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Space Isotropy and Weak Equivalence Principle in a Scalar Theory of Gravity
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We consider a preferred-frame bimetric theory in which the scalar gravitational field both influences the metric
and has direct dynamical effects. A modified version (“v2”) is built, by assuming now a locally-isotropic dilation
of physically measured distances, as compared with distances evaluated with the Euclidean space metric. The
dynamical equations stay unchanged: they are based on a consistent formulation of Newton’s second law in
a curved space-time. To obtain a local conservation equation for energy with the new metric, the equation
for the scalar field is modified: now its l.h.s. is the flat wave operator. Fluid dynamics is formulated and the
asymptotic scheme of post-Newtonian approximation is adapted to v2. The latter also explains the gravitational
effects on light rays, as did the former version (v1). The violation of the weak equivalence principle found for
gravitationally-active bodies at the point-particle limit, which discarded v1, is proved to not exist in v2. Thus
that violation was indeed due to the anisotropy of the space metric assumed in v1.
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I. INTRODUCTION

The universality of gravitation,i.e., the fact that “all bod-
ies fall in the same way in a gravitational field,” is a distinc-
tive feature of the gravity interaction. It is also known as the
“weak equivalence principle” (WEP), the equivalence being
between the gravitational and inertial effects: indeed, the fact
that the gravitational acceleration of a small body is the same
independently of its composition and its mass, allows to incor-
porate in it the acceleration due to the motion of the arbitrary
reference frame through an inertial frame. Following Galileo,
Newton, and Ëotvös, the empirical validity of the WEP has
been checked with increasing precisions [1]. Therefore, the
WEP is involved in the very construction of relativistic the-
ories of gravitation, in particular in the construction of Ein-
stein’s general relativity (GR), which takes benefit of the uni-
versality of gravity to geometrize it. More precisely, in the
construction of a relativistic theory, one ensures the validity
of the WEP fortest particles, which, by definition, do not in-
fluence the gravitational field. The geometrization operated
by GR is one way to do this. Another way is to formulate
the dynamics by an extension of Newton’s second law, the
gravitational force beingmg with m the (velocity-dependent)
inertial mass andg a (theory-dependent) gravity acceleration
[2]. We would like to emphasize that Einstein’s geometrized
dynamics, in which test particles follow geodesic lines of the
space-time metric,can be rewritten in that way[2].

A theory of gravitation has been built, in which one starts
from a simple form for the fieldg, suggested by a heuristic in-
terpretation of gravity as Archimedes’ thrust due to the space
variation of the “ether pressure”pe, and in whichpe also de-
termines the space-time metric. One obtains a scalar bimetric
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theory with a preferred reference frame. This theory is sum-
marized in Ref. [3], or in more detail in Ref. [4]. It admits
a “physically observable preferred foliation” [5], in short a
detectable ether. Yet, apart from the WEP violation to be dis-
cussed below, it seems to agree with observations [3, 4]. In
particular, the ether of that theory could be indeed detected
by adjusting on astrodynamical observations the equations of
celestial mechanics that are valid in the theory [3]. One of
the motivations to investigate a preferred-frame theory is that
the existence of a preferred reference frame, involving that of
a preferred time, may be regarded as a possible way to make
quantum theory and gravitation theory match together [3]. It
is interesting to note that, currently, a detectable ether is ad-
vocated already in the absence of gravitation by Selleri, in the
framework of a theory close to special relativity, but based on
an absolute simultaneity [6].

As we mentioned, the WEP is valid for any test particle, by
construction—in the investigated scalar theory just as well as
in GR. But any real body, however small it may be, must influ-
ence the gravitational field, so that one cana priori expect the
occurrence of self-accelerations. The latter ones are excluded
from Newton’s theory by the actio-reactio principle, but this
principle cannot even be formulated in a nonlinear theory—
as are most relativistic theories. Moreover, the mass-energy
equivalence, which has to be accounted for by a relativistic
theory, implies that the rest-mass, kinetic, and gravitational
energies of the test body all influence the gravitational field.
This means that the internal structure of the test body maya
priori be expected to influence its motion, which would be
a violation of the WEP.Hence, the validity of the WEP for
test particles is far from ensuring that this principle applies
to real bodies. In GR, studies of the self-force acting on an
extended body can be found, e.g. [7–10], but they have been
based on simplifying assumptions such as that of a black-hole
body [7, 8, 10], or on linearized GR [9]. Such assumptions do
not seem very appropriate to check whether a violation of the
WEP might be predicted by GR in the real world, say for an
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asteroid or a spacecraft in the solar system. It is well-known,
since the work of Nordtvedt [11, 12], that the WEP may be
violated for extended bodies of a finite mass in some relativis-
tic theories of gravity (see also Will [13, 14]). However, the
kind of violation of the WEP which we have in mind is a more
severe one, that occurs even in the limit in which the size of
the extended body shrinks to zero [15].

In the above-mentioned scalar theory [4], it has been
proposed a rigorous framework for the study of weakly-
gravitating systems [16], in conformity with the asymptotic
approximation schemes which are currently used in applied
mathematics, and this scheme has been developed up to the
equations of motion of the mass centers of perfect-fluid bod-
ies [17, 18]. This “asymptotic” scheme of post-Newtonian
approximation (PNA) is based on a one-parameter family of
initial conditions, defining a family of gravitating systems.1

It is hence different from the “standard” PNA proposed for
GR by Fock [20] and Chandrasekhar [21], which is at the ba-
sis of a significant part of the subsequent work on relativis-
tic celestial mechanics in GR, and in which no such family
is considered. The asymptotic PNA predicts that the internal
structure of the bodies definitely influences their motion in a
weakly-gravitating system such as our solar system, at least
for the scalar theory [18]. Moreover, by considering a family
of PN systems which are identical but for the size of one of
the bodies, which is a small parameterξ, it has been possi-
ble to make a rigorous study of the point-particle limit. It has
thus been found [15] that the internal structure of a body does
influence its post-Newtonian acceleration even at the point-
particle limit. It has also been investigated the particular case
where, apart from the small body, there is just one massive
body, which is static and spherically symmetric (SSS). In that
case, the PN equation of motion of the mass center of the small
body is identical to the PN equation of motion of a test parti-
cle in the corresponding SSS field,apart from one structure-
dependent term. These results show a patent violation of the
WEP, and one whose magnitude is likely to discard the ini-
tial version of the theory [15]. The specific reason which
makes the WEP violation actually occur in the point-particle
limit of the PN equations of motion has been identified: it
is the anisotropy of the space metric (in the preferred refer-
ence frame of the theory). More precisely, it was assumed
that there is a gravitational contraction of physical objects,
only in the direction of the gravity accelerationg (see Ref.
[22] and references therein), thus making the PN spatial met-
ric depend on the derivativesU,i of the Newtonian potential
U . The structure-dependence (hence the non-uniqueness) of
the point-particle limit comes then [15] from the fact that the
self part of the second derivativesU,i, j is order zero inξ. 2

1 A scheme similar to our “asymptotic” scheme has been previously pro-
posed for GR by Futamase & Schutz [19], though it is based on a partic-
ular initial condition as to the space metric and its time derivative, which
enforces the spatial isotropy of the metric. In any case, the work [19] is re-
stricted to the local equations, and this in a form which is not very explicit.

