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Repulsive Casimir Forces Produced in Rectangular Cavities:
Possible Measurements and Applications
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We perform a theoretical analysis of a setup intended to measure the repulsive (outward) Casimir forces
predicted to exist inside of perfectly conducting rectangular cavities. We consider the roles of the conductivity
of the real metals, of the temperature and surface roughness. The possible use of this repulsive force to reduce
friction and wear in micro and nanoelectromechanical systems (MEMS and NEMS) is also considered.
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I. INTRODUCTION

Casimir forces are a well known prediction of Quantum
Field Theory, and result whenever the quantum vacuum is
subject to constraints. The Casimir forces are one aspect
of a broader subject usually referred to as Casimir effect.
Presently, the Casimir effect finds applications not only in
Quantum Field Theory, but also in Condensed Matter Physics,
Atomic and Molecular Physics, Gravitation and Cosmology,
and in Mathematical Physics [1–3], and its importance for
practical applications is now becoming more widely appre-
ciated [4, 5]. Not withstanding its importance, the Casimir
effect is elusive. The attractive Casimir forces (ACFs) pre-
dicted to exist between electrically neutral bodies were mea-
sured successfully only a few years ago [1]. Presently, the
ACF between a sphere (or lens) above a flat disc covered with
metals is claimed to be measured with an experimental relative
error of approximately 0.27% at a 95% confidence level [6],
and can be predicted with a theoretical uncertainty at the level
of 1%. The direct measurement of the Casimir force between
two parallel conducting plates, the original setup studied by
H. B. G. Casimir [7] in 1948, is even more challenging than
for the sphere above a disc. For that reason it was accom-
plished only recently with a relatively poor precision of15%
[8].

The measurement of such attractive forces sheds some light
on the question of the nature of the quantum electromagnetic
vacuum. However, very important predictions based on the
existence of the quantum vacuum have not received the same
attention. This is the case of the repulsive Casimir forces
(RCFs). Such repulsive forces (outward pressure on the walls)
are predicted to exist inside of an empty sphere [9] and an
empty rectangular cavity [10, 11] with perfectly conducting
walls, for the case of Euclidean space. Such repulsive forces
are probably the most striking example of the geometry de-
pendent nature of the Casimir effect. However no experiment
was performed to measure RCFs. Only a weak dependence
on the geometry was tested measuring the force between a
plate with small sinusoidal corrugations and a large sphere
[12]. The measurement of the RCF would be one of the most

important probes of the nature of the quantum vacuum with
far reaching implications. Because RCFs have been predicted
consistently by different quantum field theoretic techniques
[9–11, 13] if they are proved not to exist the physicists will
be faced with a new puzzle to be solved. Widely accepted
Casimir energy renormalization and regularization procedures
may need to be reviewed, as suggested by the only dissonant
result presented in Ref. [14], were no RCFs are found for a
rectangular piston.

The sign of the Casimir force is also predicted to depend
upon electric and magnetic properties of materials. For in-
stance, in Ref. [15] it is anticipated that a repulsive force will
exist between two parallel plates if one is a perfect conductor
and the other is perfectly permeable. More recently, a repul-
sive force between two parallel plates made from dielectric
materials with nontrivial magnetic susceptibility was antici-
pated [16]. However, this effect, which could have interesting
applications for MEMS and NEMS, has not been verified ex-
perimentally and no dielectric material exists satisfying the
requirements on the values of the magnetic susceptibility.

In spite of the fact that RCFs are predicted for sphere and
rectangular cavity with perfectly conducting walls, it is rea-
sonable to expect, as for the case of parallel plates, that they
will also be present inside cavities made from good conduc-
tors. For that reason, in this article we address the most impor-
tant practical aspects to be taken into account in an experiment
intended to measure the force exerted on one of the walls of
a rectangular cavity: the finite conductivity and roughness of
the walls and plate, and the temperature. The choice of rec-
tangular cavity instead of the sphere is based primarily on the
fact that the former could be most easily fabricated with the
available techniques for the fabrication of MEMS and NEMS.
We consider the experimental setup to measure the RCFs to be
made of a series of microscopic metallic rectangular cavities
arranged side by side, forming an array, with one of the walls
open. The repulsive force is then measured by bringing near
a plate with a flat metallic surface. The forces on the plate
are then measured. The use of that can be measured most eas-
ily. This setup is presented schematically in Fig. 1(a). We note
that a different setup was considered in Ref. [17] were a sphere



A. Gusso and A. G. M. Schmidt 169

is used instead of a flat plate. However, it has to be mentioned
that in Ref. [17] it is considered the case in which the radius
of the sphere is comparable to the cavity length, implying that
the ends of the cavities are left essentially uncovered, and it
is not clearly explained why in this case one still can expect
the emergence of repulsive forces between the cavities and the
sphere. Furthermore, the roughness of the walls and the role
of the temperature are not considered in the analysis there pre-
sented. It is also not explained how the finite conductivity of
the cavity walls and the sphere were taken into account in the
calculation of the attractive and repulsive Casimir forces.

