangent velocities ~v at their contact point. This condition for
the contact between the first and the second sphere can be
written as:

~v1 =~v2

⇒ R1r̂12×~ω1 =−R2r̂12×~ω2

⇒ (R1~ω1 +R2~ω2)× r̂12 = 0, (3)

where R1, R2,~ω1 and~ω2 are the radii and the vectorial angular
velocities of the first and second sphere, respectively. r̂12 is the
unit vector in the direction connecting the centers of the first
and the second sphere. From Eq.(3) the vector (R1~ω1 +R2~ω2)
should be parallel to r̂12:

R2~ω2 =−R1~ω1−α12r̂12, (4)

where α12 is an arbitrary parameter. Equation (4) is a connec-
tion between the rotation vectors~ω1 and~ω2 of the two spheres
in contact. Similarly for the third sphere in contact with the
second, we have

R3~ω3 =−R2~ω2−α23r̂23. (5)

Putting Eq.(4) into Eq.(5) we find the relation between the
angular velocities of the first and third sphere:

R3~ω3 = R1~ω1 +α12r̂12−α23r̂23. (6)

In general, we can relate the angular velocities of the first and
jth spheres of an arbitrary chain of spheres in no-slip contacts
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by:

R j~ω j = (−1) j−1R1~ω1 +
j−1

∑
i=1

(−1) j−iαi,i+1r̂i,i+1. (7)

As long as the chain is open, the spheres can rotate without
slip with the angular velocities given by Eq.(7) and no restric-
tions on αi,i+1. But, for a loop of n spheres in contact, spheres
j and j +n are identical, so that

R1~ω1 = (−1)nR1~ω1 +
n

∑
i=1

(−1)n−i+1αi,i+1r̂i,i+1. (8)

A similar equation holds for every sphere j = 1, · · · ,n in the
loop.

Although for a single loop there are many solutions of
Eq.(8), not all will serve our purpose. In a packing, each
sphere belongs to a very large number of loops and all loops
should be consistent and avoid frustration. In other words,
the angular velocity obtained for a sphere as a member of one
loop should be the same as being a member of any other loop.

If the loop contains an even number n of spheres, Eq.(8)
becomes a relation between the hitherto arbitrary coefficients
of connection αi,i+1,

n

∑
i=1

(−1)iαi,i+1r̂i,i+1 = 0. (9)

Using the fact that the loop is geometrically closed:

n

∑
i=1

(Ri +Ri+1)r̂i,i+1 = 0, (10)

a solution for Eq.(9) is

αi,i+1 = c(−1)i(Ri +Ri+1), (11)

where c is an arbitrary constant. Putting this in Eq.(7), yields
the angular velocities

~ω j =
1
R j

(−1) j
(
−R1~ω1 + c~R1 j

)
, (12)

where ~R1 j is the vector which connects the centers of the first
and jth sphere. As can be seen, the angular velocities only
depend on the positions of the spheres, so that the consistency
between different loops can be automatically fulfilled provid-
ing that the parameter c is the same for every loop of the entire
packing.

In Eq.(12), all the angular velocities are calculated from ~ω1
and c, which can be chosen arbitrarily. (c = 0 corresponds to
the case when all angular velocities are parallel.)

The no-slip condition (4) then reads

R1~ω1 +R2~ω2 = c~R12, (13)

so that the vectors ~ω1, ~ω2 and ~R12 are coplanar (the plane of
Fig.3, containing the two centers and the point of contact A).
They are in general not collinear. Similarly, the angular veloc-
ity of all spheres, under which the packing acts as a bearing,
can be obtained.

IV. CONCLUSION

The highest possible densities are reached by polydis-
perse granular packings. We have presented a simple one-
dimensional model, showing that one can logarithmically
slowly attain densities above 95 % and that one can optimize
this number by tuning the exponent of the distribution. We
have also seen that the idealized completely dense case can
be self-similar in five topologically different configurations,
only one of them having the property of being a bearing, i.e.
allowing for slipless rotations around an arbitrary axis.

A full three-dimensional model or simulation of a system is
still far from being realised because of the difficulties to deal
with the large amount of very small particles. Our contribu-
tions are just a small step in this direction. From the theo-
retical point of view one has also to consider non-self-similar
perfect packings and non spherical particles, understand the
settling and demixing dynamics and calculate for each size
the corresponding mobilities. From a numerical point of view,
one has to organize the data hierarchically, eventually using
quad-trees for a generalized linked cell algorithm and consider
size classes in representative volume elements. We think that
in the future much progress can still be achieved.
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