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Mapping the Intrinsic Stochasticity of Tokamak Divertor Configuration
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Poloidal divertors are, more than ever before, a crucial topic for the advancement of magnetic fusion technol-
ogy. Due to the often non linear and stochastic nature of the plasma edge phenomena, canonical mapping has
provided a powerful method at modelling their characteristics, albeit many authors rely on heuristically adapted
schemes. Thus, it is reported here a specific and physically consistent map model of the tokamak single null
magnetic configuration, assuming plasma-field equilibrium, based on the construction of a fundamental Hamil-
tonian form. Then, the magnetohydrodynamically non ideal perturbations are introduced through the Rayleigh
function of the system. As an illustration, the resulting compact canonical map is applied to the analysis of some
of the most relevant features of the edge magnetic topology.
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I. INTRODUCTION

Poloidal ergodic divertors constitute a prime technique in
the management of impurities [1], magnetohydrodynamic
(MHD) stabilization [2] and high performance mode induce-
ment [3] for present day and future tokamaks. In particular,
the challenge posed by the heat flux impact on the vessel tar-
get inner surfaces has been considerably averted by means of
divertor dissipative techniques [4]. In an MHD ideal toka-
mak the plasma is confined to a region of nested toroidal
magnetic surfaces limited by one separatrix surface from the
outer surfaces that divert the plasma exhaust to the target. In
real near integrable tokamaks, marginal resistive reconnec-
tion, error magnetic asymmetries, etc., transform the sepa-
ratrix into a stochastic layer of semi-open field lines. These
evolve to a rich and complex homoclinic topology [5] on
which the patterns of deposition on the target depend. It has
been long known that magnetic field lines follow the trajec-
tories of a 1 1

2 degree of freedom Hamiltonian [6] and where
parallel conductivity largely outweighs transversal diffusion,
so that plasma flows preferentially along the magnetic field
lines. Therefore, the inherent use of area preserving maps to
model the system has turned out to be an often revealing as
well as processing-time saving practice since as early as the
1950’s [7, 8]. Built upon them, the so called test-particle the-
ories began exploring transference phenomena in stochastic
field equilibria [9] by exploiting the vast possibilities of these
discrete maps [10, 11] and even modelling actual tokamak fa-
cilities [12].

Nevertheless, a word of caution should be said about the
geometry selected to represent tokamak equilibria, as merely
adapting already existing maps seems to be a rather common
practice, according to which, one produces a map ’ab initio
and check its relevance a posteriori [13]. It is, indeed, true
that finding a map exactly equivalent to the field line equa-
tions is not necessarily trivial. Yet, some particular adapta-
tions involve considerable risks. To start with, the well known
(Chirikov-Taylor) Standard map [14] has proven not to be
a compatible model for a tokamak [13, 15]. It can also be
shown, for instance. That slab geometries, despite their pop-
ularity, are not suited for describing fluxes as plasma current

density in slab magnetic islands grows with their width, in
contradiction with the actual behaviour where stochasticity is
precisely enhanced by cooling [16]. Even the, perhaps, most
consistent archetypal tokamak map, the one parameter single
null divertor map [17] remains disconnected from most of the
physical significance of its variables and parameters. It is even
affirmed that this map cannot address a particular device [18].
Furthermore, it has been unnecessarily composed for no other
reason than making it look aesthetically appealing although it
may have no physical significance [11]. In contrast with previ-
ous attempts by other authors, the aim of the present work is to
construct a specific comprehensive, and yet compact, hamil-
tonian mapping model of the tokamak poloidal divertor on a
physically meaningful basis in order to gain a better under-
standing of some of the often misinterpreted tokamak single
null edge phenomena.