Its worth to mention that to analyze the flat plate-
rectangular cavities configuration is specially relevant because
the moveable pieces of MEMS and NEMS typically involve
flat surfaces (for example, the rotary pieces in micromotors
and gears), and it is natural to ask whether metallic rectangu-
lar cavities could be used to make such pieces to levitate or, at
least, to have their weight or other undesirable forces partially
compensated by a repulsive force. For that reason, following
the analysis on the RCF measurement we present an analy-
sis on the possible application of repulsive Casimir forces in
MEMS and NEMS to circumvent the problems resulting from
friction and wear.

II. CASIMIR ENERGY AND FORCES

In this section we argue that for a setup like that presented
in Fig. 1 the resulting Casimir force on the plate is given by the
sum of two independent contributions, namely, the RCF pro-
duced by the electromagnetic vacuum modes inside the cavity
and the attractive force between the plate and the upper por-
tion of the cavities.

The renormalized Casimir energy inside a rectangular cav-
ity with perfectly conducting and perfectly smooth walls at
zero temperature can be derived in various manners [1]. A
simple expression suitable for numerical calculations was de-
rived in [11], and in terms of the internal dimensions of the
cavitya1,a2 anda3 it reads

EC = −~ca1a2a3

16π2

∞

∑
l ,m,n=−∞

[(a1l)2 +(a2m)2 +(a3n)2]−2

+~c
π
48

(
1
a1

+
1
a2

+
1
a3

)
. (1)

The term withn1 = n2 = n3 = 0 is to be omitted from the
summation. From the principle of virtual work the force on
the walls perpendicular to the direction ofai is simply

Fi =−∂EC

∂ai
, (2)

and ranges from positive (outward) to negative (inward) de-
pending on the relative sizes ofa1,a2 anda3. The Eqs. (1)
and (2) allow one to search for the configuration of the cav-
ity resulting into the strongest outward forces on the walls.
The numerical analysis performed in Ref. [18], using the

above expression for the energy, suggests that the forcesF2
andF3 are larger (and positive) in a configuration satisfying
a1 ¿ a2 ¿ a3, corresponding to an elongated parallelepiped.
For such a configurationF1 is directed inward.

Fortunately, whenevera1 ¿ a2 ¿ a3 for a rectangular cav-
ity we can use a simple analytical expression for the Casimir
energy [1, 10]
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720a3
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whereζR denotes the Riemann zeta function. The expressions
for the two outward forces are then calculated using Eq. (2)
and the result is

F2 = ~c
[
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8π
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]
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and

F3 = ~c
[

π2a2

720a3
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ζR(3)
16π

1

a2
2

]
. (5)

These formulas for the forces reproduce the results obtained
from Eq. (1) to better than1%, and because the first term dom-
inates over the others the forces are positive.

Therefore there are two possible configurations for our sys-
tem. In one configuration elongated cavities with heighta2 are
lying horizontally below the plate, like the cavity in Fig. 2(a),
with the force exerted on the plate corresponding toF2. In
the other configuration the cavities are standing vertically be-
low the plate, like the cavity in Fig. 2(b), with the force ex-
erted on the plate corresponding toF3. If there where no other
forces acting on the plate, measuring the RCFs would be a
relatively easy task. The plate could be brought near the open
wall closing it completely, thus assuring the existence of the
electromagnetic vacuum modes that lead to the Casimir en-
ergy Eq. (1). However, when the plate is close to the top of
the walls there will be a resulting attractive force that can sur-
pass the repulsive force. For that reason, in what follows we
analyze which configuration is the more adequate for an ex-
periment intended to measure RCFs, delivering the stronger
repulsive force compared to the attractive forces between the
plate and the cavity walls.

The repulsive forces exerted on the plate,F2 or F3, are ex-
pected to decrease with increasingd, the distance from the
plate to the top of the walls [see Fig. 1(a)]. However, a detailed
estimation of this decrease is beyond the scope of the present
work. Instead we are going to assume in our calculations that
the forcesF2 andF3 do not depend ond. We expect this is a
reasonable assumption wheneverd is sufficiently small in or-
der not to disturb the electromagnetic vacuum modes that give
the most important contributions to the Casimir energy. This
expectation is based on the fact that in the case the aperture
at the top of a cavity is smaller thanλ the transmission of the
modes to outside the cavity is kept small [19]. Now the values
of λ that give the most important contribution to the Casimir
energy for a cavity satisfying the conditiona1 ¿ a2 ¿ a3,
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FIG. 1: (a) A view of the setup including the rectangular cavities and the plate. The dots denote the possibility of having more cavities arranged
side by side. (b) The definitions of the lengths of the cavities and walls shown in a side view.
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FIG. 2: (a) Cavity lying horizontally below a plate. (b) Cavity stand-
ing vertically below a plate. Plate is in dark gray and the open wall
is indicated in light gray.

a geometry that closely resembles that of two parallel plates
(more on that in Section III), are those of the order of the
smallest edgea1. Thus, it is reasonable to expect thatF2 and
F3 are constant up tod . a1/2. For d & a1/2 the RCF will
certainly decrease, and for that reason the relevant distance in
an actual experiment is restricted tod . a1.

