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Space Isotropy and Weak Equivalence Principle in a Scalar Theory of Gravity
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We consider a preferred-frame bimetric theory in which the scalar gravitational field both influences the metric
and has direct dynamical effects. A modified version (“v2”) is built, by assuming now a locally-isotropic dilation
of physically measured distances, as compared with distances evaluated with the Euclidean space metric. The
dynamical equations stay unchanged: they are based on a consistent formulation of Newton’s second law in
a curved space-time. To obtain a local conservation equation for energy with the new metric, the equation
for the scalar field is modified: now its I.h.s. is the flat wave operator. Fluid dynamics is formulated and the
asymptotic scheme of post-Newtonian approximation is adapted to v2. The latter also explains the gravitational
effects on light rays, as did the former version (v1). The violation of the weak equivalence principle found for
gravitationally-active bodies at the point-particle limit, which discarded v1, is proved to not exist in v2. Thus
that violation was indeed due to the anisotropy of the space metric assumed in v1.
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I. INTRODUCTION theory with a preferred reference frame. This theory is sum-

marized in Ref. [3], or in more detail in Ref. [4]. It admits

a “physically observable preferred foliation” [5], in short a

ies fall in the same way in a gravitational field,” is a distinc- detectable ethgr. vet, apart from thg WEP vioIaFion to be dis-

tive feature of the ravi){ 'nte?act' Itis al 'k th cussed below, it seems to agree with observations [3, 4]. In
9 yl lon. 11 1S also known as eparticular, the ether of that theory could be indeed detected

bﬁfﬁgeiqfﬁgalfgﬁfaﬁgﬂgp;i d (|\r/1\:a$tfgl é?ficetg'u;ﬁ:engeﬂ?:lfg?:gy adjusting on astrodynamical observations the equations of
9 ' ' elestial mechanics that are valid in the theory [3]. One of

that the gravitational acceleration of a small body is the sam e motivations to investigate a preferred-frame theory is that

independently of its composition and its mass, allows to INCOM e existence of a preferred reference frame, involving that of

porate in it the acceleration QUe to the motion of t_he arblltrarya preferred time, may be regarded as a possible way to make
reference frame through an inertial frame. Following Galileo

.. o - ‘guantum theory and gravitation theory match together [3]. It

lk;lewtonh, arlld dEtV.(t)ﬁ'.the e“?p'”ca' v_a|_|d|ty cif thfhWEf ha?h is interesting to note that, currently, a detectable ether is ad-

een checked with Increasing precisions [1]- eretore, NGocated already in the absence of gravitation by Selleri, in the
WERP is involved in the very construction of relativistic the-

. o . ; : : .~ framework of a theory close to special relativity, but based on
ories of gravitation, in particular in the construction of Ein- y P v

stein’s general relativity (GR), which takes benefit of the uni—an absolute simultaneity [6].

versality of gravity to geometrize it. More precisely, in the As we mentioned, the WEP is valid for any test particle, by
construction of a relativistic theory, one ensures the validityconstruction—in the investigated scalar theory just as well as
of the WEP fortest particleswhich, by definition, do notin- in GR. But any real body, however small it may be, must influ-
fluence the gravitational field. The geometrization operate@nce the gravitational field, so that one @apriori expect the
by GR is one way to do this. Another way is to formulate occurrence of self-accelerations. The latter ones are excluded
the dynamics by an extension of Newton’s second law, thérom Newton'’s theory by the actio-reactio principle, but this
gravitational force beingng with m the (velocity-dependent) principle cannot even be formulated in a nonlinear theory—
inertial mass and a (theory-dependent) gravity acceleration as are most relativistic theories. Moreover, the mass-energy
[2]. We would like to emphasize that Einstein’s geometrizedequivalence, which has to be accounted for by a relativistic
dynamics, in which test particles follow geodesic lines of thetheory, implies that the rest-mass, kinetic, and gravitational
space-time metricgan be rewritten in that waf2]. energies of the test body all influence the gravitational field.
A theory of gravitation has been built, in which one starts This means that the internal structure of the test body anay

from a simple form for the field, suggested by a heuristic in- Priori be expected to influence its motion, which would be
terpretation of gravity as Archimedes’ thrust due to the spac@ Violation of the WEPHence, the validity of the WEP for
variation of the “ether pressureds, and in whichpe also de-  test particles is far from ensuring that this principle applies

termines the space-time metric. One obtains a scalar bimetrf@ €@l bodies In GR, studies of the self-force acting on an
extended body can be found, e.g. [7-10], but they have been

based on simplifying assumptions such as that of a black-hole

body [7, 8, 10], or on linearized GR [9]. Such assumptions do
*Currently at Dipartimento di Fisica, Univeritli Bari, Via Amendola 173, ~NOt Seéem very appropriate to ChQCk whether a violation of the
1-70126 Bari, Italy. WEP might be predicted by GR in the real world, say for an

The universality of gravitationi.e., the fact that “all bod-
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asteroid or a spacecraft in the solar system. It is well-known, Therefore, it has been began [22] to investigate the case
since the work of Nordtvedt [11, 12], that the WEP may bewhere one assumes a locaiptropic gravitational contrac-
violated for extended bodies of a finite mass in some relativistion, which case is nearly as natural as the anisotropic case
tic theories of gravity (see also Will [13, 14]). However, the according to the heuristic concept that led to the scalar theory,
kind of violation of the WEP which we have in mind is a more i.e., gravity seen as due to the heterogeneity of the field of
severe one, that occurs even in the limit in which the size ofether pressurepe. It has been shown that there is some free-
the extended body shrinks to zero [15]. dom left for the equation governing the figéd. The aim of the
. . resent papers to propose a definite equation for the scalar

In the aboye-mentloned scalar theory [4], it has beel'gravitational field, leading to an exact local conservation law
proppsgd a ngorous framework for. the_ study of WeakI.V'for the total (material plus gravitational) energy; to investigate
gravitating systems [16], in conformity with the asymptoliC yo main features of this new version of the theory; and to
approximation schemes which are currently used in applie%;g?w that it does eliminate the WEP violation which h'as been
mathematics, and this scheme has been developed up to

i £ moti fth i f perfect-fluid bod nd with the former version. The next Section summarizes
equations of motion ot theé mass centers of pertect-iuld Doy, 4c concepts of the theory, which remain true for the
ies [17, 18]. This “asymptotic” scheme of post-Newtonian

nati PNA) is based ter famil ew version to be built in this paper. Section Ill precises the
approximation ( ) IS based on a one-parameter family o guation for the scalar field, in connection with the necessity
initial conditions, defining a family of gravitating systenis.