2 The PN spatial metric valid for the standard form of Schwarzschild’s met-
ric of GR also depends on the derivativesU,i (with specificallyU = GM/r

Therefore, it has been began [22] to investigate the case
where one assumes a locallyisotropic gravitational contrac-
tion, which case is nearly as natural as the anisotropic case
according to the heuristic concept that led to the scalar theory,
i.e., gravity seen as due to the heterogeneity of the field of
“ether pressure”pe. It has been shown that there is some free-
dom left for the equation governing the fieldpe. The aim of the
present paperis to propose a definite equation for the scalar
gravitational field, leading to an exact local conservation law
for the total (material plus gravitational) energy; to investigate
the main features of this new version of the theory; and to
show that it does eliminate the WEP violation which has been
found with the former version. The next Section summarizes
the basic concepts of the theory, which remain true for the
new version to be built in this paper. Section III precises the
equation for the scalar field, in connection with the necessity
of obtaining an exact energy conservation. The equations of
motion of a perfect fluid are obtained in Sect. IV. Section V
is devoted to the post-Newtonian approximation and shows,
in particular, that this theory predicts the same effects on light
rays as the standard effects known in GR. The PN equations
of motion of the mass centers are derived in Sect. VI. The
point-particle limit is taken in Sect. VII, and our conclusion
makes Sect. VIII.

II. BASIC CONCEPTS

The idea according to which gravity would be Archimedes’
thrust due to the macroscopic part of the pressure gradient in
a fluid “ether,” and the necessity to account for special relativ-
ity, lead to set a few basic assumptions [22], which we state
directly here.

A. The preferred reference frame and the metric

The space-time manifold V is assumed to be the product
R×M, whereM is the preferred reference body, which plays
the role of Newton’s absolute space. The equations of the
theory are primarily written in the preferred reference frame
E associated with that body.3 Specifically, it is assumed

in the case of Schwarzschild’s metric). Hence, the dependence of the
spatial metric on theU,i ’s should be found for general situations with
“Schwarzschild-like” gauges, i.e., with gauge conditions under which the
standard form of Schwarzschild’s metric is the unique SSS solution of the
Einstein equations with Newtonian behaviour at spatial infinity. (It is not
difficult to exhibit such gauges.) One may then ask [15] whether a similar
violation of the WEP might appear also in GR, in such Schwarzschild-like
gauges. This would be more difficult to check, due to the greater complex-
ity of GR as compared with the present scalar theory, in particular due to
the necessity of satisfying constraint equations.

3 A reference frame is for us essentially a (three-dimensional) reference
body, plus a notion of time. Let us begin with the viewpoint of “space
plus time,” which is admissible once we take the space-time to be a prod-
uct,V = R×M —the “time” T of an eventX = (T,x) ∈ V being thus the
canonical projection ofX into R. From this viewpoint, a general reference
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that the preferred reference body M is endowed with a time-
invariant Euclidean metricg0, with respect to which M is thus
a rigid body, which is assumed to fill the Euclidean space.
On the “time” component of the space-time, we have the one-
dimensional Euclidean metric. Combining these metrics on
the component spaces, we get a Lorentzian metric: the square
scalar product of an arbitrary 4-vectorU = (U0,u), with u an
arbitrary spatial vector (i.e., formally, an element of the tan-
gent spaceTMx to M at somex ∈M), is

γ0(U,U) = (U0)2−g0(u,u). (1)

This is the “background metric,” which should determine the
proper time along a trajectory, if it were not for the metrical
effects of gravity. For this to be true, it is necessary that the
canonical projection of an eventX ∈ V gives in factx0 ≡ cT,
rather thanT, whereT is indeed a time (called the “absolute
time”) andc is a constant—the velocity of light, as measured
with “physical” space and time standards. If on M we take
Cartesian coordinates(xi) for g0, then the space-time coor-
dinates(xµ) = (x0,(xi)) are Galilean coordinates forγ0 [i.e.,
in that coordinates,(γ0

µν) = diag(1,−1,−1,−1)], which are
adapted to the preferred frame E. The gravitational field is
a scalar fieldpe, the “ether pressure,” which determines the
field of “ether density”ρe from the barotropic relationship
ρe = ρe(pe). Gravity has metrical effects which occur through
the ratio

β(T,x)≡ ρe(T,x)/ρ∞
e (T)≤ 1, (2)

with

ρ∞
e (T)≡ Supx∈Mρe(T,x). (3)

More precisely, the “physical” space-time metricγ, that one
which more directly expresses space and time measurements,
is related to the background metricγ0 by a dilation of time
standards and a contraction of physical objects, both in the
ratio β. Thus, in any coordinates(yµ) which are adapted to
the frame E and such thaty0 = x0 ≡ cT, the line element ofγ
writes

ds2 = γµνdyµdyν = β2(dy0)2−gi j dyidy j , (4)

frame can be defined as a time-dependent diffeomorphismψT of the space
M onto itself. Consider the trajectoriesT 7→ψT(x), each for a fixedx∈M.
As x varies inM, the set of these trajectories defines a deformable body
N, which is uniquely associated with the reference frame(ψT)T∈R. Thus,
x′ = ψT(x) describes the motion of N relative to M. For a generalψT ,
this body N will indeed be deformed. The most obvious reference frame
is yet that one which is associated with M itself, thus:∀T, ψT = IdM .
This is our preferred frame denoted by E. From the viewpoint of “space-
time,” which is more general and which is hence also admissible in an
ether theory, a reference frame is defined by a three-dimensional congru-
ence of world lines, which defines a “body” (as we say) or “reference fluid”
[23]. Thus the trajectories of the “space plus time” description are replaced
by world lines: s 7→ X(s). Among systems of space-time coordinates:
X 7→ χµ(X) = yµ (µ= 0, ...,3), coordinate systemsadaptedto a given refer-
ence frame are such that each world lineX(s) belonging to the correspond-
ing body has constant space coordinates:∀s, χi(X(s)) = yi = Constant
(i = 1,2,3).

whereg is the physical space metric in the frame E. This
equation implies that the scalarβ can be more operationally
defined as

β≡ (γ00)1/2 (5)

(in any coordinates(yµ) adapted to the frame E, and such that
y0 = cT). Metricg is related to the Euclidean metricg0 by the
assumed gravitational contraction of objects, including space
standards—hence the dilation of measured distances. This ef-
fect was formerly assumed to occur only in the direction of
gradρe (see e.g. Ref. [4]), but it is now assumed isotropic.
This means that the following relation is now assumed [22]
between the spatial metricsg0 andg:

g = β−2g0. (6)

B. Dynamical equations

In addition to its metrical effects, the gravitational fieldpe
has also direct dynamical effects, namely it produces a gravity
acceleration

g≡−gradg pe

ρe
. (7)

[The indexg means that the gradient operator refers to the
physical, Riemannian metricg, i.e., (gradgφ)(x) is a spatial
vector (an element of TMx) with components(gradgφ)i =
gi j φ, j .] We shall soon assume that thepe-ρe relationship is
simply pe = c2ρe. In that case, we get from (2):

g =−c2 gradg β
β

. (8)