Becaused . a1, anda1 ¿ a2 anda3, we can separate the
total Casimir force between the plate and the cavities into two
components: the RCF,F2 andF3 and the ACF between the
plate and the top of the walls. This conclusion is not as triv-
ial as it may seen to be. If the plate were at relatively large
distances from the cavities the Casimir energy for the plate-
cavities system should be calculate from first principles con-
sidering the whole intricate geometry of the cavities. That
means, the analysis should be similar to that carried on for pe-
riodically deformed objects in Ref. [20]. That would also be
the case whethera1 ∼ a2, that means in the case of shallow
cavities. For the deep cavities we are going to consider, only
the interaction between the top of the walls and the plate is
responsible for the attractive force.

Because of the nontrivial geometry involved, in order to
calculate the ACF between the plate and the cavity walls we
use the pairwise summation technique [21, 22]. This tech-
nique was shown to give reliable results for the Casimir force
between bodies of arbitrary shape. For instance, for the force
between a flat plate and a small body of arbitrary shape the
maximum possible error was estimated to be 3.8% [21] when
compared to the exact results obtained by quantum field theo-
retic techniques.

In the pairwise summation technique the Casimir energy is
given by

Epw
C =−~cΨ(ε20)

Z

V1

d3r1

Z

V2

d3r2 | r2− r1 |−7, (6)

whereV1 andV2 are the volumes of the two interacting bod-
ies, andΨ(ε20) is a constant which depends on the materials
on V1 andV2. This expression for the energy does not take
into account the fact that the pairwise interaction between the
atoms in the volumesV1 andV2 are actually screened by the
surrounding atoms. In order to partially correct for this fact
avoiding to overestimate the attractive forces we do not inte-
grate over the entire volume of the walls and the plate. Instead
we consider that interactions are only relevant up to a distance
δ inside the metal. The resulting volumes of integrationV1
andV2 are shown in Fig. 3, highlighted in light gray. Clearly,
from Eq. (6) it is not important to define which volume cor-
responds toV1 andV2 since the variables are interchangeable.
For the constantΨ(ε20) we take its value in the limit of perfect
conductorsΨ(ε20) = π/24, and introduce the corrections due
to the finite conductivity later (Section III).

In order to get results that are independent of the exact num-
ber of cavities in the experimental setup, making the analysis
more general, we employed a simple strategy. We note that the
top of the walls, highlighted in light gray in Fig. 3(a), can be
divided into a series of parallelepipeds. Therefore, because of
the additivity of the Casimir energy in the context of the pair-
wise summation technique, the final Casimir energy between
the plate and the walls is given by the sum of the individual
energy of each segment (a parallelepiped) and the plate. The



A. Gusso and A. G. M. Schmidt 171

δ

δ

δ

ε
δ L

(b)

(a)

FIG. 3: (a) The relevant volumes of integration highlighted in light
gray. (b) Parallelepiped below a large plate.

only restriction is that the plate must be sufficiently large to
be considered infinite, making the calculations independent
of the actual location of the different segments on the top of
the walls. This condition can be easily fulfilled by a plate only
slightly larger than the array of cavities because the Casimir
energy decreases very rapidly with the increasing distance.

We evaluatedEpw
C analytically with the help ofMathemat-

ica [23] for a parallelepiped with dimensions given byε,δ and
arbitrary lengthL, below a plate with thicknessδ and lateral
dimensions that ensure that the final result is close enough to
that for an infinitely large plate. This arrangement is depicted
in Fig. 3(b). An energy per unity of area is obtained divid-
ing Epw

C by ε×L. The final Casimir energy, including all the
cavities is then obtained multiplying this energy per unit of
area by the top surface of the walls, a procedure equivalent to
summing over the different segments. Moreover, to make our
analysis more general we assume that there is a sufficiently
large number of cavities that we can calculateEpw

C for one
cavity and then simply multiply it by the total number of cavi-
ties. In such a case the contribution of the outermost walls that
are partially disregarded are negligible. The area that enters in
the calculation ofEpw

C is then the effective “attractive area”
per cavitySi = (a1 +ai + ε)ε, wherei = 2 or 3 depending on
whether the cavity is lying horizontally or standing vertically
below the plate, respectively. The area of the plate under the
action of the forcesF2,3 is A2,3 = a1×a3,2. In what follows
we always calculate the repulsive and attractive Casimir forces
for only one cavity, but the results are actually valid for a large
number of cavities as explained previously.

Similarly to the case of ACFs the RPCs are only apprecia-
ble when the dimensions of the cavity are in the micrometer
range. This is the first practical aspect that has to be con-
sidered in any experiment. Presently, a structure like that in
Fig. 1 can be made from metals like gold, nickel, copper, and
aluminum with the smallest features with tens of nanometers,

and structures like the cavity walls can be made with high
aspect-ratios [24, 25]. Consequently, the small dimensions of
the cavities pose no problem if they are kept above a few tens
of nanometers.