) X f obtaini t tion. Th ti f
It is hence different from the “standard” PNA proposed for0 opaining an exact energy conservation e equatons o

C M motion of a perfect fluid are obtained in Sect. IV. Section V
GR by Fock [20] and Chandrasekhar [21], which is at the baTs devoted to the post-Newtonian approximation and shows,

sis of a significant part of the subsequent work on relativis; particular, that this theory predicts the same effects on light

tic celestial mechanics in GR, and in which no SUCh.fam"yrays as the standard effects known in GR. The PN equations
is considered. The asymptotic PNA predicts that the mternaéf motion of the mass centers are derived in Sect. VI. The

structure of the bodies definitely influences their motion in oint-particle limit is taken in Sect. VII, and our conclusion
weakly-gravitating system such as our solar system, at lea akes Sect. VIII

for the scalar theory [18]. Moreover, by considering a family ' '

of PN systems which are identical but for the size of one of

the bodies, which is a small parameéerit has been possi-

ble to make a rigorous study of the point-particle limit. It has Il BASIC CONCEPTS

thus been found [15] that the internal structure of a body does

influence its post-Newtonian acceleration even at the point- The idea according to which gravity would be Archimedes’
particle limit. It has also been investigated the particular cas¢hrust due to the macroscopic part of the pressure gradient in
where, apart from the small body, there is just one massiva fluid “ether,” and the necessity to account for special relativ-
body, which is static and spherically symmetric (SSS). In thaity, lead to set a few basic assumptions [22], which we state
case, the PN equation of motion of the mass center of the smatirectly here.

body is identical to the PN equation of motion of a test parti-

cle in the corresponding SSS fielghart from one structure-

dependent termThese results show a patent violation of the A. The preferred reference frame and the metric

WEP, and one whose magnitude is likely to discard the ini-
tial version of the theory [15]. The specific reason which

makes the WEP violation actually occur in the pomt-partlcleR « M, whereM is the preferred reference body, which plays

limit of the PN equations of motion has been identified: itthe role of Newton's absolute space. The equations of the
is the anisotropy of the space metric (in the preferred refer: pace. q

ence frame of the theory). More precisely, it was as:sume@eory aret p(;lmatl;l:y”:N rtltLen d;/g thSe priferrltlad _rteference fra(;ne
that there is a gravitational contraction of physical objects, associated wi at body- opeciically, 1 1S assume
only in the direction of the gravity acceleratign(see Ref.
[22] and references therein), thus making the PN spatial met-
fic depend on the derlvatlve$i of the Newtonian pOtentlal in the case of Schwarzschild’s metric). Hence, the dependence of the
U. The structure-dependence (hence the non-uniqueness) Okpatial metric on theJ;'s should be found for general situations with
the point-particle limit comes then [15] from the fact that the “Schwarzschild-like” gauges, i.e., with gauge conditions under which the
self part of the second derivati\/gij is order zero irt. 2 standard form of Schwarzschild’s metric is the unique SSS solution of the
Einstein equations with Newtonian behaviour at spatial infinity. (It is not
difficult to exhibit such gauges.) One may then ask [15] whether a similar
violation of the WEP might appear also in GR, in such Schwarzschild-like
gauges. This would be more difficult to check, due to the greater complex-
1 A scheme similar to our “asymptotic” scheme has been previously pro- ity of GR as compared with the present scalar theory, in particular due to
posed for GR by Futamase & Schutz [19], though it is based on a partic- the necessity of satisfying constraint equations.
ular initial condition as to the space metric and its time derivative, which 3 A reference frame is for us essentially a (three-dimensional) reference
enforces the spatial isotropy of the metric. In any case, the work [19] isre- body, plus a notion of time. Let us begin with the viewpoint of “space
stricted to the local equations, and this in a form which is not very explicit.  plus time,” which is admissible once we take the space-time to be a prod-
2 The PN spatial metric valid for the standard form of Schwarzschild’s met- uct,V = R x M —the “time” T of an eventX = (T,x) € V being thus the
ric of GR also depends on the derivativgs (with specificallyU = GM/r canonical projection oX into R. From this viewpoint, a general reference

The space-time manifold V is assumed to be the product
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that the preferred reference body M is endowed with a timewhere g is the physical space metric in the frame E. This
invariant Euclidean metrig®, with respect to which M is thus  equation implies that the scalfrcan be more operationally
a rigid body, which is assumed to fill the Euclidean spacedefined as

On the “time” component of the space-time, we have the one-

dimensional Euclidean metric. Combining these metrics on B = (Yoo)"/? (5)
the component spaces, we get a Lorentzian metric: the squ
scalar product of an arbitrary 4-vectdr= (U° u), with u an
arbitrary spatial vectori.g., formally, an element of the tan-
gent spacd My to M at somex € M), is

a{i% any coordinate§y") adapted to the frame E, and such that
y? = cT). Metric g is related to the Euclidean metg€ by the
assumed gravitational contraction of objects, including space
standards—hence the dilation of measured distances. This ef-

~°(U,U) = (UO)Z_QO(U,U). (1) fect was formerly assumed to occur only in the direction of
gradpe (see e.g. Ref. [4]), but it is now assumed isotropic.

This is the “background metric,” which should determine theThis means that the following relation is now assumed [22]

proper time along a trajectory, if it were not for the metrical between the spatial metrig8 andg:

effects of gravity. For this to be true, it is necessary that the

canonical projection of an eveMte V gives in fact® = cT, g="p2%g" (6)

rather thanT, whereT is indeed a time (called the “absolute

time”) andc is a constant—the velocity of light, as measured

with “physical” space and time standards. If on M we take B. Dynamical equations

Cartesian coordinate') for g°, then the space-time coor-

dinates(x!) = (X%, (x')) are Galilean coordinates fey [i.e., In addition to its metrical effects, the gravitational figld

in that coordinates(yg ) =diag(1,—1,—1,—1)], which are  has also direct dynamical effects, namely it produces a gravity

adapted to the preferred frame E. The gravitational field isacceleration

a scalar fieldpe, the “ether pressure,” which determines the

field of “ether density”’pe from the barotropic relationship = _&dgpe,

Pe = Pe(Pe). Gravity has metrical effects which occur through Pe

the ratio

()

[The index, means that the gradient operator refers to the
B(T,X) = pe(T,X)/p(T) < 1, @) physical, Riemannian metrig, i.e, (grad,®)(x) is a spatial

vector (an element of Th) with components(grad, @)’ =
with g@;.] We shall soon assume that tipg-pe relationship is

p2(T) = SupcyPe(T.X)- 3) simply pe = c°pe. In that case, we get from (2):

