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A New Inflaton Model Beginning Near the Planck Epoch
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The Starobinsky model predicts a primordial inflation period without the presence of an inflaton field. The
modified version of this model predicts a simple time dependence for the Hubble parameter H(t), which de-
creases slowly between the Planck epoch and the end of the inflation, H(t) = MPl−βM2

Pl t, where β is a dimen-
sionless constant to be adjusted from observations. We investigate an inflaton model which has the same time
dependence for H(t). A reverse engineered inflaton potential for the time dependence of H is derived. Normal-
ization of the derived inflaton potential is determined by the condition that the observed density fluctuations,
δρ/ρ ≈ 10−5, are created at ∼ 60e-folds before the end of inflation. The derived potential indicates an energy
(mass) scale, Mend ∼ 1013 GeV, at the end of inflation. Using the slow roll parameters, which are obtained from
this potential, we calculate the spectral index for the scalar modes nS and the relative amplitude of the tensor to
scalar modes r. A tensor contribution, r ' 0.13, and an approximately Harrison-Zeldovich density perturbation
spectrum, nS ' 0.95, are predicted.
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I. INTRODUCTION

The two major problems in cosmology are the origins of
the primordial inflation period and the present “inflation” pe-
riod of the universe. It is possible that both origins are linked.
Primordial inflation could have been created by a non-zero
vacuum energy. Subsequently, the vacuum energy could have
decayed, creating the present period of acceleration. How-
ever, strong limits were recently placed on the possible decay
of the vacuum energy into cold dark matter (CDM) or cosmic
microwave background (CMB) photons [1].

The most popular model for the origin of primordial infla-
tion remains the inflaton (scalar field) model. We investigate
here an inflaton model based on the simple time dependence
of the Hubble parameter, H(t) [Eq.(3)], that was predicted by
the modified Starobinsky model [2],[3]. (See [4] for the origi-
nal Starobinsky model.) The Starobinsky model suggests that
quantum fluctuations created a non-zero vacuum energy that
induced the primordial inflation period.

Instead of assuming an ad hoc inflaton potential, as in
the standard inflation model, we use the reverse engineering
method of Ellis, Murugan and Tsagas [5] to derive the infla-
ton potential from the H(t) of Eq.(3). The derived potential
becomes negligible at the end of inflation, creating the ob-
served density fluctuations, δρ/ρ ≈ 10−5. These fluctuations
are determined by the value of the potential and its first deriv-
ative at 60e-folds before the end of inflation. This condition,
together with the time dependence of the potential, determine
a mass (energy) scale, Mend ' 1013GeV∼ 10−6MPl, at the end
of inflation. From the slow roll parameters obtained from the
derived potential, we calculate the spectral index of the scalar
modes nS and the relative amplitude of the tensor to scalar
modes r. The derived spectral index nS is in agreement with
the WMAP data [6, 7]. The ratio of tensor to scalar modes
obtained, r ∼ 0.13, is similar to that of most inflation models,
which predict r ∼ 10−30%.

We can compare our scale Mend at the end of inflation with
the results of Vilenkin [8] and Starobinsky [9]. Vilenkin noted

that, in the Starobinsky model, the Hubble parameter defines
a mass (energy) scale with a limiting value, Mend . 1016GeV,
at the end of inflation. Starobinsky predicted that Mend .
1014GeV by requiring that the δρ/ρ, resulting from inflation,
is sufficiently small. Our derived value, Mend ∼ 1013GeV, is
consistent with the upper limits of both Vilenkin and Starobin-
sky for Mend.

Although the potential that we obtain [Eq.(6)] is superfi-
cially similar to a standard inflation potential that depends on
the square of the massive scalar field (see, for example, [10]
for a recent review), our inflation model is very much different
from the standard model for the following reasons:

1) The standard massive scalar inflation potential has two
free parameters: the magnitude of the potential and its first
derivative at ∼ 60e-folds before the end of inflation. How-
ever, our potential in Eq.(6) is completely determined by a
single parameter β, which is derived from the simple time de-
pendence of the Hubble parameter in Eq.(3);

2) In the standard inflation model, there are many possible
forms that the massive scalar potential can take. However, the
form of our potential, a quadratic dependence on the field, is
determined uniquely by Eq.(3);

3) The origin of the potential in the standard model is com-
pletely unknown. Moreover, there is no clear justification for
its form; and

4) In the standard model, the inflation period begins when
there is a displacement of the massive scalar field from the
minimum of its potential. The origin of this displacement is
left unexplained and the epoch in which it occurs is not spec-
ified. However, in our model, the beginning of inflation is
specified to occur at the Planck epoch (i.e., at the beginning of
the universe). The origin of the inflation is a direct result of the
simple time dependence of the Hubble parameter in Eq.(3).
Moreover, there is no initial displacement of the field that is
left explained.