Equation (7) is a fundamental one according to the concept
of the theory. However, to use this “gravity acceleration,” we
must define the dynamics by an extension of Newton’s second
law, as announced in the Introduction. This has been done in
detail in Refs. [2, 24, 25] (see Ref. [4] for a summary).The
dynamical equations stay unchanged in the new version of the
theory. Therefore, only a synopsis of that alternative dynam-
ics will be given here. Dynamics of a test particle is governed
by a “relativistic” extension of Newton’s second law:

F0 +m(v)g =
DP
Dtx

, (9)

whereF0 is the non-gravitational (e.g.electromagnetic) force,
v ≡ dx/dtx the velocity andv≡ g(v,v)1/2 its modulus, both
being measured by physical clocks and rods of observers
bound to the preferred frame E;m(v) ≡ m(0)γv is the rel-
ativistic mass (γv ≡ (1− v2/c2)−1/2 is the Lorentz factor);
P≡m(v)v is the momentum;tx is the “local time” inE, mea-
sured by a clock at the fixed pointx in the frameE, that mo-
mentarily coincides with the position of the test particle: from
(4), we have

dtx/dT = β(T,x); (10)
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andDw/Dξ is the appropriate “time-”derivative of a vector
w(ξ) in a manifold M endowed with a “time-”dependent
metricgξ [2, 24]. In the static case (β,0 = 0) with F0 = 0, that
dynamics implies Einstein’s motion along geodesics of the
curved space-time metricγ (see Ref. [2]).4

Dynamics is also defined for continuous media. For adust,
we may apply (9) pointwise and this implies [25] the follow-
ing equation:

Tν
µ;ν = bµ, (11)

whereT is the energy-momentum tensor of matter and non-
gravitational fields, and wherebµ is defined by

b0(T)≡ 1
2

g jk,0T jk, bi(T)≡−1
2

gik,0T0k. (12)

(Indices are raised and lowered with metricγ, unless men-
tioned otherwise. Semicolon means covariant differentiation
using the Christoffel connection associated with metricγ.
Note that in GR, in contrast, we havebµ = 0 in (11).) The uni-
versality of gravity means that Eq. (11) with definition (12)
must remain true for any material medium.Thus, the dynam-
ics of a test particle, as well as the dynamical field equation
for a continuous medium, exactly obey the WEP, just as it is
the case in GR.Equations (11)-(12) are valid in any coordi-
nates(yµ) which are adapted to the frame E and such that
y0 = φ(T) for some functionφ.

III. SCALAR FIELD EQUATION AND ENERGY
CONSERVATION

A. Semi-heuristic constraints on the scalar field equation

Equation (7) for the gravity acceleration expresses the idea
according to which gravity would be Archimedes’ thrust in
Romani’s “constitutive ether” [26],i.e. a space-filling perfect
fluid, of which any matter particle should be a mere local
organization. The equation for the fieldpe in (7) should fulfil
the following conditions [22]:
i) Newton’s gravity, because it propagates instantaneously,
should correspond to the limiting case of an incompressible
ether (ρe = Constant).
ii ) In the real case, the ether should have a compressibil-
ity K = 1/c2, so that the velocity of the pressure waves,
ce ≡ (dpe/dρe)1/2 (beyond which velocity the material
particles, seen as flows in the universal fluid, should be
destroyed by shock waves), coincide with the relativistic

4 β being defined by Eq. (5), postulating Eq. (8) for vectorg is equivalent,
under natural requirements, to asking geodesic motion in the static case
[2]. On the other hand, if one adds to the r.h.s. of Eq. (8) a complementary
term involving the velocity of the test particle and the time-variation of the
space metric, then Eq. (9) implies geodesic motion in the general case,
thus one deduces Einstein’s geodesic motion from a relativistic extension
of Newton’s second law [2].

upper limitc. (This constraint leads tope = c2ρe, as assumed
in advance for Eq. (8).) Thus, in the real case, the equation
for pe should be a kind of nonlinear wave equation, the
nonlinearity arising from the fact that the physical space-time
metricγ is determined by the fieldpe itself. It is indeed the
physical metric, not the background metric, which is directly
relevant here, because the relativistic upper limitc applies to
velocities measured with the local, physical instruments.

We note that, from Eqs. (4) and (6), the physical met-
ric γ is nearly equal to the given Galilean metricγ0 if and
only if β ≈ 1, which, by the definition (2), means a quasi-
incompressible flow,ρe≈Constantif moreover we consider a
“non-cosmological time scale” so thatρ∞

e ≈Constant. (Due to
Eq. (8), it also implies that the gravitational field is weak,i.e.
the gravity acceleration is “small.”) Thus, in the limitβ → 1
with ρ∞

e ≈ Constant, the nonlinearity of the wave equation
must evanesce while simultaneously the ether compressibility
becomes very small and the metric becomes close to Galilean.
Now Newton’s gravity does correspond to a Galilean metric
and is characterized by Poisson’s equation for the fieldg:

divg0 g =−4πGρ, (13)

with G the gravitational constant andρ the Newtonian mass
density. Hence, for an incompressible ether (ρe = Constant),
in which the gravity acceleration is defined by Eq. (7) with
g = g0, Newton’s gravity is exactly equivalent to the follow-
ing equation for the “ether pressure”pe:

∆g0 pe = 4πGρρe. (14)

Therefore, the conditionsi) andii ) suggest to admit that the
equation for the fieldpe has the form [22]

∆g pe+(time derivatives) = 4πGσρeF(β), (15)

F(β)→ 1 asβ→ 1, (16)

the “time derivatives” term being such that, in the appropri-
ate (“post-Minkowskian”) limit [4], involving the condition
β → 1, the operator on the l.h.s. becomes equivalent to the
usual (d’Alembert) wave operator. On the r.h.s. of (15),σ
denotes the relevant mass-energy density, which shall have to
be defined in terms of the energy-momentum tensorT (that
we take in mass units), and which will reduce to the New-
tonian (rest-mass) densityρ in the nonrelativistic limit. It is
worth noting that the equation assumed [4] for the previous
(anisotropic-metric) version of the theory is indeed a special
case of Eq. (15) [22]. Let us thus start from (15) and (16), or
equivalently from (16) and

∆g ρe+(time derivatives) =
4πG
c2 σρeF(β). (17)

B. The equation for the scalar gravitational field and the
energy equation

As we mentioned, the physical metric is directly relevant
to translate the heuristic considerations on the “gravitational
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ether” into restrictions imposed on the field equation. How-
ever, the latter would obviously be more tractable if it could
be rewritten in terms of the flat background metric. Let us try
to impose this condition. To this aim, we evaluate the spatial
term∆g ρe on the l.h.s. of (17). From the definition

∆g φ≡ divg(gradgφ) =
1√
g

(√
ggi j φ, j

)
,i

(
g≡ det(gi j ), (gi j )≡ (gi j )−1) , (18)

and since, by (6), we have

g = β−6g0 (
g0 ≡ det(g0

i j )
)
, (19)

it follows that, in Cartesian coordinates forg0, it holds

∆g ρe = β3
(

ρe,i

β

)

,i
. (20)

Accounting for the definition ofβ from ρe (Eq. (2)), we get:

∆g ρe = ρ∞
e β3

(
β,i

β

)

,i
= ρ∞

e β3 ∆g0 (Logβ) . (21)

Hence, if the sought-for finalization of Eq. (17) is to be re-
expressed nicely in terms of the flat metric, the field variable
should be

ψ≡−Logβ. (22)

(The minus sign is chosen so thatψ≥ 0, see Eq. (2).)