The contents are organised as follows: in Section 2 an
archetypal Hamiltonian of the single null tokamak divertor
configuration is developed so to satisfy the Hamilton equa-
tions of the equilibrium magnetic field lines in generalised
coordinates. The equations are solved, first conventionally,
for the ideal MHD axisymmetric case and then, in Section
3, by constructing a more realistic near integrable difference
equation scheme based on the concept of constraint relaxation.
This scheme is expressed, by more than one method, in the
form of a canonical map whose parameters are adjusted on
typical operational values such as those of COMPASS-D toka-
mak (major radius: R = 0.557 m, minor horizontal semi-axis:
a = 0.232 m, minor vertical semi-axis: b = 0.385 m, aspect
ratio: R/a = 2.53, material: Inconel 625, maximum toroidal
field on axis: 2.1 T, rise time: ∼ 1 s, flat top duration at top
field: 1 s, decay time ∼1 s, number of field coils: 16, field
ripple on axis < 0.006, plasma current: < 400 kA, plasma
duration without current drive: ∼ 600 ms, plasma rise time:
< 80 ms, maximum vertical field on axis: 200 mT) [19, 20],
as a reference. Section 4 presents an application of the model
to the study of edge field structure, on a stability criterion. A
discussion of some of the implications of such a structure for
the transport is included and the resonant-like origin of the de-
position patterns on the target is predicted. Conclusions and
some final remarks give form to Section 5.
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II. THE IDEAL SINGLE NULL TOKAMAK
CONFIGURATION

We consider initially a cylinder coordinate frame (R,ϕ,Z)
where Z = 0 describes the tokamak midplane, R = 0 coincides
with the toroidal axis (often known as central line) while ϕ
is the conventional toroidal angle. On the assumption of an
MHD ideal plasma-magnetic field equilibrium satisfying the
Grad Shafranov equation [12, 21], namely, where non resis-
tive Maxwell equations apply [22], one has that, in particu-
lar, ∇ ·B = 0 and therefore the usual vector potential A ex-
ists such that B = ∇×A Then, given the metric condition
B · R̂/dR = B · ϕ̂/Rdϕ = B · Ẑ/dZ where the unitary vector
ϕ̂ = R∇ϕ, then a magnetic field line evolves along the toroidal
direction as

dR
dϕ

=− 1
B · ϕ̂

∂RA · ϕ̂
∂Z

,
dZ
dϕ

=
1

B · ϕ̂
∂RA · ϕ̂

∂R
(1)

Always in the MKSA unit system and provided that a toka-
mak toroidal field is B · ϕ̂ = B0R0/R where the constant B0 =
µ0κIC/2πR0, the magnetic permeability is µ0, the mean major
radius R0, the effective toroidal field coil current IC and the
number of turns κ, we define our set of generalised coordi-
nates (ρ,z,τ) with

ρ≡ ln(R/R0) (2)

so to obtain respectively from equations (1) that

∂H
∂z

=−dρ
dτ

,
∂H
∂ρ

=
dz
dτ

(3)

with the Hamiltonian functional

H [ρ,z;Aϕ(ρ,z,τ)]≡ 2π
κB0

eρAϕ(R = R0eρ,z = Z/u0,ϕ = 2πτ/κ)

(4)
where u0 is the length unit and Aϕ ≡ A · ϕ̂ so that H =
ψP/κB0R0, ψP being the poloidal flux function.

We proceed now to design an H = H(ρ,z) form for the
single null case so that all the fundamental properties of this
configuration be reproduced with a minimum number of para-
meters. In point of fact, it is well known that the correlation
dimensionality of equilibrium field fluctuations measured in
a tokamak suggest that this number of parameters is close to
three [23]. Thus, let us require that a frame of reference ex-
ists where a toroidally symmetrical H(ρ,z) can be expressed
as an expansion around ρ = 0,z = 0 with no mixed terms so to
preserve its separability, namely,

H(ρ,z) = ∑
j≥0

β jρ′ j + ∑
j≥0

γ jz′ j (5)

where β j,γ j are constants for some particular value α of the
rotation matrix

R =
(

cosα −sinα
sinα cosα

)
(6)

so that
(

ρ′
z′

)
= R

(
ρ
z

)
(7)