We present the algorithm for constructing the potential
from the time dependence of the Hubble parameter in § 2.
In § 3, we use this algorithm to obtain the effective poten-
tial from the Hubble parameter, H(t) = MPl − βM2

Plt. From
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the potential, we calculate the spectral index of the δρ/ρ and
the intensity of primordial gravitational waves. The mass (en-
ergy) scale at the end of inflation, Mend ∼ 1013GeV, is de-
termined from the requirement that the potential creates ob-
served δρ/ρ' 10−5 at∼ 60e-folds before the end of inflation.
Finally, our conclusions are presented in § 4.

II. THE FRAMEWORK OF THE SINGLE SCALAR
MODEL

Let us assume that there exists an inflaton field, φ = φ(t),
where t is the usual time function, in accordance with the
Roberston-Walker symmetry [11]. The Lagrangian contain-
ing a minimally coupled scalar field is

L =
1
2

(∂φ)2−V (φ) =
1
2

φ̇2−V (φ) , (1)

where φ̇ = dφ/dt. The scalar stress tensor takes the perfect
fluid form,

Tab = (p+ρ)uaub + pgab , (2)

with the following energy density and pressure of the scalar
inflaton field:

ρφ =
1
2

φ̇2 +V (φ) , (3)

pφ =
1
2

φ̇2−V (φ) . (4)

The classical equation of motion for φ(t), which follows
from the variation of the action S =

R
d4x

√−gL, is

φ̈+3Hφ̇+
dV
dφ

= 0 , (5)

where H = σ̇(t). The field equations for the Robertson Walker
model, with k = 0, are

3Ḣ +3H2 = (8πG)(V (φ)− φ̇2) , (6)

3H2 = (8πG)
(

V (φ)+
φ̇2

2

)
. (7)

Following Ellis, Murugan and Tsagas [5], we combine these
two independent equations to obtain a more convenient set of
equations,

V (φ(t)) =
1

(8πG)
(
Ḣ +3H2) , (8)

φ̇2 =− 1
(4πG)

Ḣ . (9)

From H(t), the above equations have been used to construct
the effective potential in the following manner:
i) Eq.(9) is integrated to obtain φ(t) ;
ii) t as a function of φ is found;
iii) t(φ) is substituted in H(t) to obtain H(φ) ; and
iv) the potential V (φ) is obtained, using Eq.(8).

III. THE EFFECTIVE INFLATON POTENTIAL

Assuming the simple Hubble parameter time dependence,

H(t) = MPl−βM2
Plt , (10)

we solved Eq.(9) for φ(t), obtaining t as a function of φ,

t(φ) =± 1

M2
Pl

√
2β

(φ(t)−φ0) , (11)

where |φ0| > |φ|. Choosing the positive sign in Eq.(11), we
have −∞ < φ < 0, as in [5]. From Eqs.(10) and (11),

H(φ) = MPl−
√

β
2

(φ(t)−φ0) . (12)

Following the algorithm of the previous section to obtain
V (φ), we substitute Eq.(12) into Eq.(8) to obtain

V (φ) = M4
Pl



−β+3

[
1− 1

MPl

√
β
2
(φ−φ0)

]2


 (13)

or, in terms of the time,

V (t) = M2
Pl

[
−βM2

Pl +3
(
MPl−βM2

Pl t
)2

]
. (14)

A realistic potential V (φ) describing inflation should:
1) become negligibly small at the end of the inflationary pe-
riod, so that there is no important “cosmological constant” en-
tering the FRW era; and
2) produce the density fluctuations at ∼ 60 e-folds before the
end of inflation (see e.g. [12]),

δρ
ρ

=
1√

75πM3
Pl

V 3/2(φ)
dV/dφ

|N=60 , (15)

which are observed to be ∼ 10−5.
For as long as the first term in Eq.(10) dominates, we have

the inflationary expansion a(t) = expMPlt. The second term
in Eq.(10) decreases the expansion rate and is important near
the maximum value of σ(t) = lna(t). Following Vilenkin [8],
we characterize the end of inflation by

H(t)|t=tend = µMPl , (16)

where H(tend) = σ̇(t = tend) = Mend and

µ =
Mend

MPl
(17)

is a dimensionless parameter (we should expect Mend < MPl ∼
1019 GeV).