More precisely, the “physical’ space-time metfi¢cthat one g= ,CZQradg B.
which more directly expresses space and time measurements, B

is related to the background metr® by a dilation of time
standards and a contraction of physical objects, both in th
ratio 3. Thus, in any coordinateg*) which are adapted to
the frame E and such thgt = x° = cT, the line element ofy
writes

8)

Equation (7) is a fundamental one according to the concept
f the theory. However, to use this “gravity acceleration,” we
must define the dynamics by an extension of Newton’s second
law, as announced in the Introduction. This has been done in

detail in Refs. [2, 24, 25] (see Ref. [4] for a summaryhe

d<2 — Vi dyHdy = Bz(dyo)z — g dy‘dyj, () dynamical equations stay unchanged in the new vgrsion of the
theory. Therefore, only a synopsis of that alternative dynam-

ics will be given here. Dynamics of a test particle is governed

by a “relativistic” extension of Newton’s second law:
frame can be defined as a time-dependent diffeomorptpisiof the space

M onto itself. Consider the trajectori@s— Yt (x), each for a fixec € M. Fo+ m(v)g — E
As x varies inM, the set of these trajectories defines a deformable body Dty ’
N, which is uniquely associated with the reference frape)rcr. Thus,

x' = Yr(x) describes the motion of N relative to M. For a genaepa,  WhereFg is the non-gravitationak(g. electromagnetic) force,
this body N will indeed be deformed. The most obvious reference framey = dx/dty the velocity ands = g(v7v)1/2 its modulus, both

is yet that one which is associated with M itself, thusT, Yt = ldu. being measured by physical clocks and rods of observers
This is our preferred frame denoted by E. From the viewpoint of “space-

time,” which is more general and which is hence also admissible in arpound to the preferred frame En(v) = m(o)yV is the rel-
ether theory, a reference frame is defined by a three-dimensional congr@tivistic mass ¥, = (1 —v?/c?)¥/2 is the Lorentz factor);
ence of world lines, which defines a “body” (as we say) or “reference fluid” P = m(v)v is the momentumt is the “local time” inE, mea-
[23]. Thus the trajectories of the “space plus time” description are replace%ured by a clock at the fixed pointin the frameE, that mo-

by world lines: s+— X(s). Among systems of space-time coordinates: . g . L S
X s XH(X) =y (u=0,...,3), coordinate systemadaptedo a given refer- mentarily coincides with the position of the test particle: from

ence frame are such that each world () belonging to the correspond- (4), we have
ing body has constant space coordinates; x'(X(s)) =y = Constant
(i=123). dtx/dT = B(T,x); (10)

©)
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and Dw/Dg is the appropriate “time-"derivative of a vector upper limitc. (This constraint leads tpe = c°pe, as assumed
w(&) in a manifold M endowed with a “time-"dependent in advance for Eq. (8).) Thus, in the real case, the equation
metricgs [2, 24]. In the static cas3(, = 0) with Fo =0, that ~ for pe should be a kind of nonlinear wave equation, the
dynamics implies Einstein’s motion along geodesics of thenonlinearity arising from the fact that the physical space-time
curved space-time metrig (see Ref. [2])# metric~ is determined by the fielg itself. It is indeed the
physical metric, not the background metric, which is directly
Dynamics is also defined for continuous media. Fduat relevant here, because the relativistic upper licrapplies to
we may apply (9) pointwise and this implies [25] the follow- velocities measured with the local, physical instruments.
ing equation:
We note that, from Eqgs. (4) and (6), the physical met-
Tov = by, (11)  ric v is nearly equal to the given Galilean mets€ if and
. only if B = 1, which, by the definition (2), means a quasi-
whereT is the energy-momentum tensor of matter and nonjncompressible flowpe & Constantf moreover we consider a
gravitational fields, and whet®, is defined by “non-cosmological time scale” so thgf ~ Constant (Due to
1 ' 1 Eq. (8), it also implies that the gravitational field is weag,
bo(T) = = gjk_’OTJk7 bi(T) = —= gik,oTOk- (12)  the gravity acceleration is “small.”) Thus, in the linfit— 1
2 2 with pg ~ Constant the nonlinearity of the wave equation
(Indices are raised and lowered with metsic unless men- must evanesce while simultaneogsly the ether compressi.bility
tioned otherwise. Semicolon means covariant differentiatio€comes very small and the metric becomes close to Galilean.
using the Christoffel connection associated with metyic NowW Newton’s gravity does correspond to a Galilean metric
Note that in GR, in contrast, we habig=0in (11).) The uni- and is characterized by Poisson’s equation for the field
versality of_ gravity means that _Eq. (1;) with definition (12) div, o g = —4TGp, (13)
must remain true for any material mediuithus, the dynam- 9
ics of a test particle, as well as the dynamical field equationwith G the gravitational constant arithe Newtonian mass
for a continuous medium, exactly obey the WEP, just as it islensity. Hence, for an incompressible ethmy € Constany,
the case in GREquations (11)-(12) are valid in any coordi- in which the gravity acceleration is defined by Eq. (7) with
nates(y") which are adapted to the frame E and such thay = g° Newton’s gravity is exactly equivalent to the follow-

y° = @(T) for some functionp. ing equation for the “ether pressurpe:
Ago pe = 4NGPPe. (14)
ll. SCALAR F'EE%EESOE%\'NAND ENERGY Thgrefore, the pondition’$ andii) suggest to admit that the
equation for the fielgpe has the form [22]
A. Semi-heuristic constraints on the scalar field equation Ag pe + (time derivative$ = 4nGopeF (B), (15)
Equation (7) for the gravity acceleration expresses the idea F(B)—1asp—1, (16)

according to which gravity would be Archimedes’ thrust in . o . . .
Romani's “constitutive ether” [26],e. a space-filling perfect the “time derivatives” term being such that, in the appropri-

fluid, of which any matter particle should be a mere localt® (‘Post-Minkowskian”) limit [4], involving the condition
organization. The equation for the figtid in (7) should fulfil B — L tf,1e operator on the L.h.s. becomes equivalent to the
the following conditions [22]: usual (d’Alembert) wave operator. On _the r.h_.s. of (1%),
i) Newton’s gravity, because it propagates instantaneousl ,enotes the relevant mass-energy density, which shall have to

should correspond to the limiting case of an incompressibl®€ defined in terms of the energy-momentum tensgthat
ether pe = Constan). we take in mass units), and which will reduce to the New-

ii) In the real case, the ether should have a compressibifonian (rest-mass) densiyin the nonrelativistic limit. It is
ity K = 1/c2, so that the velocity of the pressure waves,Wor,th noting that_ the equation assumed [.4].for the previous
Co = (dpe/dpe)l/z (beyond which velocity the material (anisotropic-metric) version of the theory is indeed a special

particles, seen as flows in the universal fluid, should p&ase of Eq. (15) [22]. Let us thus start from (15) and (16), or

destroyed by shock waves), coincide with the reI::xtivisticeqL“Valently from (16) and