We can now impose the following four constraints on the ρ′
vs z′ plane. In the first place that any horizontal line cut a
magnetic surface in no more than two points, that is, β j =
0 for j ≥ 3. Secondly, that any vertical line cut a magnetic
surface in no more than three points, or, γ j = 0 for j ≥ 4.
Likewise, that the plasma column be centered on the magnetic
axis whereby the value of H is an extremal there and therefore
β1 = 0. Finally, that the magnetic axis lie on the midplane so
that the magnetic surfaces are symmetrical in z′ as z′ −→ 0 and
hence γ1 = 0. We arrive, then, at the autonomous Hamiltonian

H(x′,z′) = β2 ln2(1+ x′/R0)+ γ2z′2 + γ3z′3 (8)

where, if α is the angle between the z− and z′-axes, as it will
be seen in Fig. 1 for later purposes. Then

x′(ρ,z) = R0[exp(ρcosα− zsinα)−1] (9)

z′(ρ,z) = ρsinα+ zcosα. (10)

FIG. 1: MD−generated poloidal cross sectional view of 30 single
null magnetic surfaces followed up for 200 toroidal revolutions un-
der typical operational values of COMPASS-D tokamak. The safety
factor values at the magnetic axis are: (a) 1.2 and (b) 0.6, show-
ing the two coordinate frames (R = x + R0,Z) and (x′,z′), the latter
aligned with the OX segment. The single null X point is located with
segmented lines at R = 0.47712m, Z =−0.33387m. The greater cur-
vature on the right hand side of the surfaces results from the toroidal
magnetic field being inversely proportional to the major radius. Both
the wall and the target plate locations are shown.

A fundamental boundary condition to value the remaining
parameters in the Hamiltonian is the location of the single null
cusp, otherwise known as X point, located at R = R0 +xX , z =
zX , whereby α = arctan(xX/zX ). On the other hand, given that
the intersections of a magnetic surface with the z′-axis take
place at those z′ values which satisfy that γ3z′3 +γ2z′2−H = 0
for the particular H value of that surface, then three real roots,
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of which two are equal, exist when the Cardan discriminant
Q≡ [(γ2/3γ3)3−HX/2γ3]2− (γ2/3γ3)6 = 0 in the case of the
ideal separatrix, namely, H = HX = (2/γ3)2(γ2/3)3. However,
we know that the Hamiltonian takes the value HX = γ3zX ′3 +
γ2zX ′2 on the X point and therefore γ2 =−3zX ′γ3/2.

Two other fundamental boundary conditions can arise from
the angle χ formed by the X point asymptotes so that β2 =
R2

0γ2 tan2[(π− χ)/2]. On the other hand, the Liouville theo-
rem ensures the invariance, within any closed magnetic sur-
face, of the amount of toroidal magnetic flux: the action
variable ψT = B0R0

H
H z(R,H)/RdR = B0R0

H
H z′(ρ′,H)dρ′,

provided that the latter integral is independent from the α

angle. Therefore, as Fig. 1 exemplifies, by fixing a de-
sired value of the security factor at the magnetic axis (q0)
through (κB0R0)−1 limH−→0 dψT /dH = q0, a third relation-
ship within the parameter set {β2,γ2,γ3} allow to character-
ize the essential Hamiltonian for a particular device. Hence,
every ideal magnetic surface being an H = constant con-
tour, the last integral can be generally evaluated as ψT =
(2B0R0/β2)

R z′3
z′2

√
H− γ3z′3− γ2z′2dz′ where z′2 < 0 < z′3

are the roots of ρ′(z′;H) = 0 within the confined region,
namely,

z′3 = [−(γ2/γ3)+(2/d)1/3(γ2/γ3)2 +(d/2)1/3]/3 (11)

z′2 = [−2(γ2/γ3)+(2/d)1/3(γ2/γ3)2i(i+
√

3)+(d/2)1/3(−1− i
√

3)]/6 (12)

wherever the imaginary parts of the last two complex terms
cancel out each other and provided that d ≡ −2(γ2/γ3)3 +
27(H/γ3) + 3

