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Synthesis and Characterisation of CdS Nanoparticles in
Mesoporous Copolymer Template
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Micron-sized spheres of mesoporous styrene-divinylbenzene (Sty-DVB) copolymer were produced by sus-
pension polymerisation in the presence of inert diluents. Using these mesoporous microspheres as a template,
optically stable CdS nanoparticles have been synthesized. To characterize these CdS nanoparticles, Raman
spectroscopy and micro-photoluminescence were used. We have observed enhanced emission and lasing action
at certain wavelengths that correspond to the whispering gallery (WG) modes of the microspheres. High optical
stability and low threshold value make this optical system promising in microlaser applications.
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I. INTRODUCTION

In recent years, the design and synthesis of nanometer-scale
particles have been the focus of intense fundamental and ap-
plied research, with special emphasis on their size-dependent
properties [1-6]. Current research interests include the devel-
opment of new, nanostructured materials (specifically, semi-
conductor nanocrystal-quantum-dot based) for a broad range
of applications: optoelectronics, telecommunications, sen-
sors, and artificial photosynthesis. Using colloidal chemical
syntheses, such nanoparticles, or nanocrystal quantum dots
(NQDs), can be prepared with sub-nanometer precision hav-
ing sizes from 10 to 100̊A. NQDs can be viewed as “quan-
tum boxes” with precisely controlled dimensions and bound-
ary conditions [2-5]. A spherical three-dimensional optical
microcavity can be made of a nonabsorbing microsphere with
a higher refractive index than the surrounding medium, hav-
ing a diameter comparable to or slightly larger than the light
wavelength, i.e., a few microns [7]. Several types of cavities
have since been utilized to demonstrate nanocrystal QD las-
ing, including polystyrene microspheres [4], and distributed-
feedback resonators [5]. In such microcavities, there exist a
number of discrete resonant optical modes, the so-called whis-
pering gallery modes (WGM) [7]. II–VI semiconductor com-
pound QDs such as CdS can be grown in different matrices
by different manufacturing processes [6]. When semiconduc-
tor QDs are embedded in the spherical microcavity, the QD
luminescence can couple with the WGMs, and a lower thresh-
old of stimulated emission or lasing modes of QDs may be
realized. Due to the discrete structure of optical transitions in
NQDs, thermal depopulation of the lowest “emitting” states is
inhibited. Thus, NQDs are predicted to provide superior per-
formance in lasing applications in comparison with bulk and
other low-dimensional semiconductors.

In our work, micron-sized spheres (average diameters 20-
100 µm) of mesoporous styrene-divinylbenzene (Sty-DVB)
copolymer were used as a template to embed CdS nanopar-
ticles. The Sty-DVB copolymer template has been of great
interest because of its well defined porous structures, and it

works as starting material for the synthesis of ion-exchange
resins [9]. This copolymer template has been synthesized pri-
marily as micron-spheres, making it ideal for studying micro-
cavities.

As far as we know, this is the first time Sty-DVB works
as a host for semiconductor nanocomposites. Previously, Sty-
DVB has been used for hosting magnetite (Fe3O4) nanoparti-
cles [8]. To characterize these materials we have used Raman
and photoluminescence spectroscopy.

II. SAMPLE AND EXPERIMENTAL DETAILS

The Sty-DVB copolymer used in this study was synthesized
by suspension polymerization in the presence of inert diluents
[8,9]. The solution containing the monomers (styrene-Sty and
divinylbenzene-DVB), the diluents (toluene and heptane), and
initiator (2,2’-azobisisobutyronitrile) was added to the aque-
ous phase at room temperature. The aqueous phase contained
gelatine, ethylcellulose, and NaCl. The flowchart in Fig. 1
explains the main steps. The polymerization occurs at 70oC
and 400 rpm (stirring speed) during 24 hours. After forma-
tion, the copolymer beads were then separated, washed with
water/ethanol to remove the diluents, and vacuum dried.