The time as a function of µ at the end of inflation is

tend =
1

βMPl
(1−µ) . (18)

The number of e-folds of inflation before tend is

N =
Z tend

t60

H(t)dt = σ(tend)−σ(t60) . (19)
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We are interested in N ' 60, the approximate time t60, when
the observed δρ/ρ (scalar) and the primordial gravitational
(tensor) fluctuations were created. Substituting Eq.(18) into
Eq.(10), we find

σend = σ(t = tend) =
1

2β
(
1−µ2) , (20)

where we have used the customary normalization for a(t =
0) = 1. From Eq.(19), we have

σ60 = σ(t = t60) =
1

2β
(
1−µ2)−60 . (21)

Using this result to solve Eq.(10) for t60, we obtain

t60 =
1

βMPl

[
1−

√
1−2βσ60

]
. (22)

The slow roll parameters ε and η in terms of H(φ) are [12]

ε≡ 2M2
Pl

[
H ′ (φ)
H (φ)

]2

, (23)

η≡ 2M2
Pl

[
H ′′ (φ)
H (φ)

]
. (24)

To first order, the slow roll parameters are related to the ratio
r of the tensor to scalar fluctuations, by the relation

r ∼ 16ε (25)

and to the spectral index of the scalar δρ/ρ by

nS−1≈−3
8

r +2η (26)

[13]. The value for µ that characterizes the end of inflation, is
constrained by the condition that ε = 1. From this condition
and Eq.(12), we obtain

µ2 = β . (27)

Substituting the time at 60 e-folds before the end of infla-
tion from Eq.(22) and β from Eq.(27) into Eq.(15), we obtain

δρ
ρ

=
1√

75πM3
Pl

V 3/2(t)
V ′(t)dt/dφ

|t=t60 (28)

≈ 5.42µ . (29)

Using the above result, together with Eq.(17) and the observa-
tional evidence that the δρ/ρ produced at ∼ 60 e-folds before

the end of inflation is ∼ 10−5, we obtain the predicted value
of Mend, the mass (energy) scale at the end of inflation,

Mend ≈ 1013GeV . (30)

This value is less than the GUT scale (∼ 1014 − 1016GeV),
but is consistent with the upper limits for the mass (energy)
scale at the end of inflation given by Vilenkin [8] and Starobin-
sky [9].

Evaluating the spectral index of the scalar δρ/ρ from
Eqs.(24) and (12), we observe that the parameter η is zero
and that ε is very small, ε ' 8.3× 10−3. From Eq.(26), we
have nS ' 0.95, an approximately Harrison-Zeldovich spec-
trum nS = 1, in agreement with the WMAP data [6, 7]. These
results do not depend on the exact value of φ0.

From ε in Eq.(24) and Eq.(12), we obtain

r = 16ε≈ 0.13 . (31)

This value is similar to those predicted by frequently dis-
cussed inflation models with r ∼ 10% − 30% (e.g., [13]).

IV. CONCLUSIONS

We investigated a model in which the Hubble parame-
ter is decreasing slowly in time, as predicted by the modi-
fied Starobinsky model [2],[3], H(t) = MPl−βM2

Pl t, and con-
structed an inflaton potential for H(t). The derived potential,
normalized at ∼ 60 e-folds before the end of inflation, creates
the observed level of δρ/ρ ∼ 10−5 and indicates an energy
(mass) scale, Mend ∼ 1013 GeV, at the end of inflation.

This energy scale at the end of inflation can be compared
with those predicted by Vilenkin and Starobinsky. Vilenkin
gave a limiting value Mend . 1016GeV for the scale at the end
of inflation [8], while Starobinsky predicted Mend . 1014GeV
[9].

From the inflaton potential, we calculated the spectral index
of the scalar modes. The result, nS ' 0.95, is compatible with
the WMAP data. The potential also predicts a tensor contri-
bution, r ∼ 0.13, in accordance with most inflation models,
which predict r ∼ 0.10−0.30 and is in agreement with exist-
ing observational data.
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