The pressures caused byF2 andF3, whenevera1¿ a2¿ a3
goes with1/a2

1, as can be seen from Eqs. (4) and (5). Conse-
quently, the smaller thea1 the bigger the pressure, which is
desirable. However, the smaller thea1 the smaller the ratio
Ai/Si , for a givenε, therefore diminishing the ratio between
the repulsive and the attractive forces. The lower limit on
a1 is then set by the lower practical limit onε, because the
walls must be thick enough to ensure good reflectivity to the
electromagnetic modes inside the cavity. Such thickness is
roughly determined by the penetration depth of the electro-
magnetic fieldδ0 = λp/(2π), with λp the plasma wavelength
of the metal. For aluminum(gold)λp ≈ 107(136) nm [27],
implying δ0 ≈ 17(22) nm. Now we note that the intensity
of the incident electromagnetic wave a distancex inside the
metal decreases asI = I0exp(−2x/δ0). We can ensure al-
most no transmission of the electromagnetic waves by mak-
ing xmax = ε ≈ 2× δ0. For that reason, we assume that the
smallest possible thickness isε = 30 nm. For such anε the
smallesta1 is approximately 100 nm. As we will see next,
another reason not to takea1 smaller than 100 nm is that for
cavities made from real metals the RCFs are predicted to de-
crease significantly whenever the smaller side of the cavity is
below approximately 100 nm.

We now point out that the configuration of the rectangular
cavity that can lead to the largest ratio between the repulsive
and attractive forces on the plate is that of Fig. 2(a). This is so
because in spite of the fact that both configurations can deliver
the same outward pressures, in practice the ratioF2/S2 can be
made greater (by one order of magnitude) than the ratioF3/S3.
This results from the fact that the fabrication of a vertically
standing rectangular cavity with thin walls much higher than
1 µm would be very difficult. This implies that in generala3 .
1µm. Because for such a configurationa2 ¿ a3, the forceF3
is highly constrained [see Eq. (5)] compared toF2, which can
be made arbitrarily large sincea3 is not constrained. For that
reason, in what follows we consider only the case the cavities
are lying horizontally below the plate. This configuration is
exactly the one depicted in Fig. 1(a).

III. CONDUCTIVITY, ROUGHNESS AND
TEMPERATURE CORRECTIONS

The first correction to be taken into account here is that of
finite conductivity, which alters both ACFs and RCFs. To this
date finite conductivity corrections were calculated only for
two simple geometries, namely, for two plane parallel plates
and for a sphere above a disc [1, 27]. Such calculations are
quite involved, and similar calculations for a rectangular cav-
ity and the interaction between the top of the walls and the
plate would be even more demanding. Here, instead of cal-
culating the corrections from first principles we adopt another
strategy and use the results already obtained for plane parallel
plates.
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In order to justify this approach we note that the Casimir
energy for a rectangular cavity satisfyinga1¿ a2¿ a3 is ap-
proximately that in a region with dimensionsa2×a3 between
two infinite parallel plates separated by a distancea1

E0
C =−~cπ2a2a3

720a3
1

, (7)

as can be inferred from Eq. (3). That means the modes in-
side the cavity are approximately the same as those between
parallel plates a distancea1 apart. Hence it is reasonable to
assume that the corrections to the energy andF1 for the rectan-
gular cavity are adequately described by those to the energy
and force between parallel metallic plates. In the notation
of Ref. [27] we write,EC = ηE(a1)E0

C andF1 = ηF(a1)F0
1 ,

whereE0
C andF0

1 are the energy and force for a cavity with
perfectly conducting walls. The functionsηE,F(x) are the cor-
rection factors that range from approximately 1 at large sep-
arations to approximately 0 at the shortest distances. These
factors depend upon the materials on the walls through their
frequency dependent dielectric functions. In our analysis we
modeled the dielectric functions using the plasma model as
done in Ref. [27]. In this context, sinceηE does not depend
upon a2 the correction to the forceF2 is the same as that
for the energy. However, in order to be conservative we as-
sume that the correction toF2 is the same as that forF1 (ηF
is slightly smaller thanηE). In conclusion, we assume that
F2 = ηF(a1)F0

2 , whereηF(a1) is plotted in Fig. 1 of Ref. [27]
andF0

2 is given by Eq. (4).
We have chosen to analyze two rectangular cavities with

dimensions that have a good commitment with the need for
strong RCF, to be approximate by parallel plates, and to have
reasonable aspect-ratios to meet the requirements of available
fabrication techniques, namely

a1 = 0.1µm, a2 = 0.5µm, a3 = 5µm, (8)

and

a1 = 0.2µm, a2 = 1µm, a3 = 5µm. (9)

We consider cavities made from aluminum, for its excellent
reflectivity in a wide range of frequencies, and gold, a metal
widely employed for the fabrication of MEMS. For the cav-
ity with a1 = 0.1(0.2)µm: F2 = 2.1(0.27) pN; the pressure is
P2 = 4.2(0.27) N m−2; for aluminumηF(a1) = 0.50(0.68);

and for goldηF(a1) = 0.44(0.62). We stress that the energy
inside the cavity for perfectly conducting walls differs from
that for parallel plates with areaa2×a3 by just 0.8(3)%, there-
fore justifying our assumptions.