√
3H/γ3

√
−4(γ2/γ3)3 +27(H/γ3). Yet, as

long as we are interested in the above mentioned limit, a
more handy expression can be found. By realising that, near
the magnetic axis, the poloidal cross sections of the mag-
netic surfaces approach concentric circumferences centred at
the so called O or elliptic point (determined in the present
configuration by the poloidal location of the innermost mag-
netic surface) then ψT −→ πB0R0H/β2| − γ2|1/2 and there-
fore γ2 =−(π/κβ2q0)2. Some typical values are: β2 =-0.26m,
γ2 =−0.29m−1 and γ3 =−0.59m−2.

Integrating equations (3) in the MHD ideal case is nearly
trivial. In fact, defining the two functions

f (z′)≡−(2γ2 +3γ3z′)z′ (13)

α(ρ′)≡ 2β2ρ′ (14)

so that z′= ∂H/∂ρ′= α(ρ′), the Hamilton equation set can be
reduced to a single second order equation of motion:

z̈′= 2β2ρ̇′=−2β2
∂H
∂z′ = 2β2 f (z′) (15)

which admits the standard quadrature solution

τ =
1

2
√

β2γ2

Z dw′√
C1−w′2±w′3

+C2 (16)

where w′ ≡±γ3z′/γ2 and the constants C1,C2 are fixed by one
boundary and one initial conditions. Thus, if ρ′ is considered
the to be the generalised momentum, conjugate to z′, then the
generalised kinetic energy becomes

T = ż′2/2 = 2β2(β2ρ′2) (17)

with a generalised potential

V =−
Z z′

0
ζ̈′dζ′=−2β2

Z z′

0
f (ζ′)dζ′= 2β2(γ2 + γ3z′)z′2

(18)

whereby the total generalised energy is

E = T +V = 2β2H (19)

Hence, in the absence of dissipative effects, the poloidal flux
ψP = κB0R0H is a conserved surface quantity.

III. THE STOCHASTIC SINGLE NULL TOKAMAK
CONFIGURATION

It is well known that the solutions in the previous section
refer only to toroidally symmetrical ideal (i.e., non resistive)
MHD stability, and this, in the absence of error fields resulting
from residual magnetic coil misalignments and defects as well
as internal plasma confinement degradation factors such as the
presence of suprathermal particles. In any realistic study of
tokamak phenomena, operational conditions have to be con-
sidered as near- or non-integrable. In the former case, such
non linear marginal contributions to the magnetic field imply,
in general terms, a Hamiltonian flux function transition [24]

ψP = ψP0(ψT )−→ ψP = ψP0(ψT )+δψP(ψT ,θ,ϕ) (20)

where θ is the tokamak poloidal angle. Naturally, the per-
turbation δψP(ψT ,θ,ϕ), whose specific form may not be an-
alytically determined in full, may also not be necessarily
dependent on all three coordinates. In most cases this re-
placement turns Hamilton’s equations non separable strictly
speaking [13] and yet, it is often mild enough so to allow
a convenient study of the perturbed field line evolution by
means of invariant preserving mappings. From a mathemati-
cal point of view, these Hamiltonian mappings are well known
homeomorphisms that result from an F2 class of canoni-
cal Legendre transformations of coordinates, along the gen-
eralised time, generated by the Hamiltonian itself [8, 25].
Therefore, a Rayleigh dissipation function with non diagonal
elements excites the intrinsic stochastic attractor behaviour of
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such Hamiltonian systems, namely, in the absence of exter-
nal driving forces [26]. Let us propose, then, the generalised
Rayleigh dissipation potential, responsible for intrinsic mag-
netic flux variations, in the general form