A, e+ (time derivativey = %cpeF ®. an

4 B being defined by Eq. (5), postulating Eq. (8) for veaids equivalent
under natural requirements, to asking geodesic motion in the static case B. The equation for the scalar gravitational field and the
[2]. On the other hand, if one adds to the r.h.s. of Eq. (8) a complementary energy equation
term involving the velocity of the test particle and the time-variation of the
space metric, then Eq. (9) implies geodesic motion in the general case, . . L. .
thus one deduces Einstein’s geodesic motion from a relativistic extension AS We mentioned, the physical metric is directly relevant

of Newton’s second law [2]. to translate the heuristic considerations on the “gravitational
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ether” into restrictions imposed on the field equation. How-
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Together with (21), Eqg. (26) makes it obvious that the relevant

ever, the latter would obviously be more tractable if it couldscalar field is indeeg = —LogP. We note the identities

be rewritten in terms of the flat background metric. Let us try
to impose this condition. To this aim, we evaluate the spatial.oW.j.j = (WoW,j) ;

termA pe on the .h.s. of (17). From the definition

. 1 .
Ag @=divg(grad,p) = ﬁ (\/QQH(P,J')J
(g=detgj), (@) =(g) ™), (18)
and since, by (6), we have

g=B"°P (¢°=detg))), (19)

it follows that, in Cartesian coordinates fg?, it holds
8,pe= (55" . o)

[

)

Accounting for the definition op from pe (Eq. (2)), we get:

Bi
B

Hence, if the sought-for finalization of Eq. (17) is to be re-

nope=rc* () —pEpasom).

“3WWi)o  WoWoo=3(Wo) o
@7
From these, and from (26), it follows that, if we take the grav-
itational sourceo to be the energy componeft?, and if we
simply postulate forp the flat wave equation:
(o= TOO,

X =cT),
(28)

4G
Oy =yoo—DpW= = °

then we indeed obtaia as a 4-divergence:

- 4AnG

(Henceforth, div, grad and alsA shall be the standard
operators defined with the Euclidean metg€.) More
complicated time derivatives in the field equation could also
provide a conservation equation, but the spatial term is more
or less imposed to ba&y by (21), while the source should

be T due to (26). We have currently few constraints on the
time-derivative part of the equation for the scalar gravitational
field. Hence,Occam’s razor leads us to state (28) as the
equation for the scalar field(This corresponds t6 (B) = B2

in Eq. (17).)

a {f%ao [w?0+ (gradp)ﬂ +div(qJ7ograd4J)}. (29)

expressed nicely in terms of the flat metric, the field variable Thys, py assuming the validity of Eq. (28), we rewrite

should be
Y = —Logp. (22)

(The minus sign is chosen so that> 0, see Eq. (2).)

[Eq. (24)] as (29). Hence, (24) becomes the followiocal
conservation equation for the energy:

where the material and gravitational energy densities are given

On the other hand, we impose on the field equation the addiin mass units) by:

tional condition that amxact local conservation lamust be

found with some consistent definition of the energy. The lat- 00 . c? 5 2

ter should be the sum of a material energy and a gravitational Em =T, &%= 351G Wo+(gradp)”|,  (31)
energy. The energy conservation law should be obtained bg dth dina f )

rewriting the time component of the dynamical equation, (11) nd the corresponding fluxes are:

with the definition (12), as a zero 4-divergence. For any met- _

ric having the form (4), and independently of any restriction Pn=(TY),  dg= e (Wogradp).  (32)

on the equation for the scalar field, the following identity:
The scalar field equation (28) and the conservation equation

1 1 L .

TV — = (/yTY) = TAV —de (30) are valid in any coordinatégt) adapted to the preferred
W —V( VI, 2w (v=deiin) frame and such thaf = x% = cT. We note in particular that,
(23) although the d’Alembert operatan is generally-covariant,

allows us to rewrite the time component of (11) as

(V) +(VVT) o= vVVBBT®=a.  (24)

Eg. (28) does not admit a change in the time coordiygte
because = —Log, /Yoo ando = T behave differently under
achange’® = @(y°). © Thus, Eq. (28) admits only purely spa-
tial coordinate changes, consistently with the preferred-frame

Thus,a must be a 4-divergence by virtue of the equation for
the scalar field. Using now the specific form (6) assumed for——F
the space metric, we have Eq. (19) and get from (4):

—y=p%g=p"*d,

so that, in Cartesian coordinates fgtand withx° = cT,

® We use the fact that, from (4) and (25)=yTg = B~2T5 = T% and
V=YTg =PB~2T) = TY in Cartesian coordinates, so that (30) with (31)
and (32) apply then—but these are space-covariant equations.

6 However, we note also that a mere change in the time Thig; aT, does
not affect the time coordinaté = cT (sincec becomes’ = ¢/a), hence
leaves Eqs. (28) and (30) invariant.

(25)

o = (LogB) , T = —y T

(26)
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character of the theory. (It is recalled &V C how to cope time-independent fields in Egs. (28), (30) and (34).] In New-
with this character, on the example of the effects on light rayston’s theory, in which there is a local conservation for the to-
see at the end of Ref. [3] for the case with celestial mechantal momentum, the global momentum of matter is conserved,
ics.) however. This is because the global value of the gravitational
momentum turns out to beeroin Newton’s theory [24]. (The
physical reason for this is that there is no gravitational radia-
C. Comments on the balance equation for the spatial tion in Newton’s theory.) The fact that, in contrast, the mo-
momentum mentum of matter is in general not conserved in relativistic
theories of gravitation, is related to the generic presence of

Similarly, let us rewrite the spatial component of the equa_self-acceleratmns (or self-forces) in these theories (including

tion of motion of a continuum (11) in terms of the scalar field GR), already mentioned in the Introduction.
(22), using the explicit form (4)-(6) of the metric, and the iden-

tity IV. EQUATIONS OF MOTION AND MATTER
L PRODUCTION FOR A PERFECT FLUID
e ST @

W
el In most applications of a “relativistic” theory of gravita-
o . ) tion, it is enough (and it is indeed usual [14, 20, 21, 29, 30])
(where thel;,'s are the Christoffel symbols of metrig). {5 consider a perfect fluid, becausg:the stress tensor.e.,
Adopting Galilean coordinate$x”) for the flat metricy®  the spatial part of tensdr, has normally a non-spherical part

henceforthwe find after an easy algebra: small enough that the latter does not bring significant post-
Al A 4 N _ Newtonian (PN) corrections; anid the motion of astronomi-
(€T + (eVT0) (- (WiT +yoT?) = yjo. cal bodies can be described as approximately rigid (here also,

