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Electronic Transport Through a Single-Wall Carbon Nanotube
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†Physics Department, Trinity College, Dublin 2, Ireland

Received on 4 April, 2005

We are interested in studying the transport properties of metallic single-wall carbon nanotubes (SWCNTs)
with isolated magnetic impurities. We consider a metallic zigzag SWCNT in the form of an infinitely long
cylinder of diameterD, connected by two metallic electrodes under a bias voltageE , with a magnetic impurity
located on its surface. To describe the Kondo resonance we employ an impurity version of the atomic model,
previously developed to study the Kondo insulator properties in the lattice case. We calculate the approximate
Green’s functions of the impurity Anderson model by employing the exact solution of the atomic limit of the
Anderson model, where we use the completeness condition to choose the position of the chemical potential. We
consider the SWCNT Green’s functions in a tight-binding approach. We calculate density of states curves that
characterize well the structure of the Kondo peak and we also present the dependence of the conductance with
the diameter of the SWCNT.
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I. THE ZIGZAG SINGLE-WALL CARBON NANOTUBE

A single-wall carbon nanotube (SWCNT) can be described
as a graphene sheet rolled into a cylindrical shape so that the
structure is one-dimensional with axial symmetry. Depend-
ing on their chirality, that can be expressed by the real space
unit vectors~a1 and~a2 of the hexagonal lattice, the SWCNT
vary from being metallic ( see Fig. 2) to semi-conducting (see
Fig. 3). In this paper we are interested in studying zigzag SW-
CNT’s that correspond to the chiral vectors(n,0), wheren is
an integer proportional to the diameterD of the nanotube [1].
The zigzag SWCNT is always metallic whenn is a multiple
of 3 and the energy dispersion relationEa

q(k) for the zigzag
nanotube can be written as [1]
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the hopping energy between the carbon atoms of the nanotube,
γ0, is considered as≈ 2.7 eV.
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FIG. 1. Pictorial view of the zigzag SWCNT with an impurity at-
tached on its surface,V is the hybridization between the SWCNT
conduction band and the localized impurity level.

II. CONDUCTANCE OF A ZIGZAG SWCNT

The Kondo effect explains the enhancement of the low-
temperature resistivity shown by a metal with magnetic im-
purities at low temperatures. The Kondo effect was experi-
mentally detected in quantum dots [2] and in carbon nanotube
devices [3]. These systems can be modeled by the Ander-
son impurity model and in this paper we employ an impurity
version of the atomic model, previously applied to study the
Kondo insulators [8], to describe the electronic transport prop-
erties of zigzag SWCNT’s. In Fig. 1 we represent a pictorial
view of the zigzag SWCNT with an impurity laterally attached
[4]. At low temperatures and bias voltage, electron transport
is coherent and a linear-response conductance is given by the
Landauer-type formula [5]

G =
2e2

~

Z (
−∂nF

∂ω

)
S(ω)dω, (2)

wherenF is the Fermi function andS(ω) is the transmission
probability of an electron with energy~ω. This probability is
given byS(ω) = Γ2 |Gσ

00 |2, whereΓ corresponds to the cou-
pling strength of the site0 of the SWCNT conduction band
to the impurity, here represented by the site1, which is pro-
portional to the kinetic energy of the electrons in the zigzag
SWCNT. The Green functionGσ

00 can be rewritten in terms
of the exact Green function of the impurity,Gσ

imp, calculated
by the Dyson equation withV = |0〉V〈1|+ |1〉V〈0| being the
hybridization. The dressed Green’s functions at the site0 can
be written in terms of the undressed Green’s functions local-
ized at the impurity,g11, and the undressed Green’s functions
of the conduction band,g00
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Solving the equation system above and consideringg10 = 0
andg01 = 0, we can write
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00V

2gσ
11)

, (5)

wheregσ
00 is given by [1]
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and

gσ
11 = Mat

2,σ(z). (8)

whereMat
2,σ(z) is calculated in Sec. IV.

-4 -2 0 2 4
ω

0

0.5

1

ρ c

n=9

FIG. 2. Density of states per unit cell of the conduction band of
the nanotube(9,0) which presents metallic behavior. The chemical
potential is located atµ= 0 in all the density of states figures.
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FIG. 3. Density of states per unit cell of the conduction band of the
nanotube(11,0) which presents semiconducting behavior.

III. THE ANDERSON IMPURITY MODEL

The Hamiltonian for the Anderson impurity with infinite
Coulomb repulsionU is given by

H = ∑
k,σ

Ek,σc†
k,σck,σ +∑

σ
Ef ,σXf ,σσ

+V ∑
k,σ

(
X†

f ,0σck,σ +c†
k,σXf ,0σ

)
, (9)

where the first term represents the conduction electrons (c-
electrons), the second describes the Anderson impurity char-
acterized by a localizedf level Ef ,σ, (we employ the f let-
ter to indicate localized electrons at the impurity site) and
the last one corresponds to the interaction between thec-
electrons and the impurity. For simplicity we consider a con-
stant hybridizationV. We employ the Hubbard operators [6]
to project out the double occupation state| f ,2〉, from the
local states on the impurity. The identity decomposition in
the reduced space of local states at the impurity is given by
Xf ,00+Xf ,σσ +Xf ,σσ = I , whereσ =−σ, and the threeXf ,aa

are the projectors into the states| f ,a〉. The occupation num-
bers on the impuritynf ,a =< Xf ,aa > should then satisfy the
“completeness” relation

nf ,0 +nf ,σ +nf ,σ = 1. (10)

