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Stationary states of an electron in thin GaAs elliptical quantum rings are calculated within the effective-mass
approximation. The width of the ring varies smoothly along the centerline, which is an ellipse. The solutions of
the Schr̈odinger equation with Dirichlet boundary conditions are approximated by a product of longitudinal and
transversal wave functions. The ground-state probability density shows peaks: (i) where the curvature is larger
in a constant-with ring, and (ii) in thicker parts of a circular ring. For rings of typical dimensions, it is shown
that the effects of a varying width may be stronger than those of the varying curvature. Also, a width profile
which compensates the main localization effects of the varying curvature is obtained.
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I. INTRODUCTION

The stationary states of electrons confined in two-
dimensional rings have been studied for some special cases.
Magarill et al. [1] and Bermanet al. [2] have investigated el-
liptic rings of constant and varying width in the presence of a
threading magnetic field. However, their theory is specific for
the elliptical shape. Other groups [3, 4] have dealt with rings
of arbitrary shapes and constant width. Circular rings with
varying width in the presence of electric and magnetic fields
have also been studied [5, 6]. In this work, it is presented a
simple approach to the electron states in thin rings with ar-
bitrary (but smooth) variations of curvature and width. The
numerical results are given and discussed for elliptical rings.

II. THEORY AND RESULTS

Electronic states in GaAs are described within the effective-
mass approximation. The attention is focused in a free motion
on a ring-shaped planar strip. The motion in the third dimen-
sion is assumed to be separated. Hence, the two-dimensional
stationary states satisfy
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(
∂2

∂x2 +
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∂y2

)
ψ(x,y) = E ψ(x,y) , (1)

wherem∗ is the electron effective mass in GaAs. Since the
particle is confined in the ring,ψ(x,y) obeys Dirichlet bound-
ary conditions.

In the present work, the elliptical ring is the two-
dimensional region swept by a line segment whose midpoint
describes an ellipse. This curve is the centerline of the ring
and may be given by the parametric equations.

x = acos(θ), y = bsin(θ), 0≤ θ≤ 2π , (2)

wherea and b are the semi-axes. The line segment is al-
ways perpendicular to the centerline and its length depends
smoothly onθ. The curvature of the ellipse is given by

k = ab
[
a2sin2(θ)+b2cos2(θ)

]−3/2
. (3)

To obtain the wave functionψ(x,y), the curvilinear coor-
dinatess and u are introduced. The coordinates is the arc
length measured counterclockwise along the ellipse from the
point (x,y) = (a,0). It is calculated as

s=
Z θ

0

[
a2sin2(t)+b2cos2(t)

]1/2
dt , (4)

and the perimeterL of the centerline is the value ofs for θ =
2π. Then, the ring widthw and the curvaturek may be thought
as functions ofs. The coordinateu is the oriented distance of
the point(x,y) to the centerline. The distance is measured
in units of the widthw corresponding to the value ofs at the
nearest point of the ellipse. It is positive (negative) for points
outside (inside) the centerline. The Jacobian determinant of
the(u,s)→ (x,y) mapping is given byJ = w(1+uα), where
α = wk. It should be positive for−1/2≤ u≤ 1/2 and0≤
s≤ L. Otherwise, the inner boundary of the ring would not be
well defined [4]. Hence,α ≤ 2 should apply for0≤ s≤ L.
This condition imposes and upper bound for the ring width at
each point of the centerline.

In the new variables(u,s), the problem is simplified be-
cause the domain is a rectangular strip. However, the differ-
ential equation (1) has to be transformed accordingly. To cal-
culateψ(x,y) one may: (i) write the Laplace operator in the
Beltrami form [3] for the curvilinear coordinates(u,s), (ii)
substituteψ(x,y) = f (u,s)/

√
J, (iii) perform the approxima-

tion f (u,s) = hn(u)g(s), wherehn(u) =
√

2sin(nπ(u+1/2))
behaves as thenth transversal mode, (iv) apply the varia-
tional method to derive an equation for the longitudinal wave
function g(s), and (v) solve the resulting ordinary differen-
tial equation with the boundary conditionsg(L) = g(0) and
g′(L) = g′(0).

The longitudinal equation is

~2

2m∗

[
− d

ds
In(α)

d
ds

+
6

∑
q=1

vq

]
g(s) = E g(s) , (5)

where

E = E− ~
2n2π2

2m∗w̄2 , (6)
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with w̄ being mean width of the ring, and

In(α) =
Z 1/2

−1/2
h2

n(u)(1+αu)−2du. (7)

Note in Eq. (6) thatE may be interpreted as the longitudi-
nal energy, with~2n2π2/(2m∗w̄2) being the energy of thenth
transversal mode. Also,In(α) in the first term of Eq. (5) leads
to an arc-length-dependent longitudinal mass.

The longitudinal potential is the sum of six terms, where

v1 =−k2

4
In(α) , (8)

v2 =−wk̈
4

I ′n(α)− 5w2k̇2

24
I ′′n (α) , (9)

v3 = n2π2
(

1
w2 −

1
w̄2

)
, (10)

v4 =− ẇk̇
2

[
I ′n(α)+αI ′′n (α)

]− ẅk
2

I ′n(α) , (11)

v5 =
ẇ2

4w2

[
3In(α)+2αI ′n(α)

]
, (12)

and

v6 =
n2π2ẇ2

w2

Z 1/2

−1/2
u2h2

n(u)(1+αu)−2du. (13)

Here, the dots overw andk represent derivatives with respect
to the arc-lengths.