On the other hand, we impose on the field equation the addi-
tional condition that anexact local conservation lawmust be
found with some consistent definition of the energy. The lat-
ter should be the sum of a material energy and a gravitational
energy. The energy conservation law should be obtained by
rewriting the time component of the dynamical equation, (11)
with the definition (12), as a zero 4-divergence. For any met-
ric having the form (4), and independently of any restriction
on the equation for the scalar field, the following identity:

Tν
µ;ν =

1√−γ
(√−γTν

µ

)
,ν−

1
2

γλν,µTλν (γ≡ det(γµν))

(23)
allows us to rewrite the time component of (11) as

(√−γT j
0

)
, j

+
(√−γT0

0

)
,0 =

√−γββ,0T00≡ α. (24)

Thus,α must be a 4-divergence by virtue of the equation for
the scalar field. Using now the specific form (6) assumed for
the space metric, we have Eq. (19) and get from (4):

−γ = β2g = β−4g0, (25)

so that, in Cartesian coordinates forg0 and withx0 = cT,

α = (Logβ),0T00≡−ψ,0T00. (26)

Together with (21), Eq. (26) makes it obvious that the relevant
scalar field is indeedψ≡−Logβ. We note the identities

ψ,0 ψ, j, j =(ψ,0 ψ, j), j− 1
2 (ψ, jψ, j),0 , ψ,0 ψ,0,0 = 1

2

(
ψ2

,0

)
,0

.

(27)
From these, and from (26), it follows that, if we take the grav-
itational sourceσ to be the energy componentT00, and if we
simply postulate forψ the flat wave equation:

¤ψ≡ ψ,0,0−∆g0 ψ =
4πG
c2 σ (σ≡ T00, x0 ≡ cT),

(28)
then we indeed obtainα as a 4-divergence:

α =
c2

4πG

{
−1

2∂0

[
ψ2

,0 +(gradψ)2
]
+div(ψ,0gradψ)

}
. (29)

(Henceforth, div, grad and also∆ shall be the standard
operators defined with the Euclidean metricg0.) More
complicated time derivatives in the field equation could also
provide a conservation equation, but the spatial term is more
or less imposed to be∆ψ by (21), while the sourceσ should
beT00 due to (26). We have currently few constraints on the
time-derivative part of the equation for the scalar gravitational
field. Hence,Occam’s razor leads us to state (28) as the
equation for the scalar field.(This corresponds toF(β) = β2

in Eq. (17).)

Thus, by assuming the validity of Eq. (28), we rewriteα
[Eq. (24)] as (29). Hence, (24) becomes the followinglocal
conservation equation for the energy:5

∂0(εm + εg)+div(Φm +Φg) = 0, (30)

where the material and gravitational energy densities are given
(in mass units) by:

εm ≡ T00, εg ≡ c2

8πG

[
ψ2

,0 +(gradψ)2
]
, (31)

and the corresponding fluxes are:

Φm ≡ (T0 j), Φg ≡− c2

4πG
(ψ,0gradψ) . (32)

The scalar field equation (28) and the conservation equation
(30) are valid in any coordinates(yµ) adapted to the preferred
frame and such thaty0 = x0 ≡ cT. We note in particular that,
although the d’Alembert operator¤ is generally-covariant,
Eq. (28) does not admit a change in the time coordinatey0,
becauseψ≡−Log

√γ00 andσ≡T00 behave differently under
a changey′0 = φ(y0). 6 Thus, Eq. (28) admits only purely spa-
tial coordinate changes, consistently with the preferred-frame

5 We use the fact that, from (4) and (25),
√−γT0

0 = β−2T0
0 = T00 and√−γT j

0 = β−2T j
0 = T0 j in Cartesian coordinates, so that (30) with (31)

and (32) apply then—but these are space-covariant equations.
6 However, we note also that a mere change in the time unit,T ′ = aT, does

not affect the time coordinatex0 ≡ cT (sincec becomesc′ = c/a), hence
leaves Eqs. (28) and (30) invariant.
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character of the theory. (It is recalled at§ V C how to cope
with this character, on the example of the effects on light rays;
see at the end of Ref. [3] for the case with celestial mechan-
ics.)

C. Comments on the balance equation for the spatial
momentum

Similarly, let us rewrite the spatial component of the equa-
tion of motion of a continuum (11) in terms of the scalar field
(22), using the explicit form (4)-(6) of the metric, and the iden-
tity

Tµν
;ν =

1√−γ
(√−γTµν)

,ν +Γ′µνλTνλ (33)

(where theΓ′µνλ’s are the Christoffel symbols of metricγ).
Adopting Galilean coordinates(xµ) for the flat metricγ0

henceforth, we find after an easy algebra:

(
e4ψ T i j )

, j +
(
e4ψ T i0)

,0−e4ψ (
ψ,iT

j j +ψ,0T i0) = ψ,iσ.

(34)
An identity similar to (27) (withψ,i instead ofψ,0) allows
to get the r.h.s. as a 4-divergence, using the scalar field
equation (28). Due to the remaining source term on the
l.h.s., it is in general not possible to rewrite (34) as a zero
flat 4-divergence.I.e., there is no local conservation equation
for the total (material plus gravitational) momentum in this
theory.

In contrast, in Lagrangian-based relativistic theories of
gravitation, e.g. in GR, there is a local conservation law (or
something that looks like that) for thetotal momentum, which
is the sum of the local momentum ofmatter and the local
(pseudo-)momentumΘ of thegravitational field. (The mean-
ing of the latter decomposition and of its coordinate depen-
dence is clearer in the teleparallel equivalent of GR [27].) In
some cases, characterized by a sufficient fall-off ofΘ at spa-
tial infinity, the global value (i.e. the space integral) of the
total momentum is then conserved.7 However, this does not
mean that the global value of the momentum ofmatteris then
conserved: in fact, itprecludesthis, unless the global mo-
mentum of the gravitational field is separately constant—but
this occurs only when the gravitational field is constant, thus
when there is no motion of matter. Therefore, the situation
is not so much different in the investigated theory and in La-
grangian relativistic theories: in both kinds of theories, the
global momentum ofmatter is in general not conserved, un-
less there is just one body in equilibrium—the latter case is,
of course, possible also in the investigated theory. [Assume

7 In fact, it does not seem completely clear what should be the physically
motivated conditions ensuring the sufficient decrease at infinity forΘ ,
due to the fact that one has to account for gravitational radiation: see e.g.
Stephani [28].

time-independent fields in Eqs. (28), (30) and (34).] In New-
ton’s theory, in which there is a local conservation for the to-
tal momentum, the global momentum of matter is conserved,
however. This is because the global value of the gravitational
momentum turns out to bezeroin Newton’s theory [24]. (The
physical reason for this is that there is no gravitational radia-
tion in Newton’s theory.) The fact that, in contrast, the mo-
mentum of matter is in general not conserved in relativistic
theories of gravitation, is related to the generic presence of
self-accelerations (or self-forces) in these theories (including
GR), already mentioned in the Introduction.

