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Remarks on the Dynamical Mass Generation in Confining Yang-Mills Theories
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The dynamical mass generation for gluons is discussed in Euclidean Yang-Mills theories supplemented with
a renormalizable mass term. The mass parameter is not free, being determined in a self-consistent way through a
gap equation which obeys the renormalization group. The example of the Landau gauge is worked out explicitly
at one loop order. A few remarks on the issue of the unitarity are provided.
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I. INTRODUCTION

In the last years many efforts have been done to put forward
the idea that gluons might acquire a mass through a dynamical
mechanism. These efforts have led to a considerable amount
of evidence, obtained through theoretical and phenomenolog-
ical studies [1-22] as well as from lattice simulations [23-33].
Many aspects related to the dynamical gluon mass generation
deserve a better understanding. This is the case, for exam-
ple, of the unitarity of the resulting theory, a highly nontrivial
topic, due to the confining character ofQCD.

Needless to say, the unitarity of theSmatrix is a fundamen-
tal property of the spectrum of a quantum field theory. It ex-
presses the conservation of the probability of the amplitudes
corresponding to the various scattering processes among the
excitations of the spectrum.

In a nonconfining theory, the first step in the construction
of the S matrix is the introduction of the so-called|in〉 and
|out〉 Fock spaces characterizing the asymptotic behavior of
the physical states before,t →−∞, and after,t →+∞, a scat-
tering process. TheS-matrix is thus defined as the unitary
operator which interpolates between the spaces|in〉 and|out〉,
namely

|in〉= S |out〉 . (1)

The relation of this equation with the Green’s functions of the
theory is provided by theLSZformalism. A key ingredient of
this formalism is the introduction of the asymptotic fields,ϕin
andϕout, describing the asymptotic behavior of the interacting
fieldsϕ, according to

ϕ|t→−∞ = Z1/2ϕin , (2)

ϕ|t→+∞ = Z1/2ϕout .

The asymptotic fieldsϕin andϕout allow us to define the cre-

ation and annihilation operators
(

a†
in, ain

)
and

(
a†

out, aout

)
,

from which the Fock spaces|in〉 and|out〉 are obtained. The
entire construction relies on the possibility that the asymptotic
fields can be consistently introduced.

In a confining theory likeQCD, the quanta associated with
the basic fields of the theory,i.e. the gluon fieldAa

µ and the
quark fieldsψ, ψ, cannot be observed as free particles, due

to color confinement. The physical spectrum of the theory is
made up by colorless bound states of quarks and gluons giving
rise, for instance, to barions, mesons and glueballs. This im-
plies that the asymptotic Fock spaces|in〉, |out〉 of the theory
have to be defined through suitable operators from which the
physical spectrum of the excitations is constructed. Of course,
the S-matrix describing the scattering amplitudes among the
excitations of the physical spectrum of the theory has to be
unitary. Although intuitively simple and easily understand-
able, this framework is far beyond our present capabilities.
An operational definition of the gauge invariant colorless op-
erators defining the physical spectrum of the excitations and a
well defined set of rules to evaluate their scattering amplitudes
are not yet at our disposal.

Quantized Yang-Mills theories are described by the
Faddeev-Popov Lagrangian [38]

S= SYM +Sg f =

Z
d4x

(
1
4

Fa
µνFa

µν +ba∂µAa
µ+ca∂µ(Dµc)a

)
, (3)

here taken in the Landau gauge. The fieldba in expression(3)
is the Lagrange multiplier enforcing the Landau gauge con-
dition, ∂µAa

µ = 0, while ca, ca stand for the Faddeev-Popov
ghosts. The action(3) is renormalizable to all orders of per-
turbation theory and displays color confinement[39]. Further-
more, thanks to the asymptotic freedom, the gauge fieldAa

µ
behaves almost freely at very high energies, where perturba-
tion theory is reliable. However, at low energies, the coupling
constant increases and the effects of color confinement can-
not be neglected. We do have thus a good understanding of
the properties of the fieldAa

µ at high energies, whereas it be-
comes more and more difficult to have a clear picture ofAa

µ,
and of the whole theory, as the energy decreases. We might
thus adopt the point of view of starting with a renormalizable
action built up with a gauge fieldAa

µ which accommodates the
largest possible number of degrees of freedom. This would
amount to start with a quantized massive Yang-Mills action

Sm = SYM +Sg f +Smass, (4)

whereSmass is a suitable mass term for the gauge fieldAa
µ.