UR =
1
2
( f11ż′2 + f12ż′2ρ̇′2 + f21ρ̇′2ż′2 + f22ρ̇′2) (21)

where the coefficients fi j = f ji, fii 6= f j j; i 6= j. In this way,
by taking derivatives with respect to the velocities, the gener-
alised dissipation force Fd ≡−∇vUR introduces a fluctuation
in the generalised energy

dE =−Fd · (ρ̇′ρ̂′+ ż′ẑ′)dτ =−2URdτ. (22)

Then, given Eq. (19), the stochastic contribution to the Hamil-
tonian (in variational form, more convenient for our purposes)
becomes

δH =−UR/β2 δτ. (23)

which admits the solution

f11 = f22 = 0, f12 = f21 =−β2 (24)

in order for δH to retain its generalised energy units while
following the convention of keeping UR > 0 as long as β2 < 0.
Thus

δH = α(ρ′) f (z′) δτ = ρ̇′ż′ δτ. (25)

Bearing in mind that ż′ and ρ̇′ represent the slopes of the field
line’s orthogonal projections with respect to the toroidal direc-
tion, then the previous equation suggests the following toka-
mak properties:

• Every field line with a rotational transform distinct from
naught is stochastic.

• The O and X fixed points are never stochastic.

• Those magnetic surfaces closer to z′ = constant planes
and ρ′ = constant cylinders are less prone to destabi-
lize.

• Reducing the rotational transform of the surfaces im-
proves their stability, recouping the Kruskal-Shafranov
and Mercier criteria [27] which consider the balance of
toroidal and poloidal fields in terms of the amount of
plasma current to be confined. That is why the recip-
rocal security factor central value, 1/q0, plays a role of
stochasticity parameter through the {β2,γ2,γ3} set.

A standard practice to solve the equations of motion that result
from a non MHD ideal near-integrable Hamiltonian H + δH
is based on discretizing the generalised time, in our case the
toroidal coordinate, so to obtain a sequence of impulsive per-
turbations leading to a difference equation set or map [8, 12].
Thus, in so far as we restrict our solution, in principle, to those
successive planes containing the toroidal field coils distributed
with a period τ = κϕ/2π, then we have effectively a perturba-
tion

∆H = α(ρ′) f (z′) δΣ(τ) (26)

thanks to the periodic Dirac delta function δΣ(τ) =
∑∞

k=−∞ δ(τ− k). As it is frequently done, we can now intro-
duce the ’kicked’ Hamiltonian [8]

H1 = H0 +∆H (27)

with H0 ≡ HδΣ(τ) so that the magnetic line transition from
one plane (N) to the next (N +1) can be expressed as

Z N+1

N

dρ′
dτ

dτ =−
Z N+1

N

∂H1

∂z′ dτ,

Z N+1

N

dz′
dτ

dτ =
Z N+1

N

∂H1

∂ρ′ dτ. (28)

Then, as ∆H −→ 0, we use the unperturbed values of ρ′,z′ so
to integrate ∂H1/∂z′ over the unperturbed orbits [8]:

ρ′N+1 = ρ′N + f (z′N), z′N+1 = z′N +α(ρ′N)+2β2 f (z′N)
(29)

The latter mapping is not fully invariant preserving, though.
It does not preserve the poloidal flux given the fluctuation
δψP = κB0R0δH where δH, understood as the product of the
field line slopes as in Eq. (25), is not zero in general and so
ψP is not a surface quantity. Nevertheless, the previous map-
ping does preserve the toroidal flux provided that the Jacobian
determinant

|J |= |∂(ρ′N+1,z′N+1)/∂(ρ′N ,z′N)|= 1 (30)

A more straightforward way, although far less conventional,
to obtain Eqs. (29) from Eqs. (3) provided that constraint Eq.
(30) is satisfied, can be described as follows. Clearly, from the
definition of total derivative, if τ0 is a constant,

lim
δτ−→0

z′(τ0 +δτ)− z′(τ0)
δτ

=
[

∂H
∂ρ′

]

τ=τ0

,

lim
δτ−→0

ρ′(τ0 +δτ)−ρ′(τ0)
δτ

=−
[

∂H
∂z′

]

τ=τ0

(31)