Apparent density (0.44 g/cm3), surface area (140 m2/g),
average pore diameter (13 nm), toluene regain (1.52 cm3/g),
heptane regain (1.24 cm3/ g), percentage of volume swelling
in toluene (100%), and percentage of volume swelling in hep-
tane (58%) were parameters used to characterize the spheri-
cal, micrometer-sized polymeric template. Sulfonation of the
Sty-DVB spheres were performed using concentrated sulfuric
acid (2 g of polymer/30 mL of sulfuric acid). The reaction was
carried out in the presence of dichloroethane (40% in volume
with respect to sulfuric acid). The Sty-DVB spheres were first
suspended in dichloroethane for a few minutes. Then, sulfu-
ric acid was added slowly while the temperature was main-
tained at 70 ˚ C for 4 h. The Sty-DVB polymer particles (200
µm) average diameter) were separated by filtration, washed
thoroughly with deionized water, and dried at 60 ˚ C for 24
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Fig. 1. Flowchart for preparation of copolymer micro-
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Fig. 2. Raman spectrum of CdS nanoparticles embedded 

in polymer microspheres measured at room temperature. 

The wavelength of excitation laser line is 488.0 nm. 
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FIG. 1: Flowchart for preparation of copolymer micro-spheres.

FIG. 2: Raman spectrum of CdS nanoparticles embedded in poly-
mer microspheres measured at room temperature. The wavelength
of excitation laser line is 488.0 nm.

h. The ion-exchange capacity (4.8 mmol of H+/g) was deter-
mined as described in the literature [10]. CdS nanoparticles
were embedded into the microspheres by ion-exchange. The
microspheres used in the PL experiments showed a perfect
surface with diameters varying from 20 to 100µm.

To characterise the CdS nanoparticles, a micro-
photoluminescence (µ-PL) setup has been used. The
laser beam (excitation wavelength at 488 nm; excitation
power at 10 mW) is focused onto a spot of about 3µm on the
sample surface, but due to the spherical shape, the beam can
be tightly focused inside the sample, providing a spot as low
as 1µm wide. Raman scattering and photoluminescence (PL)
spectra of the polymer microspheres embedded with CdS
QDs are measured in a backscattering geometry by using a
Jobin Yvon triple microraman system.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

The Raman spectra of the microspheres were measured as
shown in Fig. 2 using the 488 nm excitation line of an argon

ion laser. The Raman signals from the microsphere sample
are strong for the CdS-like longitudinal optical (LO) phonon
located at 280.3 cm−1, in agreement with what expected by
the two-mode behavior of the lattice vibrations in CdS alloy.

FIG. 3: (a) Low temperature (77 K) PL spectra of single poly-
mer sphere. (b) Normalized photoluminescence spectrum shows
whispering-gallery modes.

Figure 3a shows the emission spectrum of a single mi-
crosphere (average diameter of 40µm ). Details of the WG
mode structure are shown separately in Fig. 3b after sub-
tracting the Gaussian background PL spectrum. There is a
clear periodical modulation which we assign to selected opti-
cal modes of the spherical microcavity.

One of the reasons to observe this phenomenon is due to the
large interlevel spacing in NQDs, “quantum-confined” exci-
tons are more robust than bulk excitons, allowing one to excite
amplified spontaneous emission (ASE) at lower pump levels.
Due to the discrete structure of optical transitions in NQDs,
thermal depopulation of the lowest “emitting” states is inhib-
ited. Therefore, NQDs are predicted to provide superior per-
formance in lasing applications in comparison with bulk and
other low-dimensional semiconductors. Also, the NQD gain
medium was combined with an optical cavity that provided
efficient positive feedback.

We have calculated the value of quality factorQ using the
following expression [11]:
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Q =
~ω0

2~γ

where 2~γ is the Lorentzian fitting to the linewidth of the cav-
ity modes and~ω0 is the photon energy. At the wavelength of
552.1 nm (~ω = 2.25 eV), the Lorentzian fit of the linewidth
for the resonance mode is about 2~γ = 0.0012 eV. Then ,
the quality factor is aboutQ= 1875. From these results we
can conclude that by embedding the CdS nanocrystals in the
microsphere cavity, a strong coupling between photonic and
electronic states have occurred.

IV. CONCLUSION

In summary, optically stable CdS nanoparticles have been
synthesized in mesoporous styrene-divinylbenzene copoly-

mer template. In addition, the CdS nanocrystalline system
was used to quantitatively investigate the effects of lasing in
microspheres. These efforts can be directed towards fabricat-
ing a tunable photonic crystal laser by incorporating QDs in
photonic structures.
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