The best choice forSmasswould be a gauge invariant, renor-
malizable local mass term. However, no local renormalizable



S. P. Sorella 223

gauge invariant mass term built up with gauge fields only is
at our disposal. Nevertheless, it might be worth reminding
that, recently, a consistent framework for the nonlocal gauge
invariant mass operator

O(A) =−1
2

Z
d4xFa

µν

[(
D2)−1

]ab
Fb

µν . (5)

has been achieved [34]. More precisely, the nonlocal opera-
tor (5) can be cast in local form by means of the introduction
of a suitable set of additional fields. The resulting local the-

ory displays the important property of being multiplicatively
renormalizable [34].

Though, for the time being, we give up of the requirement
of the gauge invariance. This will enable us to present our
analysis with the help of a relatively simple example. There-
fore, as possible mass term we shall take

Smass=
1
2

m2
Z

d4xAa
µAa

µ , (6)

so that

Sm =
Z

d4x

(
1
4

Fa
µνFa

µν +
1
2

m2Aa
µAa

µ+ba∂µAa
µ+ca∂µ(Dµc)a

)
. (7)

Expression(7) provides an example of a massive nonabelian
gauge theory which is renormalizable to all orders of pertur-
bation theory [35], while obeying the renormalization group
equations (RGE).

A few remarks are now in order:

• The amplitudes corresponding to the scattering
processes among gluons and quarks display now a
violation of the unitarity. This can be understood by
noting that the inclusion of the mass termm2Aa

µAa
µ

gives rise to aBRSToperator which is not nilpotent.
However, as shown in [35], it is still possible to
write down suitable Slavnov-Taylor identities which
ensure that the massive theory(7) is renormalizable
to all orders of perturbation theory. Moreover, if
sufficiently small, this violation of the unitarity might
not be in conflict with the confining character of the
theory. Otherwise said, since gluons are not directly
observable, we could allow for a gauge fieldAa

µ with
the largest possible number of degrees of freedom,
provided the renormalizability is preserved and one is
able to recover the results of the massless case at very
high energies.

• This framework would be useless if the value of the
mass parameterm would be free, meaning that we are
introducing a new arbitrary parameter in the theory,
thereby changing its physical meaning. A different situ-
ation is attained by demanding that the mass parameter
is determined in a self-consistent way as a function of
the coupling constantg. This can be obtained by requir-
ing that the massm in eq.(7) is a solution of a suitable
gap equation. In other words, even if the massm is
included in the starting gauge-fixed theory, it does not
play the role of a free parameter, as it is determined once
the quantum effects are properly taken into account.
Here, we rely on the lack of an exact description of a
confining Yang-Mills theory at low energies. We start
then with the largest possible number of degrees of free-
dom compatible with the renormalizability requirement

and fix the mass parameter through the gap equation.
If the resulting value ofm will be small enough, one
can argue that the unitarity is violated by terms which
become less and less important as the energy of the
process increases, so that the amplitudes of the mass-
less case are in practice recovered at very high energies.
The present set up might thus provide a different char-
acterization of the aforementioned phenomenon of the
dynamical gluon mass generation, which has already
been successfully described in [1,7,10,11,13,14,16,17].
In the next section, the gap equation for the massmwill
be discussed.

II. THE GAP EQUATION FOR THE MASS PARAMETER m

The gap equation for the mass parameterm is obtained by
requiring that the vacuum functionalE defined by

e−VE =
Z

[DΦ] e
−

(
Sm+Vη(g) m4

2

)
, (8)

whereV is the Euclidean space-time volume, obeys a mini-
mization condition with respect to the massm, i.e. the value
of the massm is determined by demanding that it corresponds
to the minimum of the vacuum functionalE , namely

∂E
∂m2 = 0 . (9)

Equation(9) is the gap equation for the mass parameterm.
The quantityη(g) in eq.(8) is a dimensionless parameter
whose loop expansion

η(g) = η0(g)+~η1(g)+~2η2(g)+ .... (10)

accounts for the quantum effects related to the renormalization
of the vacuum diagrams in the massive case. The parameter
η(g) can be obtained order by order by requiring that the vac-
uum functionalE obeys the renormalization group equations
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(RGE)

µ
dE
dµ

= 0 , (11)

meaning thatE is independent from the renormalization
scaleµ, as it will be explicitly verified in the next section.
Equation(11) expresses an important property of the vacuum
functional E . We also remark that a term of the kind of
ηm4 in eq.(8) has been already obtained[40] in [1] in the
evaluation of the vacuum energy of Yang-Mills theories when
gluons are massive.