As defined, τ = κϕ/2π so that, by considering the limit δτ−→
1 instead, a measure of the field line shift after one κ-th of
toroidal revolution can be obtained as

z′N+1− z′N =
[

dz′
dτ

]

τ=τa

=
[

∂H
∂ρ′

]

τ=τa

,

ρ′N+1−ρ′N =
[

dρ′
dτ

]

τ=τb

=−
[

∂H
∂ρ′

]

τ=τb

(32)

where the N, N + 1 subindices refer to τ0 and τ0 + 1, respec-
tively, while τa,τb are two values of τ between τ0 and τ0 + 1
according to the Mean Value Theorem. Imposing no other
constraint than the canonical one given by Eq. (30), one ob-
tains the solutions

τa = lim
τ−→τ0+1

τ, τb = lim
τ−→τ0

τ (33)
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whereby Eqs. (32) become Eqs. (29). They can be reex-
pressed in the also more compact matrix operator notation

(
ρ′N+1
z′N+1

)
= MD

(
ρ′N
z′N

)
(34)

thanks to the map operator (the symbol ◦ indicates functional
composition):

MD ≡
(

1 ζ◦
2β2 1+2β2ζ◦

)
(35)

satisfying naturally that |MD|= 1 and where we have defined
the distributive functional operation ζ◦ ≡−(2γ2I+3γ3I2)◦ so
that In ◦ x = xn for any real x and any integer n.

By lowering the level of the q−profile by means of q0 in
MD so to approach the value q = 1 at the edge, an increas-
ing number of regular magnetic surfaces destabilize creat-
ing bands of stochasticity limited by some more stable (less
q-rational) surfaces, in a process predicted by the Kruskal-
Shafranov-Mercier criterium [27] and described by the KAM
Theorem [8]. Henceforth, a magnetic surface cross section
portrait of the COMPASS-D tokamak scenario is presented in
Fig. 1 for the cases q0 = 1.2 and q0 = 0.6, so to cover the
above mentioned transition. One toroidal revolution corre-
sponds to the transformation Mκ

D. As expected, the contours
are not symmetric with respect to the z′ axis given that the
stabilizing toroidal field decays with 1/R.

IV. ON THE TOPOLOGY OF THE STOCHASTIC
SEPARATRIX

It is not unfrequent that purely numerical modelling pro-
duces some artificial ergodization near the X-point. It might
even be suspected that the stochasticity discussed in the pre-
vious section is due to mere numerical inaccuracies. One
of the characteristics that make canonical, namely measure
preserving, mappings like MD so powerful is precisely that
the numerical diffusion resulting from roundoff error occurs
along the magnetic surfaces and not across them [28]. On
the contrary, it is well known that actual magnetic field lines
from destabilizing surfaces can move transversely to them
and may migrate filamentary or remain stationary in island
chains and/or other subsidiary structures but, fortunately to
plasma confinement, cannot penetrate regular, less q-rational,
surfaces. Mappings like MD share such behaviour, stipulated
in the KAM theorem: transverse diffusion depends on local
rationality and not on global roundoff error. This theorem,
conjectured by A.N. Kolmogorov and J. Moser and later on
very formally demonstrated by V.I. Arnold [29], applies to
Hamiltonian systems in the phase space which, in the case
of tokamaks, happen to coincide practically with the physi-
cal space. Thus, provided that an unperturbed Hamiltonian
satisfies some conditions of non resonance [8], many of the
unperturbed toroidal magnetic surfaces are preserved in the
semi integrable case, namely, for mild perturbations. These so
called KAM surfaces are important because they limit the sto-
chastic regions preventing the magnetic field from wandering

throughout the space and so helping the plasma confinement.
Furthermore, the stability condition of the KAM theorem with
respect to perturbation can be expressed as a diophantine form
[30] whereby the ratio of the toroidal and poloidal revolutions
of a magnetic line determines the stability of the toroidal sur-
face it weaves. Highly rational line ratios, in the sense of a
continued fraction expansion as in [31], are structurally un-
stable. Less rational lines which, however, do not satisfy the
diophantine condition, end up wandering stochastically only
after having followed apparently stable trajectories. The more
irrational cases, diophantine stable, become KAM invariant
torii. Of them, the last to succumb is, famously, the one cor-
responding to the golden mean: (

√
5−1)/2.