The numerical results presented below correspond to the
ground state of the particle. Hence, the fundamental mode
n = 1 is taken for the transversal motion. The electron effec-
tive mass in GaAs is taken asm∗ = 0.067m0, wherem0 is the
electron mass.

The probability distribution of the ground state in a circular
ring of radiusa = b = 106.4 nm and constant widthw = 15
nm is represented in Fig 1(a). Due to the rotational symmetry
of the ring, the probability is independent of the electron
position along the ring.

In contrast, the probability density of the ground state in an
elliptical ring of constant width should have its larger values in
the regions of larger curvature [1, 4]. This is clearly shown in
Fig. 1(b) fora = 150nm,b = 50 nm andw = 15 nm. In both
of these cases, the perimeter of the centerline isL = 668.2 nm
andv1 is the dominant term in the longitudinal potential.

The variations in the width of the ring may produce strong
effects on the wave functions [1]. To illustrate this, the
ring centerlines and the mean width̄w = 15 nm in Fig. 1
are considered. However, the width profile is taken asw =
[15−0.1cos(4πs/L)] nm. The ground-state probability distri-
bution in the circular ring is displayed in Fig. 2(a). There, the
probability is higher in the thicker parts of ring. Note that the

width oscillates with a very small amplitude. As such varia-
tions are not apparent in Fig. 2(a), the width profile is depicted
in Fig. 2(c).

The probability distribution of the ground state in the ellip-
tical ring with a = 150nm,b = 50 nm, w̄ = 15 nm, and sinu-
soidal width oscillations of amplitude 0.1 nm is displayed in
Fig. 2(b). Interestingly, it does not show larger values where
the curvature is larger. Indeed, the probability is higher where
the ring is wider, resembling Fig. 2(a). In these cases,v3 is the
dominant term in the longitudinal potential. As width varia-
tions larger than 0.1 nm are often present in grown or fab-
ricated ring and wave guides, the experimental detection of
electron confinements due to curvature variations may be dif-
ficult.
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FIG. 1. The probability density of the ground state in (a) a circular
ring with radiusa = b = 106.4 nm and (b) an elliptic ring with semi-
axesa = 150nm andb = 50 nm. Both rings have equal perimeters
L = 668.2 nm and a constant widthw = 15 nm. Darker tones repre-
sent larger relative values.

At this point, one may wonder if for a given mean width
w̄ there exists a width profile which compensates the main
localization effects of the varying curvature. To obtain such
a profile, one may retain the termsv1 andv3 in the effective
longitudinal and assume thatv1 + v3 does not depend ons,
namely,

−k2

4
In(α)+n2π2

(
1

w2 −
1

w̄2

)
=

βn2π2

w̄2 , (14)

whereβ is a constant. Moreover,α is assumed to be suffi-
ciently small, so thatIn(α) ≈ 1 in the kinetic term of Eq. (5)
and in the first term of Eq. (14). Then,

w = w̄

(
1+β+

w̄2k2

4n2π2

)−1/2

, (15)
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andβ is determined from

w̄ =
1
L

Z L

0
w ds. (16)
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FIG. 2. The probability density of the ground state in (a) a circular
ring with radiusa = b = 106.4 nm and (b) an elliptic ring with semi-
axesa = 150nm andb = 50 nm. Both rings have equal perimeters
L = 668.2 nm and mean width̄w = 15 nm. Darker tones represent
larger relative values. (c) The width dependence on the arc-lengths
along the centerline, given byw = [15−0.1cos(4πs/L)] nm.

The Fig. 3(a) shows the probability density for the ground
state in a ring with the same centerline as those considered
in Figs. 1(b) and 2(b), and the same mean widthw̄ = 15
nm. There, the probability is essentially independent of the
position along the ring, resembling Fig. 1(a). The width
profile is depicted in Fig. 3(b) and has been calculated by Eq.
(15), with β ≈ −0.0015[see Eq. (16)]. Note that, according
to Eq. (15), when the compensation occurs the ring is thinner
where the centerline curvature is larger.
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FIG. 3. (a) The probability density of the ground state in an elliptic
ring with semi-axesa = 150 nm andb = 50 nm, and mean width
w̄ = 15 nm. Darker tones represent larger relative values. (b) The
width as a function of the arc-lengths along the centerline. This
profile has been chosen to compensate the main effects of the varying
curvature.

For future numerical comparisons, Table I contains the lon-
gitudinal energy of the electron states shown in the figures
above. The transversal energy in all cases is 24.9439 meV.

Table I. The longitudinal energy of the electron states shown
in Figures 1, 2 and 3.

PanelE(meV)
1(a) -0.0126
1(b) -0.0600
2(a) -0.1747
2(b) -0.1643
3(a) -0.0383

III. CONCLUSIONS

A simple equation has been derived to calculate station-
ary states of an electron in a thin GaAs ring, where both the
curvature and the width may vary arbitrarily (but smoothly).
Numerical results were presented for elliptical rings of vary-
ing width. The ground-state probability density was shown
to be larger where the curvature is larger in a constant-width
ring, and in thicker parts of a circular ring. More interest-
ingly, the results for elliptic rings with varying width show
that (i) the effects of very small variations of the width can
be more important than those of the curvature changes, and
(ii) one may obtain the width profile which compensates the
main localization effects of the curvature variations. Namely,
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the ring should be appropriately thinner where the curvature
of the centerline is larger. A simple expression for such a pro-
file has been given. These later results have implications for
nanostructure device engineering.
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