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Remarks on the Dynamical Mass Generation in Confining Yang-Mills Theories
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The dynamical mass generation for gluons is discussed in Euclidean Yang-Mills theories supplemented with
arenormalizable mass term. The mass parameter is not free, being determined in a self-consistent way through a
gap equation which obeys the renormalization group. The example of the Landau gauge is worked out explicitly
at one loop order. A few remarks on the issue of the unitarity are provided.
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I. INTRODUCTION to color confinement. The physical spectrum of the theory is
made up by colorless bound states of quarks and gluons giving

In the last years many efforts have been done to put forwarfiSe, for instance, to barions, mesons and glueballs. This im-
the idea that gluons might acquire a mass through a dynamicglies that the asymptotic Fock spages, |out) of the theory
mechanism. These efforts have led to a considerable amoufive to be defined through suitable operators from which the
of evidence, obtained through theoretical and phenomenologthysical spectrum of the excitations is constructed. Of course,
ical studies [1-22] as well as from lattice simulations [23-33].the Smatrix describing the scattering amplitudes among the
Many aspects related to the dynamical gluon mass generatidixcitations of the physical spectrum of the theory has to be
deserve a better understanding. This is the case, for exarHDitary. Although intuitively simple and easily understand-
ple, of the unitarity of the resulting theory, a highly nontrivial able, this framework is far beyond our present capabilities.
topic, due to the confining character@€D. An operational definition of the gauge invariant colorless op-

Needless to say, the unitarity of tBenatrix is a fundamen- erators defining the physical spectrum of the excitations and a
tal property of the spectrum of a quantum field theory. It ex-well defined set of r_ules to evaluate their scattering amplitudes
presses the conservation of the probability of the amplitudedre not yet at our disposal. _ _
corresponding to the various scattering processes among theQuantized Yang-Mills theories are described by the

excitations of the spectrum. Faddeev-Popov Lagrangian [38]
In a nonconfining theory, the first step in the construction
of the S matrix is the introduction of the so-callgih) and S=S/m+Syr=

|out) Fock spaces characterizing the asymptotic behavior of 7

the physical states beforte,~ —oo, and aftert — +o, a scat- 4 (1 _aca aa ra . a a

tering process. Th&matrix is thus defined as the unitary d*x <4Fuv|:pv +b%0uA] + %0, (Dye) ) N €)
operator which interpolates between the spdicesand|out), ) . )
namely here taken in the Landau gauge. The figldh expressiorn3)

is the Lagrange multiplier enforcing the Landau gauge con-
lin) = Sout) . (1)  dition, a“Ag = 0, while @@, ¢ stand for the Faddeev-Popov
ghosts. The actiofi3) is renormalizable to all orders of per-
The relation of this equation with the Green’s functions of theturbation theory and displays color confinement[39]. Further-
theory is provided by theSZformalism. A key ingredient of more, thanks to the asymptotic freedom, the gauge Aéld
this formalism is the introduction of the asymptotic fiells,  behaves almost freely at very high energies, where perturba-
anddoyt, describing the asymptotic behavior of the interactingtion theory is reliable. However, at low energies, the coupling

fields¢, according to constant increases and the effects of color confinement can-
not be neglected. We do have thus a good understanding of
Ol o = ZY%in, (2)  the properties of the fiel& at high energies, whereas it be-
O o = 72004 . comes more and more difficult to have a clear picturégf

and of the whole theory, as the energy decreases. We might

The asymptotic fieldgi, anddou allow us to define the cre- thus adopt the point of view of starting with a renormalizable

. d inilati ola’ a d(at action built up with a gauge flel.élﬁ which accommodates the
ation an. anniniiation operfa O(Sain’ a"‘) an (aOL_“’ aOU‘)' largest possible number of degrees of freedom. This would
from which the Fock spacé#) and|out) are obtained. The amount to start with a quantized massive Yang-Mills action
entire construction relies on the possibility that the asymptotic _
fields can be consistently introduced. Sn=Srm+ Syt + Smass, “)