IV. EQUATIONS OF MOTION AND MATTER
PRODUCTION FOR A PERFECT FLUID

In most applications of a “relativistic” theory of gravita-
tion, it is enough (and it is indeed usual [14, 20, 21, 29, 30])
to consider a perfect fluid, because:i) the stress tensor,i.e.,
the spatial part of tensorT, has normally a non-spherical part
small enough that the latter does not bring significant post-
Newtonian (PN) corrections; andii ) the motion of astronomi-
cal bodies can be described as approximately rigid (here also,
it is an even better approximation if one assumes this only at
the stage of calculating the PNcorrections), in which case a
viscosity has no effect. For a perfect fluid, with its well-known
expression for tensorT [20], depending on the pressurep, the
proper density of rest massρ∗, the density of elastic energy
per unit rest massΠ, and the velocityu ≡ dx/dT = βv, we
introduce the field variable

θ≡ e4ψ
(

σ+ p
c2 e2ψ

)
,

σ≡ T00 =
[

ρ∗
(

1+
Π
c2

)
+

p
c2

]
γ2
v

β2 −
p

c2 β2 (35)

and rewrite the equation of motion (34) and the energy con-
servation (30) respectively as:

(
θui)

,T +
(
θuiu j)

, j −ψ,T θui −ψ,i θu ju j

= c2ψ,i σ+e2ψ (pψ,i − p,i) (36)

and
(
e−4ψθ

)
,T +

(
e−4ψθu j)

, j =−ψ,T σ+
1
c2

(
e2ψ p

)
,T . (37)

As it has been discussed in detail in Ref. [25], the exact
energy conservation of the scalar theory precludes in general
an exact conservation of (rest-)mass. There, it has been shown
that, already for a perfect andisentropicfluid, the general form
(11) of the equations of motion for a continuum implies are-
versible creation/destruction of matter in a variable gravita-
tional field. Let us noteU the 4-velocity, withUµ ≡ dyµ/ds.
One finds that the rate of creation/destruction is [25]:

ρ̂≡ (ρ∗Uµ);µ =
pU0

2c2 Φ/

(
1+

Π+ p/ρ∗

c2

)
, Φ≡ g,0

g
.

(38)
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This equation holds true independently of the scalar field
equation and the specific form of the space metric [25]. With
the new form (6) assumed for the space metric, we get:

Φ =−6
β,0

β
, (39)

which is three times the rate found with the formerly-assumed
anisotropic space metric [25]. Of course, the actual values
of β andβ,0 in a given physical situation may depend on the
theory. However, anticipating over the next Section, we can
write down the weak-field approximations ofβ and its relative
rate as:

β≈ 1− U
c2 ,

β,0

β
≈ 1

c3

∂U
∂T

, (40)

with U the Newtonian potential, whose time-derivative has to
be takenin the preferred frame. This, indeed, gives three times
the former weak-field prediction for̂ρ, namely it gives

ρ̂≈ 3p
c4

∂U
∂T

, (41)

which remainsextremelysmall in usual conditions (but would
be significant inside stars): the relative creation rateρ̂/ρ
would be ca.10−22s−1 at or near the surface of the Earth, if
the “absolute” velocity of the Earth is taken to be300km.s−1.
{See Ref. [25], Sect. 4.3. Note that equal amounts of mass
would be destroyed and created at opposite positions on the
Earth, Eq. (4.22) there.}Mass conservation is far to have been
checked to this accuracy. Note that matter creation is being
actively investigated in cosmological literature, see e.g. [31–
36]. If mass non-conservation is to occur in “cosmological”
conditions, it must exist in nature, and so possibly (in minute,
not yet observable quantities) in today’s world.

V. POST-NEWTONIAN APPROXIMATION (PNA)

A. Definition of the asymptotic scheme of PNA

The purpose of the post-Newtonian approximation is to
obtain asymptotic expansionsof the fields as functions of a
relevant field-strength parameterλ, and to deduce expanded
equations (which are much more tractable than the original
equations) by inserting the expansions into the field equa-
tions. To do this in a mathematically meaningful way, it is
necessary that one can makeλ tend towards zero, hence one
must (conceptually) associate to the given gravitating system
S a family (Sλ) of systems,i.e., a family of solution fields
of the system of equations. This family has to be defined
by a family of boundary conditions—initial conditions for
that matter, because here gravitation propagates with a finite
velocity. The system of interest, S, must itself correspond to
a small valueλ0 of the parameter, thus “justifying” to use
the asymptotic expansions for that value. The definition of
the family involves two conditions which make this family
represent the Newtonian limit: asλ → 0, i) the physical
metric γ(λ) must tend towards the flat metricγ0, and ii ) the

fields must become equivalent to “corresponding” Newtonian
fields. The first condition is easy to be explicited in a scalar
theory, in which the relation betweenγ andγ0 depends only
on the scalar gravitational field. Conditionii ) asks for two
preliminaries: a) that one disposes of a relevant family of
Newtoniansystems, for comparison, andb) that one is able
to define a natural equivalent of the Newtonian gravitational
field, i.e., the Newtonian potentialUN. (The matter fields
for a perfect fluid are the same in a “relativistic” theory
as in Newtonian gravity (NG), up to slight modifications.)
Point a) is easily fulfilled, once it is recognized [16, 19]
that there is an exact similarity transformation in NG, which
is appropriate to describe the weak-field limit in NG itself
[16]. This immediately suggests defining the family(Sλ) by
applying the similarity transformation of NG to the initial
data defining a gravitating system in the investigated theory
[16, 19]—preferably to that initial data, of a general-enough
nature, which precisely defines the system of interest, S [16].
Of course, to use the Newtonian transformation demands
that pointb) has been solved, which depends on the precise
equations of the theory.

