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Optimization of Biplanar Gradient Coils for
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“Open” magnetic resonance imaging (MRI) scanners are frequently based on electromagnets or permanent
magnets, and require self-shielded planar gradient coils to prevent image artifacts resulting from eddy currents
in metallic parts of the scanner. This work presents an optimization method for the development of self-shielded
gradient coils with biplanar geometry for “Open” MRI scanners. Compared to other optimization methods, this
simple approach results in coils that produce larger uniform gradient volumes, and have simple and scalable
manufacture.
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I. INTRODUCTION

Open magnetic resonance imaging (MRI) scanners are fre-
quently based on electromagnets or permanent magnets and
require planar gradient coils [1]. In these systems, the gap be-
tween pole tips is minimized in order to increase the magnetic
field strength,B0, and the gradient coils need to fit restricted
volumes and are located very close to metallic parts of the
scanner. This proximity results in eddy currents that cause
severe image artifacts, especially for fast imaging modalities
such as echo-planar imaging (EPI) that can only be minimized
by using self-shielded gradient coils [2-3].

Despite several methods have been developed in the last
two decades to improve the quality of the cylindrical gradi-
ent coils used in superconductive MRI scanners, and meet the
requirements of modern imaging techniques (high magnetic
field linearity and gradient efficiency, low coil inductance, and
maximal shielding efficiency) [4], limited research has been
devoted to the planar geometry [5-7], and the optimization of
gradient coils with this geometry is still in its infancy.

Recently I presented the fast simulated annealing (FSA)
method, a novel optimization technique for the design of self-
shielded gradient coils with cylindrical geometry [8-10]. It
combines the simulated annealing (SA) [11-14] and the target
field (TF) [3-4,15] techniques to optimize the standard stream
functions used to design gradient coils. Compared to standard
approaches, this method results in coil with lower inductance
that produce larger volumes of gradient field uniformity [9].
Here I present the FSA method for the optimization of self-
shielded biplanar gradient coils.

II. THEORY

The method described below is proposed for the design of
self–shielded gradient sets with biplanar geometry [1, 2]. In
these gradient system, currents flow in four parallel(x,y)–
planes: The primary current density flows in the two inner
planes, placed atz = ±a, and the shielding current density
flows in the two outer planes, placed atz= ±b (a≤ b). Cur-
rents in the primary and shielding planes must flow in oppo-

site sense to null the magnetic field outside the gradient set.
For the longitudinal gradient,Gz, the current density must be
anti–symmetric with respect to thez= 0 plane and have axial
symmetry. For the transverse gradient,Gx, the current distrib-
ution must be symmetric with respect to thez= 0 plane, and
invariant alongy.
Planar stream functions

To take advantage of symmetry conditions we will use the
cylindrical (r,φ,z) and cartesian(x,y,z) frames of references
for the longitudinal and transverse gradients, respectively.

Due to the continuity equation∇ ·~j = 0, the current den-
sities flowing in the primary planes of the longitudinal and
transverse gradients can be obtained by calculating the curl of
a vector~S = (0,0,S):
Longitudinal

jφ(r) =− d
dr

SL(r), jr(r) = 0, (1)

Transverse

jy(x) =− d
dx

ST (x), jx(x) = 0, (2)

where the scalar functions,SL(r), andST (x) will be referred
as the longitudinal and transverse stream functions, respec-
tively. The spatial dependence of the stream functions can be
modeled by using a set ofn parameters,εi . In this work, the
following parameterized functions were used:

SL(r) =





n

∑ εi (r/a)i + ε1exp{ε2 (r/a− ε3)} r ≤ ε3a
i=4

SL(ε3a) r > ε3a
(3)

and

ST (x) =





n

∑ εi (x/a)i |x| ≤ l
i=1

ST (l) |x|> l ,
(4)
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Shielding
The simplest longitudinal gradient (Gz) coil is the Maxwell

arrangement, which is composed by two current loops of ra-
diusR carrying opposite currentsI in the primary planes. To
null the magnetic field produced by this biplanar configuration
outside the coil, a current density given by [1]

gφ(r) =−IR
Z ∞

0
q

sinh(aq)
sinh(bq)

,J1(Rq)J1(rq) dq. (5)

is required in the shielding planes, whereJ1 is the Bessel func-
tion of order 1. Thus, to shield a continuous current distrib-
ution jφ(r ′) flowing in the primary planes of a more general
Maxell-like current distribution, a shielding current density

gφ(r) =−
Z ∞

0
q

sinh(aq)
sinh(bq)

J1(rq)
Z ∞

0
jφ(r ′)J1(r ′q)r ′ dr′ dq,

(6)
in the shielding planes is necessary.