(34) itis an even better approximation if one assumes this only at
An identity similar to (27) (withy; instead ofy o) allows  the stage of calculating the Pédrrectiong, in which case a
to get the r.h.s. as a 4-divergence, using the scalar fieldiscosity has no effect. For a perfect fluid, with its well-known
equation (28). Due to the remaining source term on theexpression for tensdr [20], depending on the pressypethe
l.h.s., it is in general not possible to rewrite (34) as a zergroper density of rest mags, the density of elastic energy
flat 4-divergencel.e., there is no local conservation equation per unit rest mas§bl, and the velocityu = dx/dT = Bv, we
for the total (material plus gravitational) momentum in this introduce the field variable

theory.
Y 0= (o Be).
In contrast, in Lagrangian-based relativistic theories of
gravitation, e.g. in GR, there is a local conservation Ia_lw (or o=TO_ [ (14 n +£ ﬁ P (35)
something that looks like that) for ttietal momentum, which = =|P 2 2| P2 c2p?

is the sum of the local momentum afatter and the local ) ) _
(pseudo-)momentur® of the gravitational field (The mean- and rewnte the equatllon of motion (34) and the energy con-
ing of the latter decomposition and of its coordinate depenServation (30) respectively as:
dence is clearer in the teleparallel equivalent of GR [27].) In
some cases, characterized by a sufficient fall-of®adt spa- (eui) L+ (euiuj) Y1 eu —y;eulul
tial infinity, the global value (i.e. the space integral) of the : ) ’ '
total momentum is then conserveti However, this does not W
mean that the global value of the momentunmtteris then =c’yio+e (py;—pi) (36)
conserved: in fact, iprecludesthis, unless the global mo- gng
mentum of the gravitational field is separately constant—but _ 1
this occurs only when the gravitational field is constant, thus  (e~*¥@) | + (e *¥6ul) [=—bro+5 (®p) .. @37
when there is no motion of matter. Therefore, the situation ’ ’ ¢ ’
is not so much different in the investigated theory and in La- As it has been discussed in detail in Ref. [25], the exact
grangian relativistic theories: in both kinds of theories, theenergy conservation of the scalar theory precludes in general
global momentum ofnatteris in general not conserved, un- an exact conservation of (restigass There, it has been shown
less there is just one body in equilibrium—the latter case isthat, already for a perfect amgkntropicfluid, the general form
of course, possible also in the investigated theory. [Assuméll) of the equations of motion for a continuum impliesea
versible creation/destruction of matter in a variable gravita-
tional field Let us notel the 4-velocity, withU* = dy*/ds.
One finds that the rate of creation/destruction is [25]:
7 In f_act, it does _npt seem C(_)mpletely cl_ee_lr what should be_th_e_physically pUO M+ p/p*
motivated conditions ensuring the sufficient dgcrgase at |.nf|.n|t)e‘or F‘)E (p*U H)_p — 72q3/ <1+ 2)
due to the fact that one has to account for gravitational radiation: see e.g. ' 2c c

g
Stephani [28]. (38)

CDE%.

)
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This equation holds true independently of the scalar fieldields must become equivalent to “corresponding” Newtonian
equation and the specific form of the space metric [25]. Withfields. The first condition is easy to be explicited in a scalar

the new form (6) assumed for the space metric, we get: theory, in which the relation betweenand~° depends only
on the scalar gravitational field. Conditigi) asks for two

_ —6@, (39) preliminaries: a) that one disposes of a relevant family of
B Newtoniansystems, for comparison, afl that one is able

o define a natural equivalent of the Newtonian gravitational
ield, i.e, the Newtonian potentidly. (The matter fields
for a perfect fluid are the same in a “relativistic” theory
as in Newtonian gravity (NG), up to slight modifications.)
boint a) is easily fulfilled, once it is recognized [16, 19]
that there is an exact similarity transformation in NG, which
is appropriate to describe the weak-field limit in NG itself
U Bo 14U [16]. This immediately suggests defining the famig) by
P=1- @ F ~ @ (40)  applying the similarity transformation of NG to the initial
data defining a gravitating system in the investigated theory
with U the Newtonian potential, whose time-derivative has to[16, 19]—preferably to that initial data, of a general-enough
be takerin the preferred frameThis, indeed, gives three times nature, which precisely defines the system of interest, S [16].
the former weak-field prediction fqr, namely it gives Of course, to use the Newtonian transformation demands
that pointb) has been solved, which depends on the precise
P~ %?#, (41)  equations of the theory.

which remainextremelysmall in usual conditions (butwould  1he application of these principles to the scalar ether-theory
be significant inside stars): the relative creation rafe has been done in detail for its first version [16]. (See Ref. [17],
would be ca.10"22s! at or near the surface of the Earth, if Sect. 2, for a synopsis and a few complementary points.) The
the “absolute” velocity of the Earth is taken to 8@0kms 1. modifications to be done for the present version are straight-
{See Ref. [25], Sect. 4.3. Note that equal amounts of mas@rward. The definition of the metric (4)-(6) and that of the
would be destroyed and created at opposite positions on tHFalar f"3|g1>J (22) imply that condition) is equivalent to ask-
Earth, Eq. (4.22) therkMass conservation is far to have been "9 thaty™ — 0 asA — 0. Therefore, we may define a di-
checked to this accuracy. Note that matter creation is being'ensionless weak-field parameter simply as

actively investigated in cosmological literature, see e.g. [31- _

36]. If mass non-conservation is to occur in “cosmological” A= Supem W(X) (42)

conditions, it must exist in nature, and so possibly (in minute 4t the initial time, say). Moreover, from the scalar field equa-
not yet observable quantities) in today’s world. tion (28), we see that

which is three times the rate found with the formerly-assumec%
anisotropic space metric [25]. Of course, the actual value
of B andf in a given physical situation may depend on the
theory. However, anticipating over the next Section, we ca
write down the weak-field approximationsf®and its relative
rate as:

V =Y (43)
V. POST-NEWTONIAN APPROXIMATION (PNA)
satisfies the wave equation with the same r.h.s. (in the New-
A. Definition of the asymptotic scheme of PNA tonian limit whereo ~ p) as Poisson’s equation of NG, and
the retardation effects should become negligible in the New-