The finite conductivity correction for the ACF was taken
to be the same as that for parallel plates, and the force ob-
tained from the use of Eq. (6) is simply multiplied byηF(d).
This is certainly a good approximation whenever the separa-
tion d is small compared toε, because in such a case the top of
the walls and the plate form a system resembling two parallel
plates. Ford comparable or greater thanε we do not expect
that this approximation fails completely. This expectation re-
lies on the fact that for larger distances the correction factor is
nearly 1 and vary at a relatively slow pace, consequently, it is
less important. Another consequence of the finite conductiv-
ity is a rapid decay of electromagnetic fields inside the metal.
It was for that reason that we considered a finiteδ in the cal-
culation of the ACF. Based on the values ofδ0 for aluminum
and gold we assumeδ = 50nm.

The second correction to the forces that we consider is that
of surface roughness. What is relevant here is the stochastic
roughness in both the cavity walls and the plate resulting from
the fabrication process. As we did for the finite conductivity
corrections we use the results already derived for the case of
two parallel plates. The corrected energy inside the cavity
can be obtained from the expression for the corrected force
between two plates in Ref. [1] by simply integrating on the
separation, resulting in

Eroughness
C = E0

C

[
1+4

(
δdisp

a1

)2

+60

(
δdisp

a1

)4
]

, (10)

whereδdisp is the dispersion (roughly the amplitude) of the
stochastic roughness. In this approximation there is no de-
pendence of the roughness correction ona2 anda3. Conse-
quently, the forceF2 is corrected by exactly the same factor
as the energy. To keep the corrections below the 1(5)% level
it is required thatδdisp/a1 . 0.049(0.10). That means for a
cavity with a1 = 100 nm that the imperfections on the walls
can be as large as 5(10) nm. Presently, by means of elec-
tron beam lithography a precision in the level of 1.3 nm has
been obtained for the fabrication of MEMS and NEMS [28].
However, most usual techniques are not that accurate and a
precision at the level of 10 nm is most likely to be found in an
experiment [24]. As a first approximation the ACF could also
receive the same correction expressed in Eq. (10).

Finally we address the role of temperature. An expression
for the Casimir energy inside a rectangular cavity with finite
temperature was derived in Ref. [26]. It corresponds to adding
the following terms to the energy in Eq. (1)

Etemp
C = ~c

(
−π2a1a2a3

45β4 +
π

12β2 (a1 +a2 +a3)

− a1a2a3

π2

∞

∑
l ,m,n,p=1

1[
(a1l)2 +(a2m)2 +(a3n)2 +(β

2 p)2
]2

+
1
π

∞

∑
l ,p=1

{
a1

[4(a1l)2 +(βp)2]
+

a2

[4(a2l)2 +(βp)2]
+

a3

[4(a3l)2 +(βp)2]

})
, (11)
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whereβ = ~c/kBT, with kB the Boltzmann’s constant andT
the absolute temperature. For the cavity witha1 = 0.1(0.2)µm
at a temperature of 300 K the energy decreases significantly
by 1.1(4.7)%, while the forceF2 decreases just 0.08(0.2)%.
The corrections are still very small at higher temperatures.

IV. FORCE MEASUREMENT

In the present analysis of force measurement we disregard
both the temperature and roughness corrections. The former
because the correction to the force is always much smaller
than the expected experimental accuracy on the force mea-
surement; of the order of a few percent in any realistic sce-
nario. The later because it could be made suitably small de-
pending on the fabrication technique. Yet, we consider the
most important correction, that of the finite conductivity, that
reduce the repulsive force produced by the cavity by half of its
original value and the attractive forces by even greater factors
[27]. Besides being the most important correction, greatly ex-
ceeding the expected corrections due to roughness, the con-
ductivity will depend upon the material the cavity and the
plate are made from and only marginally on the fabrication
technique. In this sense, the corrections due to conductivity
are universal, and do not depend upon the specific fabrica-
tion technique that will be employed, henceforth justifying the
present theoretical analysis.

As already mentioned in Section II in the analysis we did
not model the expected decrease on the repulsive force as a
function of the separationd. However, it is reasonable to as-
sume that for small separations the repulsive force can be well
described by Eq. (4). For small separations we meand small
compared toa1, because it is the smaller cavity dimension
that, after all, determines the the smaller frequencies allowed
inside the cavity. For smalld we can expect a small pertur-
bation on the modes inside the cavity in a large range of fre-
quencies, henceforth ensuring the existence of the repulsive
force.