The mapping MD and its inverse M−1
D enables us to ex-

plore the edge topology by considering a row of equidistant
initial points such as {x0 = x(R,z = 0,ϕ = 0)|Rlc f s < R <
Rlc f s + λsol} where Rlc f s is the position of the outmost close
flux surface on the outboard midplane and λsol is a typical
width of the scrape off layer which can be defined as the por-
tion of the open surface region that is effectively occupied
by plasma particles. The successive crossings of each field
line trajectory through the ϕ = 0 plane may be registered on
a slab geometry plane ψT vs θ (or rather, for the sake of clar-
ity, R(ψT ) vs θ as in Fig. 2) where θ = arctan[z/(R−R0)] is
the poloidal angle that starts from the outboard midplane. The
surface quantity of magnetic toroidal flux, ψT , is measured as
the value

H
C B · ϕ̂ ds on the poloidal plane between the mag-

netic axis and the contour C generated by the crossings, as
long as field line remains within the wall. Should C be a con-
nected contour then the value of the integral is normalised by
the number of poloidal revolutions. In this context, the fol-
lowing hierarchy can be established.

• Scrape Off Layer (SOL): where the magnetic field
lines exit the nested flux surface region after half a
poloidal revolution. Its width is conventionally deter-
mined by the presence of a limiter or by conditions like
the value of the decay constant of the midplane power
flux distribution functions, depending on the local par-
ticle diffusion across the magnetic surfaces.

• Stochastic Layer: where the lines exit the nested flux
surface region after one or more poloidal revolutions.
This layer, together with the previous one, are often
known as the loss region.

• Close Surface Region: where the lines exit the nested
flux surface region after a conventionally ’infinite’ num-
ber of poloidal revolutions. Such number can be estab-
lished on the basis of criteria like the confinement times.

The fact that the number of poloidal revolutions exhibits
the tendency to diminish outwards (one common character-
istic to many purely numerical non ideal tokamak field line
tracing results [32]) does not necessarily imply that it occurs
smoothly or even monotonically. In the transitional stochastic
layer, very long lines seem to coexist next to lines that break
away after a very few transits, clearly due to their contrast-
ing rationality. Thus, Fig. 3 exhibits a MD−generated spiky
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FIG. 2: Poloidal cross sectional view of the stochastic separatrix on
the R(ψT ) vs θ plane. The normalized poloidal angle θ value starts
on the outboard midplane while ψT labels the surfaces, increasing
with the minor radius. R(ψT ) is the starting major radial location
of the ψT−surface, also on the outboard midplane. Sixteen initial
conditions, launched from θ = 0, are followed up by (a) MD and (b)
M−1

D . In both cases, the closer the field lines are to the X point the
’slower’ their poloidal progress becomes until the outmost lines fail
to resume it and end up on the target.

FIG. 3: Length vs launching position on the outboard midplane
of magnetic field lines within the stochastic separatrix band, when
q0 = 0.6. This MD−generated spectrum is limited to 250 poloidal
transits. The field lines are followed until they wander away from
the column and touch the wall. The uneven length distribution sug-
gests the connection between stability and safety factor rationality.

field line length spectrum collapsing into a less bristly declin-
ing pattern once the open surface region, the scrape off layer
(SOL)[1] has been reached where the mostly parallel transport
of particles and energy to the target takes place.