The purpose of the post-Newtonian approximation is tonian limit. HenceyV is a natural equivalent dfy. Thus,
obtain asymptotic expansionsf the fields as functions of a the l\_le_wtoman_ limit is deflned_ by the same faml_ly of initial
relevant field-strength parametey and to deduce expanded conditions as in the first version [186]’ though with the new
equations (which are much more tractable than the originaf€finition (43) ofV: at the initial time,
equations) by inserting the expansions into the field equa- N (v — 22n(1) *(N) (x) — A n*(1)
tions. To do this in a mathematically meaningful way, it is PO =ATp(x),  pTHO) =ARTE(),  (44)
necessary that one can makéend towards zero, hence one
must (cqnceptually) associate to the given gravi'.cating system () (X) = )\V(1>(x), aTV(A)(x) =A%23;vD (x), (45)

S afamily (S,) of systems,i.e, a family of solution fields

of the system of equations. This family has to be defined______

by a family of boundary conditions—initial conditions for

that matter, because here gravitation propagates with a finite gjnce the given system is assumed to correspond to a smallMgieet,
velocity. The system of interest, S, must itself correspond to the transformation goes first froiy to A = 1, and then from\ = 1 to

a small valuehg of the parameter, thus “justifying” to use the arbitrary value\. This amounts to substituting= A/Ao for A, and
the asymptotic expansions for that value. The definition of P"”: etc., forp'Y, etc. [16]. Moreover, we consider a barotropic fluid:

o .. . . . p* = F(p). Thus, the initial conditions fop and forp* are actually not
the family involves two conditions which make this family indepead)em’ and one must assume E&t(p) — AF® (\~2p) [16]. Note

reprgsem the Newtonian limit: as — 0, i). the ph_ySical that the small paramet@rconsidered in the present paper corresponds to
metricy» must tend towards the flat metri®, andii) the €2, where is that used in Ref. [16].
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Z
UM (x) = VAu (x). (46) (N.P.[r](X,T)G T(X,T)dV(X)/XX), (49)

The systent, is hence defined as the solution of the above

initial-value problemP,. One expects that the solution fields (Vv will denote the Euclidean volume measure on the space
admit expansions in powers df whose dominant terms have M), and that (imposing the same boundary conditionB &s

the same orders ik as the initial conditions. It is then easy those forU)

to check that, by adoptingM], = A[M] and [T}, = [T]/VA

as the new units for the syste8y (where[M] and[T] are °W

the starting units of mass and time)| fields become order Vi=B+ T2’ B=N.P.[o4], (50)
A%, and the small parametev is proportional tol/c? (indeed

A = (co/c)?, wheregy is the velocity of light in the starting  with

units). Thus, the derivation of the 1PN expansions and ex- 7

panded equations is very easy. At the first PNA, one writes W(X,T)=G |X—x|oo(x,T)dV(x)/2. (51)
first-order expansions in this parameter for the independent

fieldsV, p, u:

The mass centers will be defined as barycenteps tife den-

sity of rest-mass in the preferred frame and with respect to the
V =Vo+Vi/2+0(c¥), p= po+ p1/E+0(c?), Euclidean volume measuké[17]. It is related to the proper

rest-mass density* by Lorentz and gravitational contraction

[24], so thatp = p*w,,/G//d°, hence from (19):
U=Up+us/c>+0O(c™™, (47)

x 3
and one deduces expansions for the other fields. (Of course, P=pP"w/B" (52)
al f'?IdS dgpend on the small parame]&eﬂ 1/c2) In these Using this and the definitions (28nd (35), and since we
varying units, we hav& = AY/2Ty whereTy is the “true” time, have from (49):

i.e, that measured in fixed units. Henc€& = ¢ Ty is propor- '

tional to the true time. But since the true velocities in system v /2 _

S, vary like A2 [Eq. (46)], itisT, notcT O Ty, which re- B=eV/"=1-U/+0(c), (33)
mains nearly the same, asis varied, for one orbital period

of a given body in the Newtonian limit. Therefore, in this W€ 9€t:

limit, thus for PN expansions, one must tak& = T as the

time variable, in the varying units utilized for the expansions. Po = Po =00 = 8o (54)
This means that, in these units, the expansions are first of all

valid at fixed values ot andT; and one can differentiate them and

with respect to these variables, because it is reasonable to ex- 2

pect that the expansions are uniformxirtaken in the “near P1 = P} +Po (uo +3U) , (55)
zone” occupied by the gravitating system, andTitaken in 2

an interval where the system remains quasi-periodic [16].

2
ug
B. Main expansions and expanded equations 01 =P1+Po (2 -U+ no) ; (56)

Inserting (47) into the scalar field equation (28) and ac-
counting for the fact that the time variablex8 = T (in the u2
varying units utilized), yields after powers identification: 81 =01+ po+4poU = p1+pPo (20 +3U + rlo) +po. (57)

Mo = —4TGog,  AVi = —4TGo; + 02V,  (48)

whereo = g +01/¢? +O(c™#) is the 1PN expansion of the  The expansion of the equation of motion (36) and the en-
active mass density. Thus, the retardation effect disappears Hgy equation (37) gives, at the order zero:

the PN expansions. (However, the “propagating” (hyperbolic)
character of the gravitational equations is maintained through

i ot — el .
the fact that an initial-value problem is considered.) From O (Pollo) +9j (Pollotp) = PoU — Posi (58)
(48) with appropriate boundary conditiond & O(1/r) and
gradJ = O(1/r?) asr — ) [16], it follows thatU = V; is the 4
Newtonian potential associated witlg: 010+ 0 (Pouy) =0, (59)

which are just the Newtonian equations. The expanded equa-
U =V = N.P.[00] tions of the order one if/c? are:
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A (Pouy + B1Ub) + 0 (Poubul + pouli Ul + B1uhul) — po(UbdTU + Uil =
= 01U+ poVi + poU; —2U poj — P1,i (60)

. . u
0t (Wo+ p1) +0j[(Wo + Po+ p1)Uy+ pouj] = —podtU,  Wo= po(7° +Mp—U). (61)

Combining (58), the continuity equation (59), and the 0-order transform, relative tey® [37]; hence the/w 's depend

expansion of the isentropy equation: only on the fieldB (not any more on its derivatives, as
was the case with the former version), and on the veloc-
dMo = —pod(1/po), (62) ity V.

one gets in a standard way the Newtonian energy equation:
e ii) Inserting the expansion (53) @ one gets the PN

dTWo + 0;[(Wo + Po)ud] = —podTU. (63) expansion of thef,, 's. The PN expansion ofy, is
enough to compute the gravitational redshift. It is still
Subtracting (63) from (61) gives us Yoo = 1—2Uc ?+O(c™*) with U the Newtonian po-
: . tential: this holds true in the present version (in partic-
011+ 0j(P1ul+ pouy) =0, (64) ular, Eq. (52) of Ref. [37] holds true). To get the other