The most important information for an experiment designed
to measure RCFs is the ratio between the repulsive and attrac-
tive forces as a function of the separationd. In Figs. 4(a)
and 4(b) we present exactly this ratio for the cavities with
a1 = 0.1µm and0.2µm, respectively. The results are for the
cavity and the plate made from gold, however essentially the
same results are obtained for aluminum. We considered four
differentε, from the smallest possible value to one that could
be most easily obtained by the presently available fabrication
techniques.

What we can infer from Fig. 4 is the smallness of the repul-
sive force compared to the attractive one in the range of dis-
tances at which our calculations are more reliable and precise
(d . a1/2). The ratios are larger for the cavity witha1 = 200
nm, and ford = a1/2 = 100nm the RCF amounts to 30% of
the ACF. For the cavity witha1 = 100nm the RCF amounts
to only 10% atd = a1/2. As a consequence of the smallness
of the ratiosFrep/Fat, any measurement of the force exerted
on the top plate has to be very precise. For the static measure-
ment of the force on the top plate a precise knowledge of the
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FIG. 4: The ratio between repulsive (Frep) and attractive (Fat) Casimir
forces for a rectangular cavity as a function of the separationd. From
the upper to the lower curveε =30, 50, 80, and 100 nm. Cavity
dimensions in (a) given by Eq. (8) and in (b) by Eq. (9).

separationd is also required. This fact can be illustrated by
the ratio between the sum of the attractive force at the actual
position and the repulsive force and the attractive force at the
distanced as determined from the experiment,

F∗

Fat
=

Fat(d+∆)+Frep

Fat(d)
, (12)

where∆ represents the relative displacement to the measured
distance due to the uncertainties. The curves for this ratio are
presented in Fig. 5 for the two cavities and for∆ = 0,±1 and
±3 nm. The upper(lower) curves are for negative(positive)∆.
We note that even for∆ = ±1 nm the errors are in the range
5−15% and are of the order of the force the experiment in-
tends to measure (see Fig. 4). Consequently, the distance has
to be measured with an accuracy better than 1 nm. In order
to estimate the required accuracy we note that for a nominal
separationd = 50nm, an inaccuracy of0.2 nm implies an un-
certainty in the force measurement of approximately±1.5%
for both cavities, which is acceptable.

Our analysis leads to the conclusion that very stringent re-
quirements have to be satisfied by the experimental setup in
order to allow for an adequate measurement of the RCF in
a rectangular cavity. Such requirements surpass considerably
those for the experiments already carried out for the measure-
ment of ACFs [1, 6, 8].

V. APPLICATIONS

As already mentioned in section I, repulsive forces could
have interesting applications in MEMS and NEMS. In fact,
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FIG. 5: Curves for the ratio defined in Eq. (12) for∆ = 0 (continu-
ous),∆ = ±1 nm (dashed) and∆ = ±3 nm (dot-dashed).Cavity di-
mensions in (a) given by Eq. (8) and in (b) by Eq. (9).

such forces could be the solution for the problems that are
presently imposing severe restrictions on the functioning of
MEMS with moveable parts, namely, friction and wear [29].
The forces caused by friction are usually very large at small
scales [30] when compared to the forces that can be deliv-
ered by the available driven systems in, e.g., micromotors and
microactuators. Usually friction obeys Amonton’s law (fric-
tional force depends linearly on the load through the coeffi-
cient of friction), however, at small scales friction turns out to
be proportional to the contact area between the surfaces [30].
For systems sufficiently large to obey Amonton’s law, repul-
sive forces could be used to reduce the load. For instance, the
rotary piece of a micromotor or gear (usually with the shape
of a disc) could be lifted by a bottom force that could partially
or completely compensates for its weight. This force could
be the RCF predicted in Ref. [16] or, as we propose here, the
force produced by a set of rectangular cavities placed beneath
the rotary piece of the micromotor or gears. The first option
requires the use of suitable materials that presently are not
available, and is still a matter of debate whether such forces
could actually exist [31, 32]. The second option, the use of
cavities beneath the moveable pieces, could be a simple solu-
tion whenever these pieces were made from metals or could
at least be covered with a thin metal layer. For smaller sys-
tems, where the load does not play the most important role
in the resulting frictional force, the repulsive forces could be
used in the same way to reduce the effective weight that has to
be sustained by the rotating pivots or bearings. Consequently,
the pivots and bearings could possibly be smaller, leading to
a reduction in the frictional force and wear. Such a reduction
is highly desirable since wear is the most important source of
failure in MEMS , limiting their continuous operation lifetime

TABLE I: The distancesd0,d1 and d10 as defined on the text for
cavities made from Al(Au), and dimensions given in Eq. (8).

ε (nm) d0 (nm) d1 (nm) d10 (nm)
30 88.2(88.1) 89.4(89.5) 107(112)
50 100(100) 102(102) 126(135)

TABLE II: The distancesd0,d0.1 andd1 as defined on the text for
cavities made from Al(Au), and dimensions given in Eq. (9).