The application of these principles to the scalar ether-theory
has been done in detail for its first version [16]. (See Ref. [17],
Sect. 2, for a synopsis and a few complementary points.) The
modifications to be done for the present version are straight-
forward. The definition of the metric (4)-(6) and that of the
scalar fieldψ (22) imply that conditioni) is equivalent to ask-
ing thatψ(λ) → 0 asλ → 0. Therefore, we may define a di-
mensionless weak-field parameter simply as

λ≡ Supx∈M ψ(x) (42)

(at the initial time, say). Moreover, from the scalar field equa-
tion (28), we see that

V ≡ c2ψ (43)

satisfies the wave equation with the same r.h.s. (in the New-
tonian limit whereσ ∼ ρ) as Poisson’s equation of NG, and
the retardation effects should become negligible in the New-
tonian limit. Hence,V is a natural equivalent ofUN. Thus,
the Newtonian limit is defined by the same family of initial
conditions as in the first version [16], though with the new
definition (43) ofV: at the initial time,8

p(λ)(x) = λ2p(1)(x), ρ∗(λ)(x) = λρ∗(1)(x), (44)

V(λ)(x) = λV(1)(x), ∂TV(λ)(x) = λ3/2∂TV(1)(x), (45)

8 Since the given system is assumed to correspond to a small valueλ0 ¿ 1,
the transformation goes first fromλ0 to λ = 1, and then fromλ = 1 to
the arbitrary valueλ. This amounts to substitutingξ ≡ λ/λ0 for λ, and
p(λ0), etc., for p(1), etc. [16]. Moreover, we consider a barotropic fluid:
ρ∗ = F(p). Thus, the initial conditions forp and forρ∗ are actually not
independent, and one must assume thatF(λ)(p) = λF(1)(λ−2p) [16]. Note
that the small parameterλ considered in the present paper corresponds to
ε2, whereε is that used in Ref. [16].
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u(λ)(x) =
√

λu(1)(x). (46)

The systemSλ is hence defined as the solution of the above
initial-value problemPλ. One expects that the solution fields
admit expansions in powers ofλ, whose dominant terms have
the same orders inλ as the initial conditions. It is then easy
to check that, by adopting[M]λ = λ[M] and [T]λ = [T]/

√
λ

as the new units for the systemSλ (where [M] and [T] are
the starting units of mass and time),all fields become order
λ0, and the small parameterλ is proportional to1/c2 (indeed
λ = (c0/c)2, wherec0 is the velocity of light in the starting
units). Thus, the derivation of the 1PN expansions and ex-
panded equations is very easy. At the first PNA, one writes
first-order expansions in this parameter for the independent
fieldsV, p,u:

V = V0 +V1/c2 +O(c−4), p = p0 + p1/c2 +O(c−4),

u = u0 +u1/c2 +O(c−4), (47)

and one deduces expansions for the other fields. (Of course,
all fields depend on the small parameterλ ∝ 1/c2.) In these
varying units, we haveT = λ1/2T0 whereT0 is the “true” time,
i.e., that measured in fixed units. HencecT = c0T0 is propor-
tional to the true time. But since the true velocities in system
Sλ vary like λ1/2 [Eq. (46)], it is T, not cT ∝ T0, which re-
mains nearly the same, asλ is varied, for one orbital period
of a given body in the Newtonian limit. Therefore, in this
limit, thus for PN expansions, one must takex′0 ≡ T as the
time variable, in the varying units utilized for the expansions.
This means that, in these units, the expansions are first of all
valid at fixed values ofx andT; and one can differentiate them
with respect to these variables, because it is reasonable to ex-
pect that the expansions are uniform inx taken in the “near
zone” occupied by the gravitating system, and inT taken in
an interval where the system remains quasi-periodic [16].

B. Main expansions and expanded equations

Inserting (47)1 into the scalar field equation (28) and ac-
counting for the fact that the time variable isx′0 ≡ T (in the
varying units utilized), yields after powers identification:

∆V0 =−4πGσ0, ∆V1 =−4πGσ1 +∂2
TV0, (48)

whereσ = σ0 + σ1/c2 + O(c−4) is the 1PN expansion of the
active mass density. Thus, the retardation effect disappears in
the PN expansions. (However, the “propagating” (hyperbolic)
character of the gravitational equations is maintained through
the fact that an initial-value problem is considered.) From
(48) with appropriate boundary conditions (U = O(1/r) and
gradU = O(1/r2) asr →∞) [16], it follows thatU ≡V0 is the
Newtonian potential associated withσ0:

U ≡V0 = N.P.[σ0]

(
N.P.[τ](X,T)≡G

Z
τ(x,T)dV(x)/ |X−x|

)
, (49)

(V will denote the Euclidean volume measure on the space
M), and that (imposing the same boundary conditions toB as
those forU)

V1 = B+
∂2W
∂T2 , B≡ N.P.[σ1], (50)

with

W(X,T)≡G
Z
|X−x|σ0(x,T)dV(x)/2. (51)

The mass centers will be defined as barycenters ofρ, the den-
sity of rest-mass in the preferred frame and with respect to the
Euclidean volume measureV [17]. It is related to the proper
rest-mass densityρ∗ by Lorentz and gravitational contraction
[24], so thatρ = ρ∗γv

√
g/

√
g0, hence from (19):

ρ = ρ∗γv/β3. (52)

Using this and the definitions (28)2 and (35), and since we
have from (49):

β = e−V/c2
= 1−U/c2 +O(c−4), (53)

we get:

ρ∗0 = ρ0 = σ0 = θ0 (54)

and

ρ1 = ρ∗1 +ρ0

(
u2

0

2
+3U

)
, (55)

σ1 = ρ1 +ρ0

(
u2

0

2
−U +Π0

)
, (56)

θ1 = σ1+ p0+4ρ0U = ρ1+ρ0

(
u2

0

2
+3U +Π0

)
+ p0. (57)

The expansion of the equation of motion (36) and the en-
ergy equation (37) gives, at the order zero:

∂T(ρ0ui
0)+∂ j(ρ0ui

0u j
0) = ρ0U,i − p0,i , (58)

∂Tρ0 +∂ j(ρ0u j
0) = 0, (59)

which are just the Newtonian equations. The expanded equa-
tions of the order one in1/c2 are:
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∂T(ρ0ui
1 +θ1ui

0)+∂ j(ρ0ui
0u j

1 +ρ0ui
1u j

0 +θ1ui
0u j

0)−ρ0(ui
0∂TU +u2

0∂iU) =
= σ1U,i +ρ0V1,i + p0U,i −2U p0,i − p1,i , (60)

∂T(w0 +ρ1)+∂ j [(w0 + p0 +ρ1)u
j
0 +ρ0u j

1] =−ρ0 ∂TU, w0 ≡ ρ0(
u2

0

2
+Π0−U). (61)

Combining (58), the continuity equation (59), and the 0-order
expansion of the isentropy equation:

dΠ0 =−p0d(1/ρ0), (62)

one gets in a standard way the Newtonian energy equation:

∂Tw0 +∂ j [(w0 + p0)u
j
0] =−ρ0 ∂TU. (63)

Subtracting (63) from (61) gives us

∂Tρ1 +∂ j(ρ1u j
0 +ρ0u j

1) = 0, (64)

which (together with (59)) means that mass is conserved at the
first PNA of the scalar theory, also in this second version.