In a confining theory likeQCD, the quanta associated with where Syassis a suitable mass term for the gauge fié@j
the basic fields of the theoryge. the gluon fieIdAf} and the The best choice foBnasswould be a gauge invariant, renor-
quark fieldsy, j, cannot be observed as free particles, duemalizable local mass term. However, no local renormalizable
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gauge invariant mass term built up with gauge fields only isory displays the important property of being multiplicatively
at our disposal. Nevertheless, it might be worth remindingrenormalizable [34].
that, recently, a consistent framework for the nonlocal gauge Though, for the time being, we give up of the requirement

invariant mass operator of the gauge invariance. This will enable us to present our
7 analysis with the help of a relatively simple example. There-
O(A) = 1 d4xF§, [(Dz)*l} ab FLR; _ (5) fore, as possible mass term we shall take
. . 1mZZ 4., papa
has been achieved [34]. More precisely, the nonlocal opera- Smass= 5 d"xALAL, (6)

tor (5) can be cast in local form by means of the introduction
of a suitable set of additional fields. The resulting local the-so that

z

Sn= d% (iF@,F@ +;mzAﬁAﬁ+ba6uAﬁ+ca6u(Duc)a> : @)
\
Expression7) provides an example of a massive nonabelian and fix the mass parameter through the gap equation.
gauge theory which is renormalizable to all orders of pertur- If the resulting value ofn will be small enough, one
bation theory [35], while obeying the renormalization group can argue that the unitarity is violated by terms which
equations (RGE). become less and less important as the energy of the
A few remarks are now in order: process increases, so that the amplitudes of the mass-

less case are in practice recovered at very high energies.
The present set up might thus provide a different char-

acterization of the aforementioned phenomenon of the

dynamical gluon mass generation, which has already

been successfully described in [1,7,10,11,13,14,16,17].

In the next section, the gap equation for the nrassll

be discussed.

e The amplitudes corresponding to the scattering
processes among gluons and quarks display now a
violation of the unitarity. This can be understood by
noting that the inclusion of the mass tenm?-AﬁAf}
gives rise to aBBRST operator which is not nilpotent.
However, as shown in [35], it is still possible to
write down suitable Slavnov-Taylor identities which
ensure that the massive theofy) is renormalizable
to all orders of perturbation theory. Moreover, if | tHE caP EQUATION FOR THE MASS PARAMETER  m
sufficiently small, this violation of the unitarity might
not be in conflict with the confining character of the . . .
theory. Otherwise said, since gluons are not directly The gap equation for the mass parametes obtained by

observable, we could allow for a gauge ﬁqu with requiring that the vacuum functiondl defined by

the largest possible number of degrees of freedom, z vt

provided the renormalizability is preserved and one is eVt = DD e’<sm+ ’1(9)7) ’ (8)
able to recover the results of the massless case at very

high energies. whereV is the Euclidean space-time volume, obeys a mini-

mization condition with respect to the massi.e. the value
of the massnis determined by demanding that it corresponds
to the minimum of the vacuum functiondl, namely

e This framework would be useless if the value of the
mass parametan would be free, meaning that we are
introducing a new arbitrary parameter in the theory,
thereby changing its physical meaning. A different situ- O
ation is attained by demanding that the mass parameter —=0. 9)
is determined in a self-consistent way as a function of oy

ing that the masenin eq(7) is a solution of a suitable The quantityn(g) in eq(8) is a dimensionless parameter
gap equation. In other words, even if the masss  \yhose loop expansion

included in the starting gauge-fixed theory, it does not

play the role of a free parameter, as it is determined once n(g) = No(9) +/n1(g) +1%N2(g) +.... (10)

the quantum effects are properly taken into account.

Here, we rely on the lack of an exact description of aaccounts for the quantum effects related to the renormalization
confining Yang-Mills theory at low energies. We start of the vacuum diagrams in the massive case. The parameter
then with the largest possible number of degrees of freeq(g) can be obtained order by order by requiring that the vac-
dom compatible with the renormalizability requirement uum functionalZ obeys the renormalization group equations
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(RGE) a gauge field\2 with the largest number of degrees of
dE freedom compatible with the requirement of renormal-
~~ =0 11 izability.

TR (11)

. o o e This amounts to start with a renormalizable massive ac-
meaning thatZE is independent from the renormalization tion, as given in e7). However, the mass parameter
SC&|€H, as it will be expliciFIy verified in the next section. is determined in a self-consistent way by imposing the
Equation(11) expresses an important property of the vacuum minimizing condition(9) on the vacuum functionat.

functional £. We also remark that a term of the kind of
nnt* in eq(8) has been already obtained[40] in [1] in the e Also, it is worth observing that, in the case of the mas-

evaluation of the vacuum energy of Yang-Mills theories when sive model of eq7), a non vanishing solutiomr,ﬁol £0,

gluons are massive. of the gap equationi9) implies the existence of a non
vanishing dimension two gluon condens&f€A?). In

The gap equation equatio(ll) can be given a simple fact, differentiating equatiof8) with respect tar? and

interpretation. Due to the lack of an exact description of settingn? = n¢,,, one obtains