ε (nm) d0 (nm) d0.1 (nm) d1 (nm)
30 135(134) 137(136) 163(166)
50 152(151) 154(153) 186(192)

to be of the order of seconds or minutes rather than hours or
days [29].

To estimate the capability of the repulsive force produced
by the rectangular cavities to compensate for the weight of the
moveable parts of MEMS and NEMS we determined the dis-
tanced0 at which the RCF equates the ACF and the distances
required to the repulsive force to equate the ACF added to the
weight of a plate made from a metal with an intermediate den-
sity ρ = 8.9 g cm−3 (similar to that of nickel and cooper) and
thickness of 1µm and 10µm denotedd1 andd10, respectively.
At this point we have to note that structures with thickness
ranging from 0.1µm up to 10µm are usually employed in
the fabrication of parts of MEMS and NEMS [25] even when
the other dimensions of these parts are of the order of a few
millimeters [33]. We present in Table Id0,d1 andd10 for the
cavity with a1 = 0.1µm, made from aluminum and gold, and
for the thickness of the wallsε = 30 nm and 50 nm. In Table
II the results are presented for the cavity witha1 = 0.2µm.
In this case, because the repulsive force is not strong enough
to equate the weight of a plate 10µm thick, we present the
distanced0.1 required to sustain a plate with thickness of 0.1
µm.

In order to better understand the implications of the results
presented in Tables I and II we have to remember the fact that
the RCF produced by the cavity on the plate is expected to
decrease with the separationd. Actually, from simple wave
propagation arguments, the change on the force is expected
to depend upon the ratiod/a1. Consequently, we can ex-
pect a smaller correction (smaller decrease) to the force due
to the separation for the cavity for which the ratiod/a1 is
smaller. We now note that forε = 30 nm d0(d1) corresponds
to 88(89)% and 68(82)% of the cavity width fora1 = 0.1µm
and 0.2µm, respectively. For that reason the cavity with
a1 = 0.2µm is the most adequate for investigations concern-
ing the reduction of friction and wear. Becaused0.1 is only
slightly larger thand0, levitation of thin metallic plates caused
by RCF is also likely to occur.

We also suggest the use of an artifice in order to reduce fur-
ther the distances at which repulsive forces could counterbal-
ance the attractive forces: thiner walls with short height built
on top of the cavity walls. Thiner walls may assure enough re-
flectivity for the electromagnetic modes inside the cavity with-
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TABLE III: The distancesd0,d1 andd10 as defined on the text for
cavities made from Al(Au), with the dimensions given in Eq. (8),
and with additional top walls.

ε (nm) d0 (nm) d1 (nm) d10 (nm)
30 78.4(78.3) 79.7(79.7) 96.6(102)
50 82.0(82.0) 83.5(83.8) 107(116)

TABLE IV: The distancesd0,d0.1 andd1 as defined on the text for
cavities made from Al(Au), with the dimensions given in Eq. (9), and
with additional top walls.

ε (nm) d0 (nm) d0.1 (nm) d1 (nm)
30 125(124) 127(126) 153(157)
50 132(132) 134(134) 166(173)

out further disturbing the modes if they are kept sufficiently
short. The small aspect-ratio further facilitates their fabrica-
tion. For instance, if the top walls were 15 nm thick and 45
nm high the distances between the top of these walls and the
plate are predicted to be those presented in Tables III and IV.
In calculating those distances we summed over the contribu-
tions from the original wall and the additional top wall. The
contribution of the original wall is small as can be seen from
the similarity between the results forε = 30 nm and 50 nm in
Tables III and IV as compared to the results in Tables I and II
that differ considerably.

It is clear that the introduction of the top walls can consid-
erably reduce the required separations. If the top walls can
be made thiner and taller without further disturbing the modes
inside the cavity is a subject that deserves further theoretical
and experimental investigation. Triangular structures are also
worth of investigation. Anyhow, for the shorter distances thus
obtained the assumption of a constant RCF asd varies is more
reliable, and therefore the results are self-consistent.

VI. FINAL DISCUSSION AND CONCLUSIONS

In this article we presented a realistic analysis of a setup
intended to measure the repulsive forces resulting from the
geometrical constraints imposed on the quantum electromag-
netic vacuum. For realistic we mean that the nonideality of the
cavity was taken into account in the calculation of the RCF as
well as the unavoidable ACF. We took advantage of the sim-
ilarity between a rectangular cavity satisfying the condition
a1¿ a2¿ a3 and two plane parallel plates, considerably sim-
plifying the analysis. The results thus obtained are expected to
be a very good description of the reality for small ratiosd/a1
and still reliable when the ratio is around0.5.