The gap equation equation(11) can be given a simple
interpretation. Due to the lack of an exact description of
Yang-Mills theories at low energies, we have adopted the
point of view of starting with a renormalizable massive
action, as given in eq.(7). As far as the mass parameterm is
free, expression(7) can be interpreted as describing a family
of massive models, parametrized bym. For each value ofm
we have a specific renormalizable model. Moreover, as the
introduction of a mass term has an energetic coast, we might
figure out that, somehow, the dynamics will select precisely
that model corresponding to the lowest energetic coast, as
expressed by the gap equation(11).

Before starting with explicit calculations let us summa-
rize our point of view:

• Since gluons are not directly observable, we allow for

a gauge fieldAa
µ with the largest number of degrees of

freedom compatible with the requirement of renormal-
izability.

• This amounts to start with a renormalizable massive ac-
tion, as given in eq.(7). However, the mass parameterm
is determined in a self-consistent way by imposing the
minimizing condition(9) on the vacuum functionalE .

• Also, it is worth observing that, in the case of the mas-
sive model of eq.(7), a non vanishing solution,m2

sol 6= 0,
of the gap equation(9) implies the existence of a non
vanishing dimension two gluon condensate

〈
Aa

µAa
µ

〉
. In

fact, differentiating equation(8) with respect tom2 and
settingm2 = m2

sol, one obtains

1
2

〈
Aa

µAa
µ

〉
=−ηm2

sol . (12)

III. EVALUATION OF THE VACUUM FUNCTIONAL E AT
ONE LOOP ORDER

In the case of pureSU(N) Yang-Mills theories, for the vac-
uum functionalE we have

e−VE =
Z

[DΦ] e
−

(
Sm+Vη m4

2

)
, (13)

with Sm given by expression(7), namely

Sm =
Z

d4x

(
1
4

Fa
µνFa

µν +
1
2

m2Aa
µAa

µ+ba∂µAa
µ+ca∂µ(Dµc)a

)
. (14)

As it has been proven in [35], the massive action(14) is multi-
plicatively renormalizable to all orders of perturbation theory.
In particular, for the mass renormalization we have [35]

g0 = Zgg ,

A0 = Z1/2
A A

m2
0 = Zm2m2 ,

Zm2 = ZgZ−1/2
A , (15)

from which the running of the massm2 is easily deduced

µ
∂m2

∂µ
=−γm2m2 , (16)

with

γm2(g2) = γ0g2 + γ1g4 +O(g6) , (17)

γ0 =
35
6

N
16π2 , γ1 =

449
24

(
N

16π2

)2

. (18)

Also

β(g2) = µ
∂g2

∂µ
=−2

(
β0g4 +β1g6 +O(g8)

)
, (19)

β0 =
11
3

N
16π2 , β1 =

34
3

(
N

16π2

)2

. (20)

In order to obtain the parameterη at one-loop order, it is useful
to note that expression(13) can be written in localized form
as

e−VE =
Z

[DΦ] e
−

(
Sm+Vη m4

2

)

=
Z

DJ(x) δ(J(x)−m2) e−W(J) , (21)
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with

e−W(J) =
Z

[DΦ] e−S(J) , (22)

S(J) = SYM +Sg f +
Z

d4x

(
1
2

J(x)Aa
µAa

µ+
η
2

J2(x)
)

.

