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Multiple Ionization Effects in X-Ray Emission Induced by Heavy Ions
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The x-ray satellite structure of Pd Lα1,2(L3M4,5) transition excited by an impact of O7+ and Ne6+ ions with
energies 279 and 178 MeV, respectively, which were measured using a high-resolution von Hamos crystal spec-
trometer, is discussed in terms of the multi-configuration Dirac-Fock (MCDF) calculations. We demonstrate, by
using the arguments of the general central limit theorem (GCLT), that a structure of complex M-shell satellites
of Pd Lα1,2(M−m) transitions for a higher number of spectator vacancies (m > 4), which consists of hundreds
of thousands of individual x-ray transitions as obtained from the MCDF calculations, can be well described by a
single Voigtian profile. The Lorentzian width of such Voigtian line can be well modeled by using the results of
the MCDF calculations for simpler configurations with a number of vacancies m≤ 4 . This method allows one
to describe realistically a complex structure of M-shell satellites, thus extending the applicability of the MCDF
calculations, which are limited by an increasing complexity of numerical calculations.
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I. INTRODUCTION

The x-rays emitted from atoms multiply ionized by heavy
ions exhibit, apart from the well known x-ray diagram lines,
the satellite structure corresponding to different multi-vacancy
configurations present at the moment of the x-ray emission.
High-resolution measurements of excited x-ray satellites give
thus access to study the structure of multi-vacancy config-
urations in atoms. However, in order to extract from such
complicated spectra the x-ray transitions the structure of x-
ray multiplets and their Lorentzian widths for a given multi-
vacancy configuration as well as the experimental Gaussian
broadening have to be known. This results from the fact that
for heavy ion impact the x-ray spectra, containing x-ray satel-
lites with up to several spectator vacancies in the inner-shells,
become extremely complex and, consequently, cannot be fit-
ted uniquely without performing the MCDF calculations of
the structure of individual x-ray multiplets and realistic mod-
elling of their widths. In this paper we discuss a new method
of analysis of complex x-ray spectra which, using the general
central limit theorem arguments, describes the complex x-ray
satellites as the smooth Vogtian profile having known mean
value and width, which can be obtained from MCDF calcula-
tions. This method, which is based on our earlier works [1, 2],
is presently extended to high-resolution spectroscopy. An al-
ternative approach of analysis of x-ray spectra emitted from
multiply ionized atoms can be found in a recent work by Hor-

vat et al. [3].

In this paper we discuss the M- and N-shell satellites of Pd
Lα1,2(L3M4,5) x-ray transitions excited by fast O7+ and Ne6+

ions [4], which were measured with high-resolution (∼ 1
eV) using crystal diffraction spectrometer [5]. The measured
x-ray spectra were compared with predictions of the multi-
configuration Dirac-Fock (MCDF) calculations. The details
concerning the MCDF calculations adopted here are described
in Ref. [6]. In fact, the x-ray satellites of the Lα1,2(L3M4,5)
transitions which are dominated by a small number of M-shell
satellites, as for instance for O7+ ion impact on palladium
(m ≤ 4), can be well reproduced by MCDF calculations (see
Fig. 1). However, for more complex configurations with a
higher number of spectator vacancies (m > 4) the MCDF cal-
culations become too complex numerically to be performed
in practice. This is the case of Ne6+ impact on palladium (see
Fig. 2), for which up to m = 7 M-shell satellites have to be
calculated in order to reproduce the measured x-ray spectrum
of Pd Lα1,2(L3M4,5). We demonstrate, by using the general
central limit theorem arguments, that the M-shell satellites for
a higher number of spectator vacancies (m > 4) can be approx-
imated by a single Voigtian profile for which a mean energy
and width can be obtained by extrapolating the MCDF calcu-
lations for configurations with a smaller number of spectator
vacancies.
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FIG. 1: Measured x-ray satellite structure for Lα1,2 transition in pal-
ladium excited by 279 MeV O7+ ions. The data are compared with
the predictions of the MCDF calculations including up to m = 4 spec-
tator vacancies in the M- and N-shells. The individual components
of the calculated spectrum are marked in the figure.

II. EXPERIMENT

The high-resolution measurements of the M- and N-shell
satellites of Pd Lα1,2(L3M4,5) x-ray transitions excited by fast
O7+ and Ne6+ ions have been performed [8] at the Philips
cyclotron in the Paul Scherrer Institute (PSI) in Villigen,
Switzerland, using a von Hamos high-resolution diffraction
spectrometer [5]. The x-ray spectra of Lα1,2(L3M4,5) transi-
tions were excited by O7+ and Ne6+ ion beams of energies
279 and 178 MeV, respectively, bombarding thin metallic pal-
ladium foils. The x-rays were measured by means of a high-
resolution von Hamos spectrometer [5] with a precision of
about 1 eV for studied Pd L-x-rays (∼ 3 keV), including an
experimental Gaussian resolution of about 0.7 eV. The von
Hamos spectrometer was equipped with a quartz (111) crystal
curved with a radius of 25.4 cm. The x-rays were measured
with the CCD detector covering in one setting the x-ray energy
range of about 50 eV. Consequently, the x-ray spectra of Pd
Lα1,2(L3M4,5) transitions were measured for several settings
of the spectrometer. The energy calibration of the spectrom-
eter has been performed by measuring well resolved Kα1,2
x-ray lines of vanadium excited by photons from x-ray tube
with Cr anode.