C. Application: gravitational effects on light rays

The effects of a gravitational field on an electromagnetic
ray, seen as a “photon” (a test particle with zero rest-mass),
represent the most practically-important modification to NG.
In this theory, they can be obtained by applying the extension
(9) of Newton’s second law, in whichF0 = 0 and the mass
content of the energyE = hν has to be substituted for the
inertial massm(v). In the new version of the scalar theory,
things go in close parallel with the former version, based on
an anisotropic space contraction [4, 37]:

• i) The main step is the recognition [37] that the PN
equation of motion for a photon, obtained thus, co-
incides with the PN expansion of the geodesic equa-
tion for a light-like particle in the space-time metricγ,
because theΓ′i0 j = 1

2gik∂0gk j Christoffel symbols ofγ

areO(c−2) and theΓ′0jk = 1
2γ00∂0g jk areO(c−4) (with

x′0 ≡ T as the time coordinate). This holds true in the
present version based on Eq. (6) for the space metric,
because the same expansion [Eq. (53) above] applies as
in the former version. Therefore, to compute the effects
of a weak gravitational field on light rays, one has to
study the PN expansion ofγ in the relevant reference
frame: that frameEV which moves with the velocityV
in the preferred frame, assumed constant and small as
compared withc, of the mass-center of the gravitating
system. In coordinates(x′µ) that are Galilean for the
flat metricγ0 and adapted to the frameEV , the compo-
nentsγ′µν of γ are deduced from its components in the
preferred frame (Eqs. (4) and (6)) by a special Lorentz

transform, relative toγ0 [37]; hence theγ′µν ’s depend
only on the fieldβ (not any more on its derivatives, as
was the case with the former version), and on the veloc-
ity V.

• ii ) Inserting the expansion (53) ofβ, one gets the PN
expansion of theγ′µν ’s. The PN expansion ofγ′00 is
enough to compute the gravitational redshift. It is still
γ′00 = 1− 2Uc−2 + O(c−4) with U the Newtonian po-
tential: this holds true in the present version (in partic-
ular, Eq. (52) of Ref. [37] holds true). To get the other
two effects of gravitation on light rays, namely the de-
flection and the time delay, one needs to compute the
PN expansion of all componentsγ′µν. One finds eas-
ily that, as before [37],γ′0i = O(c−3) (in fact γ′0i = 0
for i = 2 and3, now); suchγ′0i = O(c−3) component(s)
have (has) no influence on the PN equation of motion of
a photon (see the equation after Eq. (9.2.4) in Weinberg
[29], and see Eqs. (9.1.16), (9.1.19) and (9.1.21) there).
And one finds thatγ′i j = −(1+ 2Uc−2)δi j + O(c−4).
Thus, in the new version of the scalar ether-theory, the
PN equation of motion of a photon coincides with the
PN geodesic equation of motion of a photon in the so-
called [14] “standard PN metric” of GR, and this is true
also in the relevant frameEV . In particular, in the SSS
case, the formulas for the PN effects on photons are the
same as those derived from the (space-)isotropic form
of Schwarzschild’s metric—or also from the harmonic
form of the Schwarzschild metric (which is the SSS so-
lution of the RTG [38]), since its PN approximation is
space-isotropic [20] and coincides with the PN approx-
imation of the isotropic form. These predictions are ac-
curately confirmed by observations [14].

VI. PN EQUATIONS OF MOTION OF THE MASS
CENTERS

As already mentioned, the mass centers are defined [17]
as local barycenters of the density of rest-mass in the pre-
ferred frame,ρ or ratherρexact, Eq. (52). (Henceforth, the
index 0 will be omitted for the zero-order (Newtonian) quan-
tities, for conciseness; therefore, the exact quantities, when
needed, are denoted by the index “exact.”) Integrating Eq.
(60) in the (time-dependent) domainDa occupied by body(a)
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(a = 1, ...,N) in the preferred frame E gives

d
dT

(Z
Da

(ρui
1 +θ1ui)dV

)
=
Z

Da

f i
1dV, (65)

with

f i
1 = (σ1 + p)U,i +ρV1,i −2U p,i +ρ(ui∂TU +u2U,i). (66)

Accounting for Eq. (57) and for Eq. (3.21) of Ref. [17], we
get:

M1
a äi

1 + İai = Jai +Kai, (67)

which is Eq. (4.9) of Ref. [17], and with, as there,

M1
a ≡

Z

Da

ρ1dV, M1
aa1 ≡

Z

Da

ρ1xdV(x), (68)

but with modified definitions ofIai, Jai andKai:

Iai ≡
Z

Da

[p+ρ(u2/2+Π+3U)]uidV, (69)

Jai ≡
Z

Da

(σ1U,i +ρV1,i)dV, (70)

and

Kai ≡
Z

Da

[−2U p,i + pU,i +ρui∂TU +ρu2U,i ]dV

=
Z

Da

[3pU,i +ρui∂TU +ρu2U,i ]dV ≡ Kai
1 +Kai

2 +Kai
3 . (71)

Together with the Newtonian equation, Eq. (67) allows in
principle to calculate the 1PN motion of the mass centers: due
to Eq. (3.15) of Ref. [17], the 1PN acceleration of the mass
center of body(a) is given by

Aa ≡ ä(1) = ä+
M1

a(ä1− ä)
c2Ma

, (72)

in which Ma andä are the Newtonian mass and acceleration.
Equation (67) may be made tractable for celestial mechanics,
as was done in Ref. [18] for the former version of the theory,
by taking benefit of:a) the good separation between bodies,
andb) the fact that the main celestial bodies are nearly spheri-
cal. This is left to a future work. Here, we will study the point-
particle limit of this equation and will show that the deadly
violation of the WEP for a small body, which was found with
the former version of the theory [15], does not exist any more
with the new version.

VII. POINT-PARTICLE LIMIT AND THE WEP

In order to define that limit rigorously and generally, we
consider (as in Ref. [15]) a family of 1PN systems, that are
identical up to the size of the body numbered (1): this size

is a small parameterξ. We have to expand asξ → 0 the in-
tegrals (69), (70), and (71), for the small body,i.e. a = 1.
(As to the zero-order (Newtonian) acceleration of the small
body, it tends towards the acceleration of a test particle in the
Newtonian fieldU (a) of the other bodies [15], as expected.)
To do that, we use the simplifying assumption according to
which the Newtonian motion of the small body is arigid mo-
tion. The calculations are very similar to those [15] with the
previous version, though simpler for theKai integral; hence,
we shall be concise.

A. The general case

The modification of the calculations in Ref. [15], Sect. 3,
is immediate forIai andKai. We get [reserving henceforth the
lettera for the first, small body (for whicha = 1 in fact) and
using the letterb for the other, massive bodies]:

Ia ≡ (Iai) = Ma[1
2ȧ2 +3U (a)(a)]ȧ+O(ξ4), (73)

Ka
1 = O(ξ5), (74)

Ka
2 = GMaȧ ∑

b6=a

Mb(a−b).ḃ
|a−b|3 +O(ξ4), (75)

Ka
3 = Ma ȧ2∇U (a)(a)+O(ξ4). (76)

As to the integralJai, it has the same expression as before
[17], but the PN correctionσ1 to the active mass density is
now given by Eq. (56). Therefore, the expansion (3.27) of
Ref. [15] remains valid forJai, but we have now:

αa ≡
Z

Da

σ1dV = M1
a +Ma [1

2ȧ2−U (a)(a)]|T=0 +O(ξ5),

(77)

M1
a = Ma [1

2ȧ2 +3U (a)(a)]|T=0 +O(ξ5), (78)

βa j ≡
Z

Da

σ1(x)(x j−a j)dV(x) = M1
a(a

j
1−a j)+O(ξ4). (79)

Besideαa andβa j, Eq. (3.27) of Ref. [15] involves also all
those multipoles of the densitiesρ andσ1 that correspond to
theotherbodies.
Since all of these equations contain the (Newtonian) massMa
as a common factor, it follows that the 1PN accelerationAa

of the (mass center of the) small body(a), Eqs. (67) and (72),
does not depend on its massMa. It then also follows from
these equations (including Eq. (3.27) of Ref. [15]) that, ne-
glectingO(ξ) terms inAa, it depends only:

• on the current Newtonian positions and velocities of all
bodies:a,b, ȧ, ḃ;

• on all current 1PN positions:a(1),b(1);
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• on the Newtonian massesMb of theotherbodies and on
their Newtonian potentialU (a) (the “external” potential
for (a));

• and still, through the external multipoles ofρ andσ1,
on the structure of theotherbodies.