¿From the results presented in section IV we conclude that
for the smaller separations at which our approach is more pre-
cise, attractive forces are always considerably greater than the
attainable repulsive forces. This fact poses severe require-
ments for the experiment. For separations larger than approx-

imately a1/2 a reduction of the repulsive force is expected
and the curves in Figs. 4 and 5 are no longer precise. How-
ever, these curves indicate that even under the more optimistic
assumption that the decrease in the RCF is small and that the
reliability of our results extends to larger separations, the mea-
surement may be difficult, unless the cavity walls are suffi-
ciently thin. That this is specially true for the case the cavity
hasa1 = 0.1µm, can be seen from the fact that forε = 100nm,
at a separationd = a1 = 0.1µm the repulsive force amounts to
only 50% of the attractive force. Fortunately, we have a better
situation for the case of a larger cavity since the RCF equates
the ACF at shorter distances, as can be seen in Fig. 4(b).

It is worth to mention that there seems to be no advantage
on the use of cavities witha1 much greater than 200 nm. The
reason for that is the fact that for cavities with largera1 the
ratio Frep/Fat is essentially the same as that fora1 = 200nm
when plotted as a function ofd/a1. Nevertheless, the RCF and
ACF decrease significantly, possibly making its measurement
less precise. This fact has to be considered in the design of
any actual experiment.

The use of the plasma model in the calculation of the finite
conductivity corrections results in correction factorsηF that
are from 2% to 10% smaller than those predicted using the
tabulated data for the dielectric functions of aluminum and
gold for distances around 100 nm [27]. This fact along with
our conservative assumption that the forceF2 is corrected by
the factorηF for the forceF1, may imply that the actual re-
pulsive forces delivered by the cavities in an experiment are
greater than the ones we predicted here by at most 20%. Such
an increase in the force does not significantly changes our re-
sults because of the strong dependence of the attractive forces
on the separationd. More precisely, the distances would de-
crease no more than 5%.

The most obvious use of the RCF in MEMS and NEMS
is to levitate structures as we proposed here, preventing fric-
tion and wear. However, the applicability of such forces is
conditioned to the actual decrease of the RCF with the separa-
tion between the cavities and the upper (plate-like) structure.
As already mentioned the determination of the actual repul-
sive force with the distance is beyond the scope of the present
work, and is expected to be quite involved, specially in the
case that the finite conductivity of the walls are taken into ac-
count. Nonetheless, the results presented in section V, based
on the extrapolation of a constant RCF to larger separations,
indicate that the RCF produced by the rectangular cavity is
potentially useful and the importance of the reduction of wear
and friction in MEMS and NEMS makes it worth of further
investigation.
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A. Tenório, and A. C. Tort, Phys. Rev. D60, 105022 (1999).
[16] O. Kenneth, I. Klich, A. Mann, and M. Revzen,

Phys. Rev. Lett.89, 033001 (2002).
[17] J. Maclay et al., published asAIAA/ASME/SAE/ASEE 37th

Joint Propulsion Conference, Salt Lake City, July 8, 2001
(available athttp://www.quantumfields.com ); G. J. Maclay
and J. Hammer, inProc. of the 7th International Conference on
Squeezed States and Uncertainty Relationsedited by D. Han,

Y. S. Kim, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich,
available only in electronic format athttp://www.physics.
umd.edu/rgroups/ep/yskim/boston/boston.html

[18] G. J. Maclay, Phys. Rev. A61, 052110 (2000).
[19] P. M. Morse and P. J. Rubenstein, Phys. Rev.54, 895 (1938);

Min Li et al., IEEE Trans. Eletromag. Compat.39, 225 (1997)
[20] T. Emig, Europhys. Lett. ,62, 466 (2003); Phys. Rev. A67,

022114 (2003).
[21] V. M. Mostepanenko and I. Yu. Sokolov,

Sov. Phys. Dokl. (USA)33, 140 (1988).
[22] M. Bordag, G. L. Klimchitskaya, and V. M. Mostepanenko,

Mod. Phys. Lett.19, 2515 (1994); Int. J. Mod. Phys. A10, 2661
(1995).

[23] S. Wolfram, The Mathematica Book, 4th ed., (Wolfram Me-
dia/Cambridge University Press, 1999)

[24] C. R. K. Marrian and D. M. Tennant, J. Vac. Sci. Technol. A21,
S207 (2003).

[25] H. G. Graighead, Science290, 1532 (2000).
[26] F. C. Santos and A. C. Tort, Phys. Lett. B482, 323 (2000).
[27] A. Lambrecht and S. Reynaud, Eur. Phys. J. D8, 309 (2000).
[28] J. T. Hastings, Feng Zhang, and Henry I. Smith,

J. Vac. Sci. Technol. B21, 2650 (2003).
[29] S. L. Miller et al., Microelectron. Reliab. 39, 1229 (1999);

J. A. Williams, Wear251, 965 (2001); W. Merlijn van Spen-
gen, Microelectron. Reliab.43, 1049 (2003).

[30] Weiyuan Wanget al., Sens. Actuators A97-98, 486 (2002).
[31] D. Iannuzzi and F. Capasso, Phys. Rev. Lett.91, 029101 (2003).
[32] C. Henkel and K. Joulain, quant-ph/0407153.
[33] See available information athttp://mems.sandia.gov/

scripts/index.asp .