IV. THE ATOMIC MODEL

To obtain the exactf Green functionGf f ,σ(j i ,z) in real
space for the impurity at sitej i , one can follow a procedure
similar to the one used in [7] within the chain approximation,
but considering all the possible cumulants in the expansion as
it was done in [8] for the Anderson lattice. As with the Feyn-
mann diagrams, one can rearrange all those that contribute
to the exactGf f ,σ(j i ,z) by defining an effective cumulant

Me f f
2,σ (j i ,z), that is given by all the diagrams ofGf f ,σ(j i ,z) that

can not be separated by cutting a single edge (usually called
“proper” or “irreducible” diagrams). We shall consider that
the impurity is at the origin, and drop the indexj i from all the
quantities. The exact GFGf f ,σ(z) is then given by replacing
the bare cumulantM0

2,σ(z) = −D0
σ/(z− ε f ), whereD0

σ =<<

Xf ,00 + Xf ,σσ >>o, by the effective cumulantMe f f
2,σ (z) at all

the filled vertices of the chain diagrams in [7].The exact GF
for the f electron is then written as

Gf f ,σ(z) =
Me f f

2,σ (z)

1−Me f f
2,σ (z) |V |2 ∑k Go

c,σ(k,z)
, (11)

whereGo
c,σ(k,z) = −1/(z− ε(k)). The exact atomicf Green

function has the same form of Eq. (11), and it is calculated
exactly in the Appendix A (cf. Eq. 13), and we write

Gat
f f ,σ(z) =

Mat
2,σ(z)

1−Mat
2,σ(z) |V |2 ∑k Go

c,σ(k,z)
. (12)
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From this equation we then obtain an explicit expression for
Mat

2,σ(z) in terms ofGat
f f ,σ(z). To decrease the contribution

of the c electrons, whose effect was overestimated by con-
centrating them at a single energy level we shall replaceV2

by ∆2, with ∆ = πV2/W is of the order of the Kondo peak’s
width, whereW is related to the nanotube hopping energy by
W = 6γo. The atomic approximation consists in substituting
Me f f

2,σ (z) in Eq. (11) by the approximateMat
2,σ(z) given by Eq.

(12). AsMat
2,σ(z) is k independent, we can easily obtain the

local Green function for the Anderson impurity for the zigzag
nanotube, which is given by Eq. (11) but withGo

c,σ(k,z) given
by Eq. (6) and in the same way we obtain the conduction (Gc)
and mixed (Gf c) Green’s functions. One still has to decide
what value ofE0 should be taken. As the most important re-
gion of the conduction electrons is the Fermi energy, we shall
useE0 = µ− δE0, leaving the freedom of small changesδE0

to adjust the results in such way that the completeness relation
given by Eq. (10) should be satisfied.

V. RESULTS AND CONCLUSIONS

In Fig. 4 we plot the evolution of the density of states cor-
responding to a Kondo situation for three representativen val-
ues. We can see the two structures characteristic of the Kondo
densities of states. One non-resonant peak located at theEf

position and the Kondo peak located at the chemical potential
µ= 0. In the insets we represent details of each structure.
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FIG. 4. Density of states of the impurity f-electrons forT = 0.01∆,
with ∆ = 0.01. In the left inset we present a detail of the non-resonant
structure located at aroundEf = −0.08 and in the right inset we
present a detail of the Kondo peak located atµ= 0.

In Fig. 5 we represent the conductance of a side-coupled
impurity in the zigzag nanotube. The Kondo effect depends
on the diameter of the SWCNT and change the conductance
of the system. The conductance varies more than two orders
of magnitude as the nanotube diameter parametern increases.
At the same time, the Kondo peak becomes more steep, indi-

cating that the Kondo temperature decreases as can be seen in
the right inset of Fig. 4.
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FIG. 5. The normalized linear conductance as function of the nan-
otube diameter, here represented by the parametern. The parameters
employed are indicated in the figure.

Appendix A: Atomic solution

We assume the zero conduction bandwidthW = 0. There-
fore we eliminate from the Hamiltonian the hoping contribu-
tions. This corresponds to consider the relationship between
a given~k state of the conduction band and one localizedf
state. In this case the analytical solution of the Hamiltonian is
known [8]. The f atomic Green function is given by

Gat(ω) = eβΩ
8

∑
i=1

mi

ω−ui
, (13)

whereΩ is the thermodynamical potential and the poles of the
Green’s functions are given by

u1 = E3−E1 = E8−E5 = E7−E4 =
1

2
(εq + ε f −∆) ; (14)

u2 = E5−E1 = E8−E3 = E7−E2 =
1

2
(εq + ε f +∆) ; (15)

u3 = E12−E10 =
1

2

(
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)
; (16)

u4 = E12−E9 =
1

2

(
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)
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2

(
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)
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u8 = E10−E4 = εq +
1

2

(
∆′−∆

)
, (21)

where the residues are

m1 = cos2 φ[1+e−
1
2β(ε f +εq−∆)+

3

2
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3
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2 +4V2, ∆′ =
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tanφ = 2V
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