Yang-Mills theories at low energies, we have adopted the

point of view of starting with a renormalizable massive 1, ana

action, as given in e(j7). As far as the mass parametaiis 2 <AuAu> =Nty 12)

free, expressiofi7) can be interpreted as describing a family

of massive models, parametrized oy For each value ofn

we have a specific renormalizable model. Moreover, as thell. EVALUATION OF THE VACUUM FUNCTIONAL  EAT
introduction of a mass term has an energetic coast, we might ONE LOOP ORDER

figure out that, somehow, the dynamics will select precisely

that model corresponding to the lowest energetic coast, as |n the case of pur8U(N) Yang-Mills theories, for the vac-

expressed by the gap equatidt). uum functionalE we have
. . _ . z
Before starting with explicit calculations let us summa- VI - sm+vn%
rize our point of view: € = [Dofe ( ) ’ (13)
e Since gluons are not directly observable, we allow forwith Sy, given by expressiofi7), namely
|
z 1 1
Sn—  d' (ﬁmﬂv +2mzAf}Aﬁ+baauAﬁ+Caau(Dpc)a> | (14)
\
As it has been proven in [35], the massive actib4) is multi-  Also
plicatively renormalizable to all orders of perturbation theory. 5
In particular, for the mass renormalization we have [35 0
P 195 Be?) =5 = -2 (Bog* + BagP+O(e")) . (19)
Jo = Zgga
Ao = Zx°A
_ 11 N 34/ N \?
> = Zmzm:/,z Po = 316m@° P = 3 (16112) ' (20)
Zop = ZgZp7'", (15)
from which the running of the mase? is easily deduced In order to obtain the_paramequzat one_-loop_order, i_t is useful
to note that expressiofi3) can be written in localized form
anr as
= — Y 1
with z i
2 2 o 6 eV*= [Doje (Smivn'F)
Y2 (9%) = Yoo~ + V19" +O(°) , a7

3 N _ 449/ N \? z
Vo= 1es y1:24(16n2> . (18) = DIX) BI(X) —mP) e WD, (21)
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with Thus, for the vacuum functiona at one-loop order in the
z MSscheme, we get
eV = Do) e, (22)
z
1
SO = S Sprt o ZI0AAT 5200 p M9 NP1 161N 1
2 1352 N 52 16

From equatior(21) it follows that the renormalization of the
vacuum functionalE can be achieved by renormalizing the

functionalW(J) in the presence of the local sourggx), and N2-1 ,/ 5 m?
then set] = m? at the end. The renormalization of the func- 3h 62 5 +|09? ; (24)
tionalW(J) has been worked out at two-loops in [7]. By sim-
ﬁ:i ['égecgfgr;]gtgrgf [;)]utt) that,trlez paiﬁ;?:nas related 10\ here we have introduced the factoto make clear the or-
P yn=-6y 9 der of the various terms. It is useful to check explicitly that
9 N2_1 161N2—1 ) the above expression obeys the RGE equations. Indeed, from
|
_dE > 4 9 N2-1 m 9 N?2-1 4 N2—-1 , )
R = g (13g2 SN ) g (2B — 6T O(h?)

N2—1/35)\ 9 N2—-133 N2—1
_ V) o Y 4 oY 4 2
RGUET (6) 13 "™ Tee 13 Bz ™ HOM)
_ 4N2—1(359 33 6

N*—-1/7309 35 © 2y _ pot
" Tee \ 6137 13 4)+O(h> fim

_ hm4N2 —1 (105—66—39
B 16m 26

N°-1/105 33 3 2
e (26_13_2)+O(h>

) +0(h?) = O(h?) . (25)

It remains now to look for a sensible solution of the gap equarenormalization scheme and scale independent quantity. This

tion (9). This will be the task of the next section. can be achieved along the lines outlined in [10] in the analy-
sis of the gluon condensaté3A3) within the 2PPI expansion
technique. Let us first change notation

A. Searching for a sensible minimum
¢ — &, (26)
In order to search for a sensible solution of the gap equa- m — e,
tion (9), % = 0, we first remove the freedom existing in the

renormaﬁzation of the mass parameter by replacing it with and rewrite the one-loop vacuum functional as

_gNz_li _ﬁ EN324 lo 2‘2_1713 (27)
13 N @ 2 3 64m @ 39
\
As done in [10], we introduce the scheme and scale indepermwith
dent quantityi® through the relation 5 5 . 5
_ Ye(@°) = Yo" +v10"+0O(T) , (30)
2 = TG . 28) (8 g +0T)
From
oM, 35 N _ 449/ N \?
HTH = —V2(0 )mz ) (29) Yo = B 162’ Y= 4 (16]_[2) ) (31)
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we obtain the condition The coefficienty in eq(35) expresses the freedom related to
the choice of the renormalization scheme. It will be fixed by
_of (@) = Voo (72)7@2) (32) demanding that the coupling constant is renormalized in such
o ’ a scheme so that the vacuum functiofialakes the form
from which it follows that
o , ”
op (M) =5~ 7(92) v (2 + Tegtit)
Equation(32) is easily solved, yielding (36)
. whereL stands for
f(g?) = (@) %o (1+fog®+0(@") ,
1
fo = , (34)
7 2o (B P > &2 () 2%
=log L , 37)
where the coefficienty, B1 are given in eq$l9), (20). i3