III. RESULTS AND DISCUSSION

In order to interpret quantitatively the measured x-ray satel-
lite structure of Pd Lα1,2(L3M4,5) transitions excited by Ne6+

ions of energy 178 MeV, MCDF calculations involving up to
seven M-shell spectator vacancies are needed. However, the
MCDF calculations for multi-vacancy Pd Lα1,2 (M−m) con-

FIG. 2: Measured x-ray satellite structure for Lα1,2 transition in pal-
ladium excited by 178 MeV Ne6+ ions. The data are compared with
the predictions of the MCDF calculations including up to m = 4 spec-
tator vacancies in the M- and N-shells and the average MCDF bino-
mial model indicating the importance of configurations with up to
m = 8 vacancies in the M-shell as well as the L-shell hypersatellite
structure.

figurations become, in practice, numerically intractable for
m > 4. For instance, the MCDF calculations for palladium for
M−4 configuration contain 244953 transitions (see Fig. 3) and
for mixed M−1N−2 configuration 268210 transitions. Such
numerical limitation of the applicability of the MCDF calcu-
lations asks for developing of alternative approximate meth-
ods to treat the complex satellite structures of x-rays excited
in ion-atom collisions.

Following the idea presented in our earlier works (see Refs.
[1] and [2]) on multiple ionization effects in ion-induced x-
ray spectra we suggest that the x-ray profile for complex x-
ray transitions can be well approximated by an effective sin-
gle profile resulting from a convolution of natural Lorentzian
and experimental Gaussian widths applied to the calculated
MCDF x-ray multiplets consisting of large number of transi-
tions. This observation is based on the firm ground of the gen-
eral central limit theorem (see Ref. [7]) suggesting a Voigtian
type profile as the limiting distribution in our case.

In order to verify this idea, the calculated MCDF structure
of x-ray transitions for Pd Lα1,2 (M−m) configuration, convo-
luted with natural Lorentzian widths of individual transitions,
assumed to scale approximately with a number of spectator
vacancies m as Γ(m) = Γ(0) + 2Γspec ·m, and experimental
Gaussian widths of about 0.7 eV, are shown in Fig. 4. The
effective widths of the resulting Voigtian profiles for complex
x-ray multiplets are expected to follow approximately a sim-
ple scaling rule, namely,

Γ(m) = ΓM(0)+αm+β
√

m (1)

where α and β are constants which can be fitted for a calcu-
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FIG. 3: The structure of Pd Lα1,2(M−4) x-ray transitions obtained
by using the MCDF calculations.

FIG. 4: A profile of Lα1,2(M−4) x-ray transitions, as obtained by
convolution of calculated MCDF transitions with natural Lorentzian
(see text) and experimental Gaussian widths, fitted by a single
Voigtian profile. Note the smooth shape of the calculated (MCDF)
profile and the reasonable good fit by a Voigtian.

lated MCDF configuration with a smaller number of spectator
vacancies, m ≤ 4 in our case. This formula, which uses once
more the arguments of the GCLT theorem, has been derived
by summing up the natural width Γ(m) of the Lorentzian dis-
tribution of x-ray transition energy and the width of the bi-
nomial distribution of a number of vacancies randomly dis-
tributed in the M-shell. In fact, the variance of the binomial
distribution σ2(m) = NM pM(1− pM), where NM is a num-
ber of electrons in the M-shell, scales for pM = m/M ¿ 1

as σ2(m) ∝ m yielding the following approximate estimate for
a width: Γbin(m) ∝

√
m.

The fitted effective widths of x-ray transitions for M−m

configurations, shown in Fig. 5, fully justify the model as-
sumed. Consequently, such a parameterization of Voigtian
widths for complex multi-vacancy configurations, combined
with a known linear parameterization of their mean energies
adopted in the average MCDF binomial model (Ref. [6]) of
x-ray satellite structure, allows one to describe in a realistic
way the complex x-ray spectra excited by heavy ions, which
include much more spectator vacancies than can be treated
numerically in an exact way using the MCDF calculations.

The present findings open a possibility to describe a com-
plex satellite structure of Pd Lα1,2(L3M4,5) transitions such as
in the discussed x-ray spectra excited by Ne6+ ions of energy
178 MeV exhibiting M- and N-shell satellites. However, a fi-
nal interpretation of such x-ray spectra needs further MCDF
calculations for the observed L-shell hypersatellite structure
overlapping with M-shell satellites. Such MCDF calculations
of L-shell hypersatellites are in progress.

IV. CONCLUSIONS

A novel approximate description of x-ray spectra for com-
plex multi-vacancy M−m configurations has been proposed,
which is based on the general central limit theorem. The cal-
culated profiles of Lα1,2 (M−m) x-ray transitions in palladium
are well described by the proposed model. Complex multi-
vacancy configurations, involving up to about ten spectator

FIG. 5: Fitted effective Lorentzian widths of Pd Lα1,2(M−m) MCDF
x-ray transitions for spectator vacancies in s-, p-, and d-states, which
are well fitted by the approximate formula Γ(m) = ΓM(0) + αm +
β
√

m. Assumed natural widths for M−m vacancy configurations with
vacancies in 3p and 3d states are also shown in the figure.
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vacancies, can be treated within this approach, which signifi-
cantly extends the applicability of the MCDF calculations for
describing multiple ionization effects in x-ray spectra excited
by heavy ions.
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