Although Fig. 2 suggests a reluctant poloidal progress of
the field line when approaching the magnetic cusp X point, a
more revealing insight of the plasma edge is gained by focus-
ing on that neighbourhood in (R,z,ψT )-coordinates as shown
in Fig. 4. Under MHD ideal conditions, the helical pitch of the
field lines vanishes throughout the infinitely thin separatrix so
to avoid either splitting one ingoing line into two outgoing
ones at the X point or else creating a sink there. On the other
hand, the near integrable stochastic cusp is a fixed point of the
Hamiltonian with significant consequences: the poloidal com-

FIG. 4: A 1500× amplification of the M±κ
D −generated stochastic

separatrix centered on the single cusp, showing the genesis of the
typical deposition patterns on the target plate. One thousand outer
surfaces have been followed up to 500 poloidal revolutions when
q0 = 0.7 for stochasticity enhancement, starting from a last confined
surface located, on the outboard midplane, at R = 0.731043m. The
magnetic surfaces become increasingly ruffled as approaching the X
point to the extent of projecting themselves onto the target, propitiat-
ing the particle flux given the higher parallel conductivity.

FIG. 5: (a) M+κ
D −component of the previous figure as initial

points on the outboard midplane are followed clockwise. (b)
M−κ

D −component following the lines counterclockwise. The super-
imposition of both trajectory sets results in a trellis structure, charac-
teristic of the stochastic cusp region.

ponent of the lines fades away as the X point is approached so
to ensure that the line progress there is purely toroidal. Thus,
a line of the stochastic layer approaches the OX segment un-
dergoing a steady reduction in its helical pitch but, given that
∇ ·B = 0, then the outmost lines avoid stagnation by under-
taking increasingly pronounced excursions [33] as shown in
Fig. 4. Yet, such undulation might introduce either an excess
or a deficit in the poloidal area, namely the toroidal flux as
we have previously discussed, contained by the magnetic sur-
face. This would contradict the Liouville Theorem, so that the
excursion is immediately redressed only to lapse into spikier
ripple. Although, in the limit, this resonant behaviour gives
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rise to the private region legs of the separatrix, the lines os-
cillate transversally to the poloidal circulation sense just to
reassume the nested geometry [5]. Furthermore, the edge line
evolution bifurcates increasingly outwards making the trajec-
tories of the direct M+κ

D -branch complementary to those of the
inverse M−κ

D -branch, as exhibited in Fig. 5. More explicitly,
it portrays how the edge lines escape the confinement region
after a finite number of poloidal revolutions, either on the out-
board or the inboard side according to their left (right) hand-
edness with respect to the toroidal coordinate. That is why,
if one same toroidal sense is maintained by the observer, then
every escaping line appears to resume its poloidal circulation
after an infinitely long excursion. And yet, both branches of
one same magnetic surface can intersect each other at points
known in topology as homoclinic (Fig. 4). As the edge is
approached, the rather explosive oscillatory topology of the
surfaces can clearly develop to the extent of touching the sur-
face of the target plate with considerable repercussions as to
the transport of power and particles given the greater paral-
lel conductivity. In this way, the general deposition pattern
is expected to adopt the well known parallel band pattern that
runs toroidally on the target with a wider distance among such
rings in the case of the outboard side of the separatrix.

V. CONCLUSIONS

It has been shown that a compact and yet rich mapping
of the tokamak divertor magnetic configuration can be devel-

oped consistently from the Hamiltonian function itself. Al-
though this model shares with previous attempts by several
authors many of the advantages of canonical maps such as
a very fast processing and the absence of error propagation,
in our case no heuristic adaptation of alien maps or geome-
tries has been required. It follows a considerable proximity
between a device and its model of which the upholding of
the Kruskal-Shafranov-Mercier criterion is a significant in-
stance. Likewise, the intricate stochastic separatrix revealed
by the MD map culminates at the neighbourhood of the X
point cusp. There, the transverse flexion of of the adjoining
magnetic surfaces follows directly from the Liouville invari-
ance of the toroidal flux. The mutually complementary criss-
crossed topology of the M+κ

D and M−κ
D branches of the sepa-

ratrix combines with the higher parallel conductivity to create
the fairly universal toroidally annular deposition pattern on the
target plate.
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