The simplest transverse gradient [7] with biplanar geometry
consists of two straight wires parallel to they-axis atx = ±d
in the primary planes. To null the magnetic field produced by
this distribution outside the coil, a current density

gy(x) =− I
π

Z ∞

−∞
cos(dq)cos(xq)

cosh(aq)
cosh(bq)

dq (7)

in the shielding planes is required (see Ref. [1]). Therefore,
for a continuous symmetric current densityjy(x′) in the pri-
mary planes, a shielding current density

gy(x) =−1
π

Z ∞

−∞
cos(xq)

cosh(aq)
cosh(bq)

Z ∞

0
jy(x′)cos(x′q) dx′ dq

(8)
is needed in the shielding planes.
Discrete current distributions

We usedN circular wires with radiiRi (i = 1, · · · ,N) in
each primary plane to make the longitudinal current distrib-
ution discrete. The radii were calculated according to:

(i−0.5)I = SL(Ri) (9)

whereI is the current carried by each loop.
Similarly, we usedM straight wires in each primary plane

atxi (i = 1, · · · ,M), which were parallel to they–axis, to make
the transverse current distribution discrete. The wire positions
xi were calculated according to:

(i−0.5)I = ST (xi) (10)

To make the longitudinal and transverse shielding current den-
sities discrete, similar procedures were used. For the trans-
verse gradient coils, the return path of each wire in the pri-
mary planes is a wire in the shielding planes; these coils are
similar to rectangular sandwiches formed by two rectangular
solenoids ofb− a thickness [2]. For inter–connections be-
tween the primary and shielding planes,b− a length wires
along thez–axis were used to null thez–component of the
magnetic field resulting from these segments. The length of

the parallel straight wires was set asL >> a, in order to use
the theoretical shielding current density [Eq. (8)].
Simulated annealing

The stream function parameters were adjusted in order to
minimize the dimensionless error function [8],

E =
N

∑
i=1

(
1− Gi

< G >

)2

, (11)

which measures the gradient field dispersion in the region-of-
interest (ROI). The gradient field produced by the gradient coil
at a given point of the space,G, was calculated atN points in
the ROI [8], by using the Biot-Savart law.
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FIG. 1: Optimized stream functions (a and b) and optimal current
densities (c and d) as a function of distance for longitudinal (a and
c) and transverse (b and d) coils with biplanar geometry. Solid and
dashed lines are the optimized primary and shielding distributions,
respectively. Solid and open circles are the layouts of the optimal
primary and shielding coils, respectively.

III. RESULTS

A C-language program, which computes Eq. (1) to (11),
was developed to optimize the stream functions. Only 6
adjustable parameters were used for each stream function
(Eqs.(3) and (4)). The Biot-Savart calculation of the gradient
field [Eq. (11)] was performed over a grid of 16 points, uni-
formly spaced in a square ROI (0 < x < 0.6a, 0 < z< 0.6a)
in they = 0 plane.

The solid lines in Fig. 1 are the optimal stream functions
SL(r) andST (x) [(a) and (b)], and the resulting current densi-
ties jφ(r) and jy(x) [(c) and (d)] as functions ofr/a andx/a,
respectively; dashed lines in Figs 1a-d are the corresponding
shielding distributions. For the longitudinal caseb = 1.143a
was used, and for the transverse caseb = 1.2a, l = 1.257a,
andL = 5.714a were used. Figures c and d also show the dis-
crete current distributions. For the longitudinal coil, 20 turns
in each primary plane and 16 turns in the shielding planes
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TABLE I: Parameters of the optimized stream functions. For longitudinal coilb = 1.143a. For transverse coilb = 1.2a andL = 5.714a, and
l = 1.257a

Coil ε1 ε2 ε3 ε4 ε5 ε6 ε7 ηa2 L/a
[µT m/A] [mH/m]

Longitudinal 0.850 4.357 1.740 0.000 0.913 0.000 0.183 3.246 0.989
Transverse 0.962 -0.058 -0.155 -0.080 0.223 -0.051 0.000 1.110 1.713

TABLE II: Magnetic field and electrical properties corresponding to shielded biplanar gradient coils. N = 18 (36) copper wires with 0.5 mm
diameter were used in each primary plane, for longitudinal (transverse) coils.a = 3.5 cm.

Coil b z-HGV x-HGV η L R κ
[cm] [cm] [cm] [mT/m/A] [µH] [Ω] [%]

Long.
Maxwell pair NS 3.08 3.84 8.88 186 0.8 Unshielded
3rd Order [1] 4.15 2.14 3.24 4.64 157 1.0 91.56
Ref. [2] 4.00 5.16 4.22 2.12 32 1.3 95.26
This work 4.00 5.08 5.28 2.45 28 1.5 91.44

Tran.
Ref. [7] 4.15 2.25 2.50 2.13 280 2.5 76.00
3rd Order [1] 4.20 1.84 2.16 2.61 279 2.5 96.40
5th Order [1] 4.20 3.08 4.20 0.82 187 2.5 90.70
Ref. [2] 4.15 4.20 4.20 0.89 60 2.5 92.00
This work 4.15 4.44 4.64 0.81 49 2.5 91.00

were used. For the transverse coil 40 turns were used in each
plane.