From equation(21) it follows that the renormalization of the
vacuum functionalE can be achieved by renormalizing the
functionalW(J) in the presence of the local sourceJ(x), and
then setJ = m2 at the end. The renormalization of the func-
tionalW(J) has been worked out at two-loops in [7]. By sim-
ple inspection, it turns out that the parameterη is related to
the LCO parameterζ of [7] by η =−ζ, yielding

η =− 9
13g2

N2−1
N

−~161
52

N2−1
16π2 +O(g2) . (23)

Thus, for the vacuum functionalE at one-loop order in the
MSscheme, we get

E =
m4

2

(
− 9

13g2

N2−1
N

−~161
52

N2−1
16π2

)
+

3~
N2−1
64π2 m4

(
−5

6
+ log

m2

µ2

)
, (24)

where we have introduced the factor~ to make clear the or-
der of the various terms. It is useful to check explicitly that
the above expression obeys the RGE equations. Indeed, from
eqs.(17), (19) we obtain

µ
dE
dµ

= −~γ0g2m4
(
− 9

13g2

N2−1
N

)
+~

m4

2
9

13g4

N2−1
N

(−2β0g4)−~6N2−1
64π2 m4 +O(~2)

= ~m4 N2−1
16π2

(
35
6

)
9
13
−~m4 N2−1

16π2

33
13
−~6N2−1

64π2 m4 +O(~2)

= ~m4 N2−1
16π2

(
35
6

9
13
− 33

13
− 6

4

)
+O(~2) = ~m4 N2−1

16π2

(
105
26

− 33
13
− 3

2

)
+O(~2)

= ~m4 N2−1
16π2

(
105−66−39

26

)
+O(~2) = O(~2) . (25)

It remains now to look for a sensible solution of the gap equa-
tion (9). This will be the task of the next section.

A. Searching for a sensible minimum

In order to search for a sensible solution of the gap equa-
tion (9), ∂E

∂m2 = 0, we first remove the freedom existing in the
renormalization of the mass parameter by replacing it with a

renormalization scheme and scale independent quantity. This
can be achieved along the lines outlined in [10] in the analy-
sis of the gluon condensate

〈
Aa

µAa
µ

〉
within the 2PPI expansion

technique. Let us first change notation

g2 → g2 , (26)

m2 → m2 ,

and rewrite the one-loop vacuum functional as

E =
9
13

N2−1
N

1

g2

[
−m4

2
+

13
3

Ng2

64π2 m4
(

log
m2

µ2 −
113
39

)]
. (27)

As done in [10], we introduce the scheme and scale indepen-
dent quantitym̃2 through the relation

m̃2 = f (g2)m2 . (28)

From

µ
∂m2

∂µ
=−γm2(g2)m2 , (29)

with

γm2(g2) = γ0g2 + γ1g4 +O(g6) , (30)

γ0 =
35
6

N
16π2 , γ1 =

449
24

(
N

16π2

)2

, (31)
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we obtain the condition

µ
∂ f (g2)

∂µ
= γm2(g2) f (g2) , (32)

from which it follows that

µ
∂m̃2

∂µ
= 0 . (33)

Equation(32) is easily solved, yielding

f (g2) = (g2)
− γ0

2β0
(
1+ f0g2 +O(g4)

)
,

f0 =
1

2β0

(
γ0

β0
β1− γ1

)
, (34)

where the coefficientsβ0, β1 are given in eqs.(19), (20).
Moreover, one has to take into account that a change of
scheme entails a change in the coupling constantg2, according
to

g2 = g2(1+b0g2 +O(g4)) . (35)

The coefficientb0 in eq.(35) expresses the freedom related to
the choice of the renormalization scheme. It will be fixed by
demanding that the coupling constant is renormalized in such
a scheme so that the vacuum functionalE takes the form

E
(
m̃2)=

9
13

N2−1
N

1

(g2)
1− γ0

β0

(
−m̃4

2
+ m̃4 Ng2

16π2 E1L

)
,

(36)
whereL stands for

L = log
m̃2

(
g2

) γ0
2β0

µ2 , (37)

andE1 is a numerical coefficient. After a simple calculation,
we get

E =
9
13

N2−1
N

1

(g2)
1− γ0

β0

[
−m̃4

2
+ m̃4 13

3
Ng2

64π2

(
L− 113

39
+

3
13

64π2

N

(
f0 +

b0

2
(1− γ0

β0
)
)) ]

.