) ) ) two effects of gravitation on light rays, namely the de-
first PNA of the scalar theory, also in this second version. PN expansion of all component,. One finds eas-

ily that, as before [37]y; = O(c™3) (in factyy =0
for i = 2 and3, now); suchyy = O(c~3) component(s)
have (has) no influence on the PN equation of motion of

- , . a photon (see the equation after Eq. (9.2.4) in Weinberg
The effects of a gravitational field on an electromagnetic [29], and see Egs. (9.1.16), (9.1.19) and (9.1.21) there).

ray, seen as a “photon” (a test particle with zero rest-mass), And one finds thay/; = —(1+2Uc 2); + O(c 2).
represent the most practically-important modification to NG. Thus. in the new velrjsion of the scalar eJther—theory the
In this theory, they can be obtained by applying the extension  p equation of motion of a photon coincides with the
(9) of Newton's second law, in whicko = 0 ar.]d the mass PN geodesic equation of motion of a photon in the so-
content of the energ¥ = hv has to be substituted for the called [14] “standard PN metric” of GR, and this is true
inertial massm(v). In the new version of the scalar theory, also in the relevant framgy. In particulyar in the SSS
things go in close parallel with the former version, based on  .5qe ‘the formulas for the PN effects on photons are the
an anisotropic space contraction [4, 37]: same as those derived from the (space-)isotropic form
e i) The main step is the recognition [37] that the PN of Schwarzschild’s metric—or also from the harmonic
equation of motion for a photon, obtained thus, co- form of the Schwarzschild metric (which is the SSS so-
incides with the PN expansion of the geodesic equa- lution of the RTG [38]), since its PN approximation is
tion for a light-like particle in the space-time metri¢ space-isotropic [20] and coincides with the PN approx-
because th€8j _ %glkaogkj Christoffel symbols ofy |mat|tor|1 of th]? ISOt(;Ot?IC ftc))rm. Tthese ;ir4ed|ct|ons are ac-
areO(c-2) and ther’j(k’ _ %Woaogjk areO(c-%) (with curately confirmed by observations [14].

X0 =T as the time coordinate). This holds true in the
present version based on Eq. (6) for the space metric,
because the same expansion [Eq. (53) above] applies as
in the former version. Therefore, to compute the effects
of a weak gravitational field on light rays, one has to
study the PN expansion ef in the relevant reference
frame: that framésy, which moves with the velocity As already mentioned, the mass centers are defined [17]
in the preferred frame, assumed constant and small ass local barycenters of the density of rest-mass in the pre-
compared witte, of the mass-center of the gravitating ferred frame,p or ratherpexacs Eq. (52). (Henceforth, the
system. In coordinategc*) that are Galilean for the index O will be omitted for the zero-order (Newtonian) quan-
flat metricy© and adapted to the fran&,, the compo- tities, for conciseness; therefore, the exact quantities, when
nentsy,, of v are deduced from its components in the needed, are denoted by the index “exact.”) Integrating Eqg.
preferred frame (Egs. (4) and (6)) by a special Lorentz60) in the (time-dependent) domdiy occupied by bodya)

C. Application: gravitational effects on light rays

VI. PN EQUATIONS OF MOTION OF THE MASS
CENTERS
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(a=1,...,N) in the preferred frame E gives is a small parametdy. We have to expand &— 0 the in-
q 7 7 tegrals (69), (70), and (71), for the small bodg. a= 1.
v U+ 0,u)dV ) = fidv, 65 (As to. the zero-order (Newtonian) gcceleration of t.he s_,mall
dT < Da(p 1+ 6 ) A ! (65) body, it tends towards the acceleration of a test particle in the

Newtonian fieldU (@ of the other bodies [15], as expected.)

To do that, we use the simplifying assumption according to
i _ o ) i 21 which the Newtonian motion of the small body isigid mo-

f1=(01+ P +pVii —2Upi+p(UorU +uU). (66)  yon " calculations are very similar to those [15] with the

Accounting for Eq. (57) and for Eq. (3.21) of Ref. [17], we previous version, though simpler for e integral; hence,
get: we shall be concise.

with

Mg & + 1% = J¥ 4+ K2, (67)
A. The general case
which is Eq. (4.9) of Ref. [17], and with, as there,
z z The modification of the calculations in Ref. [15], Sect. 3,
M= pudv, Mla;=  pixdV(x), (68) isimmediate fol® andK?&. We get [reserving henceforth the
Da Da lettera for the first, small body (for whicka = 1 in fact) and

but with modified definitions of? J& andKa using the letteb for the other, massive bodies]:
- Z . a_ (jaiy — Mm.[152 @ (g)]2 4
Da
z K§=0(&), (74)
Ja = (01U +pVy,)dv, (70)
a . — Mp(a—Db).b
and 3= oM 5 Mol@a=D)b ot  (75)
7 b£a |a_b|
K&¥=  [-2Up;+ pU; + pu'dTU + puU,|dV
O K& = Ma220U® (a) + O(E%). (76)

Z
= [3pUj+puidrU 4 puU;]dV = K& + K& + K. (71)

a

As to the integrall?, it has the same expression as before
[17], but the PN correctiom; to the active mass density is
Together with the Newtonian equation, Eq. (67) allows inNoW given by Eq. (56). Tatiwerefore, the expansion (3.27) of
principle to calculate the 1PN motion of the mass centers: duef. [15] remains valid fod™, but we have now:
to Eq. (3.15) of Ref. [17], the 1PN acceleration of the mass 1 1.0 @ c
center of body(a) is given by Ga= 01dV =Mz +Ma[38" —U¥(a)];r—0+ O(&>),
a

77

ML(a; — &) (77)

A=34 =4
L =at —au.