Thus, the 1PN acceleration of a freely-falling small body is
independent of its mass, structure, and composition, in other
words the WEP is satisfied at the 1PN approximation with
the new version of the scalar theory, in contrast with what
happened with the former version [15].

B. Comparison with a test particle in the case with one SSS
massive body

Since the WEP is satisfied, it seems obvious that the 1PN
acceleration of a small body should be equal, at the point-
particle limit (ξ → 0), to that of a test particle—and this in
the general case. We check this in the particular case where,

beside the small body(1), there is just one massive body(2),
whose mass center stays fixed at the origin in the preferred
frame, and whose Newtonian densityρ is spherically sym-
metric.9 We note

m≡M1, M ≡M2, x≡ a, v≡ ẋ,

r ≡ |x| , n≡ x/r, x1 ≡ c2(a(1)−a). (80)

Adapting Sect. 4 of Ref. [15], we find without difficulty:

İ1 =−m
GM
r2

[(
v2

2
+3

GM
r

)
n+4(v.n)v

]
, (81)

δM ≡
Z

D2

σ1dV =
17
3

ε, ε≡ 1
2

Z

D2

ρUdV, (82)

9 Strictly speaking, body (2) is gravitationally influenced by the small body,
hence it cannot stay exactly at rest in the preferred frame. However, the PN
acceleration of the massive body (2), due to the small body (1), isO(ξ3)

(Ref. [15], Sect. 2), so that we may forget this influence for the present
purpose.

J1 = m
GM
r2

[(
−v2 +2

GM
r
−4

GM
r0

− 17
3

ε
M

)
n+

1
r

(3(x1.n)n−x1)
]
, (r0 ≡ r|T=0), (83)

K1 =−m
GM
r2 v2n. (84)

Inserting these values into Eq. (67) and putting the result into (72), we get the equation for the 1PN correctionx1 to the position
of the mass center of the small body:

ẍ1 =
GM
r2

[(
−v2 +4

GM
r
− 17

3
ε
M

+3
x1.n

r

)
n+4(v.n)v− x1

r

]
. (85)

On the other hand, as recalled in Subsect. II B, the equation of
motion of a test particle in the scalar theory coincides, in the
present static case, with the geodesic equation in the relevant
metric—thus, here, the metric (4)-(6), specialized to the SSS
case, for which we get from (28) and (22):

β(T,X) = e
−GM′

c2R , (R≡ |X| ≥ r2), (86)

with r2 the radius of the spherical body (2), and with

M′ ≡
Z

D2

σexactdV = M +
δM
c2 +O(c−4), (87)

thus in Cartesian coordinates(Xi) for the Euclidean metricg0:

ds2 =

[
1−2

GM′

c2R
+2

(
GM′

c2R

)2

+O(c−6)

]
(dx0)2−

[
1+2

GM′

c2R
+O(c−4)

]
δi j dXidX j , (88)

which is the SSS form of the standard PN metric of GR. The corresponding (complete) equation of motion is given by Weinberg
[29] (Eq. (9.5.3) with hereε = 0, ζ = 0, andφ =−GM′/r(1)). In our notation, this is

ẍ(1) =
GM′

r2
(1)

{
−n(1) +

1
c2

[(
−v2

(1) +4
GM′

r(1)

)
n(1) +4(v(1).n(1))v(1)

]}
, (89)
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with

x(1) ≡ x+x1/c2, r(1) ≡
∣∣x(1)

∣∣ , n(1) ≡ x(1)/r(1), v(1) ≡ ẋ(1). (90)

Now, writing r(1), n(1) and v(1) as first-order expansions in
c−2, and then inserting (90) and (87) into (89), one finds easily
that the latter decomposes into an equation for the order 0,
which is the Newtonian equation̈x =−GM

r2 n, and an equation
for the order 1 inc−2, which is exactly Eq. (85). This proves
that indeed, the 1PN acceleration of a small body is equal, at
the point-particle limit, to that of a test particle— at least in
the SSS case.

VIII. CONCLUSION

The investigated theory starts from a heuristic interpre-
tation [22] of gravity as the pressure force exerted on the
elementary particles by an universal fluid or “constitutive
ether” [26], of which these particles themselves would be
just local organizations. This leads naturally to assuming that
gravity affects the physical standards of space and time, by
an analogy with the effects of a uniform motion that are at the
basis of Lorentz-Poincaré (special) relativity [22]. However,
the contraction of physical objects in a gravitational field, as
it appears in terms of the “unaffected” Euclidean metric, may
either occur in one direction only [24], as for the Lorentz
contraction, or else [22, 39, 40] it may affect all (infinitesimal)
directions equally. The first version of the theory was based
on a unidirectional contraction, and passed a number of tests
[3, 4], but it has been discarded by a significant violation of

the weak equivalence principle (WEP), which has been found
to occur for extended bodies at the point-particle limit [15].
In the present paper, a new version of the theory, based on
a locally isotropic contraction, has been fully constructed.
It has been shown that the new version also explains the
gravitational effects on light rays (Subsect. V C). Being based
on the same dynamics as the former version, and being also
based on a wave equation for the scalar gravitational field, it
should lead, as did the former version [4], to a “quadrupole
formula” similar to that used in GR to analyse the data of
binary pulsars [41]. Moreover, because the metric in the new
version is similar to the “standard PN metric” of GR while
the local equations of motion are also similar to those of GR,
the celestial mechanics of that theory should improve over
Newtonian celestial mechanics.10 These two points will have
to be checked in a future work.

It has been proved here that the present new version of the
theory solves completely the problem with the WEP, that oc-
curred at the first post-Newtonian approximation in the for-
mer version (Sect. VII). When that (deadly) WEP violation
had been found, it had been argued [15] that the reason for
it was the dependence of the PN spatial metric on the spatial
derivatives of the Newtonian potentialU . By switching to an
isotropic space metric, whose PN form depends onU but not
on its derivatives, we indeed suppressed the WEP violation in
the present new version.

10 Of course, the theory is not equivalent to GR, e.g. there is not the Lense-
Thirring effect in the usual sense [37]. However, rotation of a massive
body does have dynamical effects in this theory, including effects on that
body’s own acceleration (as already in the first version [18]). According to

the asymptotic PN scheme that we use, the same type of rotation effect is
present also in GR [42].
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