Moreover, one has to take into account that a change of
scheme entails a change in the coupling congfargccording

to
andE; is a numerical coefficient. After a simple calculation,
g° = g°(1+bog® +0O(gh) . (35)  we get
|
2 _ ~
r - %%% {_n;+m413|\fzz (L— us, %% <f0+ b2°(1— W))) } .
3 (@) P 3 64 39 3 Bo
(38)
\
Therefore, fotbg one has In order to find a sensible solution of this equation, a suitable
113 3 6412 b y choice of the scalp has to be done. Here, we take full advan-
——+—= fo+ —0(1— —0) =0, (39) tage of the RGE invariance of the vacuum functiofialand
39 13 N 2 Bo set
namely > o Jo
4331 N 10 e =My (%) %o e, (45)
bo =~ 396 1612 (40) wheres is an arbitrary parameter which will be chosen at our

best convenience. The possibility of introducing this para-

For the vacuum functionat (¢) one gets \ _ _
meter relies on the independence of the vacuum functi@nal

. _9N-1 1 i _ﬁ L qel3 13 N¢? Ll @ from the renormalization scaje Furthermore, recalling that
13 N (@) 2 3 642 ) 1
g°(p) = @ (46)
In terms of the scale independent variafitg the gap equa- Bolog 1>
tion reads and that, due to the change of the renormalization scheme,
oF 0 (42) b
F~> — Y, _20
o N=Nee Fo, (47)
so that for the effective coupling and the mass,, one finds
3oa M 3emE O Ng’ _r2 1 (48)
Next to the solutionfi? = 0, we have the nontrivial solution 16 1-loop 13(1+2s)

Msol given by

mg 12 16 1 430 _bo
2Bo ~ _ g ans(1+29)
_1_~_276 Ng2 |Og 0|( ) +173ﬁ20 (44) “50||17|00p (13 N (1+25)) e 0888 e2/\

3 64 ( 49)

3 642
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Therefore, choosing= 0.6, and settind\ = 3, the following  built up with a gauge fieldA] which accommodates the
one-loop estimates are found largest possible number of degrees of freedom. This would
amount to take as starting point a renormalizable massive

Ng? action as considered, for example, in expresgioh The
— ~0.42, (50) -
16m2 |, oop mass parametean is not treated as a free parameter. Instead
it is determined by a gap equation, @), obtained by
minimizing the vacuum functionaE of eq(8) with respect
Msol|1_1gop = 2.4/\yjs~ 560MeV, (51) to the mass parameten. A preliminary analysis of this
Ayis =~ 23MeV, gap equation at one-loop shows that a nonvanishing gluon
mass might emerge. Also, the vacuum functioBallisplays
the important feature of obeying the renormalization group
N=3 equations.
<AﬁAﬁ> ~ 0.22GeV,
1-loop

Finally, we underline that the infrared behavior of the

and gluon propagator is expected to be affected by several mass
parameters, with different origins. For instance, as pointed

f(fﬁsm)mjiopﬁ _90/\‘&752 —0.265(GeV)* . (52) outin [36, 37] in the case of the Landau gauge, the gluon

propagator turns out to be affected by both dynamical gluon

Note that the value obtained fais is close to that already massm and Gribov parametey, which arises from the

reported for the dynamical gluon mass in the Landau gauggestriction of the domain of integration in the Feynman path

[7, 10, 11, 17, 27, 31]. It should be remarked that the resulténtegral up to the first Gribov horizon. More precisely, these

(50), (51) have been obtained within a one-loop approxima-parameters give rise to a three level gluon propagator which

tion. As such, they can be taken only as a preliminary indi-exhibits infrared suppression [36, 37], namely

cation. To find more reliable results, one has to go beyond

the one-loop approximation. Nevertheless, these calculations

suggest that a non vanishing gluon mass might emerge from <Aﬁ(k)A5’(—k)> =
the gap equatiof®).
IV. CONCLUSION 5 (5, — Kk . (53)
' Wk ) KRk A

In this work the issue of the dynamical mass generation for

gluons has been addressed. Due to color confinement, gluoi&%knowledgments

are not observed as free particles. Thanks to the asymptotic

freedom, the gauge field? behaves almost freely at very | am indebted to my friends and colleagues D. Dudal, J. A.
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