72 .
72 ME = Ma (382 + 30 (@) o+OE),  (78)
in which M4 anda are the Newtonian mass and acceleration.
Equation (67) may be made tractable for celestial mechanics,, _ i —walial A 4
as was done in Ref. [18] for the former version of the theory, Baj = D, G1(X)(X —a)dV(x) =Ma(a, —a’) + O(&"). (79)
by taking benefit of:a) the good separation between bodies, _ _

andb) the fact that the main celestial bodies are nearly spheriBesideaa andBaj, Eq. (3.27) of Ref. [15] involves also all
cal. This is left to a future work. Here, we will study the point- those multipoles of the densitigsando; that correspond to
particle limit of this equation and will show that the deadly theotherbodies. . . .

violation of the WEP for a small body, which was found with Since all of these equations contain the (Newtonian) rivss

the former version of the theory [15], does not exist any more2s @ common factor, it follows that the 1PN accelera#ién
with the new version. of the (mass center of the) small bo@), Egs. (67) and (72),

does not depend on its makk,. It then also follows from
these equations (including Eq. (3.27) of Ref. [15]) that, ne-
VIl. POINT-PARTICLE LIMIT AND THE WEP glectingO(&) terms inA2, it depends only:

e on the current Newtonian positions and velocities of all

In order to define that limit rigorously and generally, we bodies:a.b. a.b:

consider (as in Ref. [15]) a family of 1PN systems, that are
identical up to the size of the body numbered (1): this size e on all current 1PN positionsy), b y);
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¢ on the Newtonian massé#, of theotherbodies and on  beside the small bodfd), there is just one massive bod),
their Newtonian potentidll (@ (the “external” potential whose mass center stays fixed at the origin in the preferred
for (a)); frame, and whose Newtonian densjiyis spherically sym-

_ _ metric.® We note
e and still, through the external multipoles pfand oy,

on the structure of thetherbodies. m=M;, M=M, X=a V=X

Thus, the 1PN acceleration of a freely-falling small body is
independent of its mass, structure, and composition, in other

words the WEP is satisfied at the 1PN approximation with r=Ix|, n=x/r, x1= cz(a(l) —a). (80)
the new version of the scalar theonn contrast with what
happened with the former version [15]. Adapting Sect. 4 of Ref. [15], we find without difficulty:
. GM[/v? _GM
B. Comparison with a test particle in the case with one SSS It= —M—- [(2 + 3> n +4(v.n)v] , (81)
massive body r r

Since the WEP is satisfied, it seems obvious that the 1PN z 17 1 z
acceleration of a small body should be equal, at the point- M= o1dV = "¢, e==  puav, (82)
particle limit € — 0), to that of a test particle—and this in D2 3 2 o,

the general case. We check this in the particular case where,

% Strictly speaking, body (2) is gravitationally influenced by the small body, (Ref. [15], Sect. 2), so that we may forget this influence for the present
hence it cannot stay exactly at rest in the preferred frame. However, the PN purpose.
acceleration of the massive body (2), due to the small body (1)(3)

GM GM GM 17¢ 1
1 2 —
K= —mci—lzvlvzn. (84)

Inserting these values into Eq. (67) and putting the result into (72), we get the equation for the 1PN cotidotibe position
of the mass center of the small body:

. GM >, GM 17¢ X1.n X1
X1:r2|:(—V +4r—3M+3r>n+4(V'n)V_r : (85)

On the other hand, as recalled in Subsect. Il B, the equation afith r, the radius of the spherical body (2), and with
motion of a test particle in the scalar theory coincides, in the

present static case, with the geodesic equation in the relevant z &M
metric—thus, here, the metric (4)-(6), specialized to the SSS M = OexacdV =M+ — +O(c‘4), (87)
case, for which we get from (28) and (22): D> c
eIV 4 .
B(T,X)=e &r, (R=|X]|>r2), (86) thusin Cartesian coordinatéX') for the Euclidean metrig®:
|
GM GM\? N GM 4 o

which is the SSS form of the standard PN metric of GR. The corresponding (complete) equation of motion is given by Weinbel
[29] (Eq. (9.5.3) with here =0, { =0, andgp= —GM’/r(l)). In our notation, this is

. G™ 1 GM
X(1) = r(21> {—n<1> + 2 |:(—V<21) +4 n ) N() +4(v(1).n(1))v(1)] }, (89)
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with

X(l) = X+X1/C2, r(l) = ’X(]_) s n(l) = X(l)/l'(l), V(l) = X(l) (90)

Now, writing (1), Ny andv,y) as first-order expansions in the weak equivalence principle (WEP), which has been found

¢ 2, and then inserting (90) and (87) into (89), one finds easilyfo occur for extended bodies at the point-particle limit [15].
that the latter decomposes into an equation for the order dn the present paper, a new version of the theory, based on
which is the Newtonian equaticn= *GTQ/I”' and an equation @ locally isotropic contraction, has been fully constructed.
for the order 1 inc—2, which is exactly Eq. (85). This proves It has peen shown th"’}t the new version also explams the
that indeed, the 1PN acceleration of a small body is equal, Egrawtatlonal effects on light rays (Subsect. V C). Being based

the point-particle limit, to that of a test particle— at least in ON the same dynamics as the former version, and being also
the SSS case. based on a wave equation for the scalar gravitational field, it

should lead, as did the former version [4], to a “quadrupole

formula” similar to that used in GR to analyse the data of
VIIl. CONCLUSION binary pglsa_rs_[41]. Moreover, because the _metric in the new

version is similar to the “standard PN metric” of GR while

The investigated theory starts from a heuristic interpre_the local equations of motion are also similar to those of GR,

tation [22] of gravity as the pressure force exerted on th the celestial mechanics of that theory should improve over
gravity pre . ) N ewtonian celestial mechanic®. These two points will have
elementary particles by an universal fluid or “constitutive

ether” [26], of which these particles themselves would beto be checked in a future work.

just I.ocal organizations. 'ThIS leads naturally to assuming that It has been proved here that the present new version of the
gravity affects the physical standards of space and time, b

; ; X eory solves completely the problem with the WEP, that oc-
an analogy with the effects of a uniform motion that are at the ; . L
i o . - curred at the first post-Newtonian approximation in the for-
basis of Lorentz-Poincar(special) relativity [22]. However, : S
. : : ; o : mer version (Sect. VII). When that (deadly) WEP violation
the contraction of physical objects in a gravitational field, a

it appears in terms of the “unaffected” Euclidean metric maS«haOI been found, it had been argued [15] that the reason for
app . L » MY \vas the dependence of the PN spatial metric on the spatial
either occur in one direction only [24], as for the Lorentz

contraction, or else [22, 39, 40] it may affect all (infinitesimal) derivatives of the Newtonian potentidl By switching to an

R ! : isotropic space metric, whose PN form depend&/dout not
directions equally. The first version of the theory was based . s . o
AL . n its derivatives, we indeed suppressed the WEP violation in
on a unidirectional contraction, and passed a humber of tes

. . L . . e present new version.
LC)’, 4], but it has been discarded by a significant violation of P
Of course, the theory is not equivalent to GR, e.g. there is not the Lense- 6 asymptotic PN scheme that we use, the same type of rotation effect is
Thirring effect in the usual sense [37]. However, rotation of a massive present also in GR [42].
body does have dynamical effects in this theory, including effects on that
body’s own acceleration (as already in the first version [18]). According to
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