(38)

Therefore, forb0 one has

−113
39

+
3
13

64π2

N

(
f0 +

b0

2
(1− γ0

β0
)
)

= 0 , (39)

namely

b0 =−4331
396

N
16π2 . (40)

For the vacuum functionalE
(
m̃2

)
one gets

E =
9
13

N2−1
N

1

(g2)
1− γ0

β0

[
−m̃4

2
+ m̃4 13

3
Ng2

64π2 L

]
. (41)

In terms of the scale independent variablem̃2, the gap equa-
tion reads

∂E
∂m̃2 = 0 , (42)

so that

−m̃2 + m̃2 26
3

Ng2

64π2 L+ m̃2 13
3

Ng2

64π2 = 0 . (43)

Next to the solution,̃m2 = 0, we have the nontrivial solution
m̃sol given by

−1+
26
3

Ng2

64π2 log


m̃2

sol

(
g2

) γ0
2β0

µ2


+

13
3

Ng2

64π2 = 0 . (44)

In order to find a sensible solution of this equation, a suitable
choice of the scaleµ has to be done. Here, we take full advan-
tage of the RGE invariance of the vacuum functionalE , and
set

µ2 = m̃2
sol

(
g2) γ0

2β0 e−s , (45)

wheres is an arbitrary parameter which will be chosen at our
best convenience. The possibility of introducing this para-
meter relies on the independence of the vacuum functionalE
from the renormalization scaleµ. Furthermore, recalling that

g2(µ) =
1

β0 log µ2

Λ2

, (46)

and that, due to the change of the renormalization scheme,

Λ2 = Λ2
MSe

− b0
β0 , (47)

for the effective coupling and the massm̃sol, one finds

Ng2

16π2

∣∣∣∣
1−loop

=
12
13

1
(1+2s)

, (48)

m̃sol|1−loop=
(

12
13

16π2

N
1

(1+2s)

)− γ0
4β0

e
− b0

2β0 e
13
88(1+2s)e

s
2 ΛMS .

(49)
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Therefore, choosings= 0.6, and settingN = 3, the following
one-loop estimates are found

Ng2

16π2

∣∣∣∣
1−loop

' 0.42 , (50)

m̃sol|1−loop ' 2.4ΛMS' 560MeV , (51)

ΛMS ' 233MeV ,

√〈
Aa

µAa
µ

〉∣∣∣∣
N=3

1−loop
' 0.22GeV ,

and

E(m̃sol)|N=3
1−loop'−90Λ4

MS'−0.265(GeV)4 . (52)

Note that the value obtained for̃msol is close to that already
reported for the dynamical gluon mass in the Landau gauge
[7, 10, 11, 17, 27, 31]. It should be remarked that the results
(50), (51) have been obtained within a one-loop approxima-
tion. As such, they can be taken only as a preliminary indi-
cation. To find more reliable results, one has to go beyond
the one-loop approximation. Nevertheless, these calculations
suggest that a non vanishing gluon mass might emerge from
the gap equation(9).

IV. CONCLUSION

In this work the issue of the dynamical mass generation for
gluons has been addressed. Due to color confinement, gluons
are not observed as free particles. Thanks to the asymptotic
freedom, the gauge fieldAa

µ behaves almost freely at very
high energies, where we have a good understanding of its
properties. However, as the energy decreases the effects of
confinement cannot be neglected and it becomes more and
more difficult to have a clear understanding ofAa

µ. As a
consequence, one does not exactly know what is the correct
starting point in the low energy region. We might thus adopt
the point of view of starting with a renormalizable action

built up with a gauge fieldAa
µ which accommodates the

largest possible number of degrees of freedom. This would
amount to take as starting point a renormalizable massive
action as considered, for example, in expression(7). The
mass parameterm is not treated as a free parameter. Instead
it is determined by a gap equation, eq.(9), obtained by
minimizing the vacuum functionalE of eq.(8) with respect
to the mass parameterm. A preliminary analysis of this
gap equation at one-loop shows that a nonvanishing gluon
mass might emerge. Also, the vacuum functionalE displays
the important feature of obeying the renormalization group
equations.

Finally, we underline that the infrared behavior of the
gluon propagator is expected to be affected by several mass
parameters, with different origins. For instance, as pointed
out in [36, 37] in the case of the Landau gauge, the gluon
propagator turns out to be affected by both dynamical gluon
mass m and Gribov parameterγ, which arises from the
restriction of the domain of integration in the Feynman path
integral up to the first Gribov horizon. More precisely, these
parameters give rise to a three level gluon propagator which
exhibits infrared suppression [36, 37], namely

〈
Aa

µ(k)A
b
ν(−k)

〉
=

δab
(

δµν− kµkν

k2

)
k2

k4 +m2k2 + γ4 . (53)
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