The optimized stream function parameters are listed in Ta-
ble 1; this table also lists the gradient efficiency at the gradient

isocenter,η, and coil inductance,L, corresponding to the coils
in Fig 1. Sinceη decreases quadraticaly, andL increases lin-
early witha, values in Table 1 are generalized asηa2 andL/a.
For the longitudinal coil,L was evaluated by using [2]

L = 4πµ0

Z ∞

0

∣∣∣∣∣
n

∑
i=1

Ri J1(Riq)

∣∣∣∣∣
2(

1− sinh(aq)
sinh(bq)

e−(b−a)q
)

sinh(aq)e−aqdq, (12)

and for the transverse coil [2]

L =
8Lµ0

π

Z ∞

0

∣∣∣∣∣
n

∑
i=1

cos(xiq)

∣∣∣∣∣
2(

1− cosh(aq)
cosh(bq)

e−(b−a)q
)

cosh(aq)
q

e−aqdq,

was used. HereRi andxi are the positions of thei–wire in the
longitudinal and transverse coils, respectively. These expres-
sions includes self and mutual inductance between the wires
in the primary and shielding planes.

Figure 2 shows the efficiency of the shielding coil to null the
magnetic field in the outer region. These Biot-Savart calcula-
tions were performed fora = 0.035m andz= 0.05m. Solid
lines are thez–component of the magnetic field produced by
primary coils and dashed lines correspond to the field pro-
duced by both primary and shielding coils in Fig 1. As shown
in these figures, the shielding coils cancel at least 95% of the
unshielded fields at this axial position (z = 1.423a), which

corresponds to the position of the pole tips. The curves in
Fig. 3 are contour plots showing the limits of the 95% homo-
geneous gradient volume (HGV) produced by the proposed
gradient coils; solid and dashed lines correspond to the coils
in Fig. 1. Coils designed by this method have very large HGV.
For the longitudinal gradient, the HGV has a spherical radius
of 0.75a. For the transverse gradient, the HGV is a cylinder
coaxial to thez–axis with height = 2.6a, and radius = 0.65a.
The calculated values for the extension of the 95% HGV along
thez– andx–axes, the gradient efficiency, coil inductance and
resistance,L and R, and the overall shielding efficiency,κ,
corresponding to the coils in Figs 4 and 5 are listed in Table
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FIG. 2: Shielding performance as a function of distance, for the lon-
gitudinal (top panel) and transverse (bottom panel) gradient coils.
The curves are Biot-Savart calculations of thez-component of the
magnetic field produced by the unshielded (primary plane; solid
line), and shielded (primary and shielding planes; dashed lines) at
z= 5 cm.
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FIG. 3: Contours of the 95% HGV produced by the gradient coils in
the coronal plane. The solid (dashed) line corresponds to the longi-
tudinal (transverse) design.

2, for a = 3.5 cm
The upper panels of Figs. 4 and 5 compare the layouts of

the primary (solid circles) and shielding (solid triangles) coils
proposed in Ref. [2] for the longitudinal and transverse gradi-
ents, respectively, with those resulting from this method (open
symbols). The optimized primary (solid line) and shielding
(dashed line) stream functions used to get the wire positions
are also shown in these figures. One advantage of the pro-
posed method is related to the coil fabrication process. The
coil layout corresponding to Ref. [2] is more difficult to ac-
complish because of the shorter minimal distance between

neighbor wires. The present method uses smooth stream func-
tions, which result in larger minimal gap between neighbor
wires, facilitating coil construction.
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FIG. 4: [Top] Comparison of coil layouts resulting from the fast sim-
ulated annealing method [2], and this work for the longitudinal gra-
dient coil. The solid circles (triangles) are the wire positions in the
primary (shielding) plane of ref [2]. The solid (dashed) line is the
optimal stream function, and the open circles (triangles) are the wire
positions in the primary (shielding) plane. [Bottom] Contours of the
95% HGV produced by the gradient coils in the coronal plane.

The bottom panels of Figs. 4 and 5 compare the limits of the
95% HGV produced by longitudinal and transverse gradient
coils, respectively, in the coronal plane. Solid, dashed, and
dotted lines correspond to the designs achieved in this work,
Ref. [2], and Ref. [7], respectively. As shown in these figures,
the optimization of stream functions results in coils producing
larger HGV than those designed by our previous method [2].

IV. CONCLUSION

This work presents a method for the development of gradi-
ent coils with planar geometry, which is based on the numer-
ical optimization of biplanar stream functions. This method
allows for the design of self-shielded, low-inductance gradi-
ent coils. The coils produce larger uniform gradient volumes
than those resulting from previous optimization methods. Fur-
thermore, the designs can be scaled and their simplicity makes
possible easier coil manufacture.
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FIG. 5: [Top] Comparison of coil layouts resulting from the fast simulated annealing method [2], and this work for the transverse gradient coil.
The solid circles (triangles) are the wire positions in the primary (shielding) plane of ref [2]. The solid (dashed) lines is the optimal stream
function, and the open circles (triangles) are the wire positions for the primary (shielding) plane in this work. [Bottom] Contours of the 95%
HGV produced by the gradient coils in the coronal plane.
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