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A natural and very important development of constrained system theory is a detail study of the relation
between the constraint structure in the Hamiltonian formulation with specific features of the theory in the La-
grangian formulation, especially the relation between the constraint structure with the symmetries of the La-
grangian action. An important preliminary step in this direction is a strict demonstration, and this is the aim of
the present article, that the symmetry structures of the Hamiltonian action and of the Lagrangian action are the
same. This proved, it is sufficient to consider the symmetry structure of the Hamiltonian action. The latter prob-
lem is, in some sense, simpler because the Hamiltonian action is a first-order action. At the same time, the study
of the symmetry of the Hamiltonian action naturally involves Hamiltonian constraints as basic objects. One can
see that the Lagrangian and Hamiltonian actions are dynamically equivalent. This is why, in the present article,
we consider from the very beginning a more general problem: how the symmetry structures of dynamically
equivalent actions are related. First, we present some necessary notions and relations concerning infinitesimal
symmetries in general, as well as a strict definition of dynamically equivalent actions. Finally, we demonstrate
that there exists an isomorphism between classes of equivalent symmetries of dynamically equivalent actions.
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I. INTRODUCTION

The most of contemporary particle-physics theories are for-
mulated as gauge theories. It is well known that within the
Hamiltonian formulation gauge theories are theories with con-
straints. This is the main reason for a long and intensive
study of the formal theory of constrained systems, see [1].
It still attracts considerable attention of researchers. From
the very beginning, it became clear that the presence of first-
class constraints among the complete set of constraints in the
Hamiltonian formulation is a direct indication that the the-
ory is a gauge one, i.e., its Lagrangian action is invariant
under gauge transformations. A next natural, and very im-
portant, step would be a detail study of the relation between
the constraint structure and constraint dynamics in the Hamil-
tonian formulation with specific features of the theory in the
Lagrangian formulation, especially the relation between the
constraint structure with the gauge transformation structure of
the Lagrangian action. An important problem to be solved
in this direction would be a strict demonstration, and this is
the aim of the present article, that the symmetry structures of
the Hamiltonian action and of the Lagrangian action are the
same. This proved, it is sufficient to consider the symmetry
structure of the Hamiltonian action. The latter problem is, in
some sense, simpler because the Hamiltonian action is a first-
order action. At the same time, the study of the symmetry of
the Hamiltonian action naturally involves Hamiltonian con-
straints as basic objects, see [2, 3]. It follows from the results
of the article [4] that the Lagrangian and Hamiltonian actions
are dynamically equivalent. This is why in the present article
we consider from the very beginning a more general problem:
how the symmetry structures of dynamically equivalent ac-
tions are related. The article is organized as follows: In sec.
2, we present some necessary notions and relations concern-
ing infinitesimal symmetries in general. A strict definition of

dynamically equivalent actions is given in sec. 3. Finally, in
sec. 4, we demonstrate that there exists an isomorphism be-
tween classes of equivalent symmetries of dynamically equiv-
alent actions.

II. SYMMETRIES

A. Basic notation and relations

We consider finite-dimensional systems which are de-
scribed by the generalized coordinatesq ≡ {qa; a =
1,2, ...,n}. The space of the variablesqa[l ],

qa[l ] = (dt)
l qa , l = 0,1, ...,Na,

(
qa[0] = qa

)
, dt =

d
dt

, (1)

considered as independent variables, with finiteNa , or with
some infiniteNa , is called the jet space. The majority of phys-
ical quantities are described by so-called local functions (LF)
which are defined on the jet space. The LF depend onqa[l ] up
to some finite ordersl ≤ Na ≥ 0. The following notation is
often used[6]:

F
(

qa[0],qa[1],qa[2], ...
)

= F
(

q[]
)

(2)

for the LF. In what follows, we also deal with so-called lo-
cal operators (LO). LÔUAa are matrix operators which act on
columns of LFf a producing columnsFA of LF, FA = ÛAa f a .
LO have the form

ÛAa =
K<∞

∑
k=0

uk
Aa(dt)

k , (3)

whereuk
Aa are LF. We call the operator
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(
ÛT)

aA =
K<∞

∑
k=0

(−dt)
k uk

Aa (4)

the transposed operator with respect toÛAa. The following
relation holds true for any LFFA and fa:

FAÛAa f a =
[(

ÛT)
aAFA]

f a +dtQ , (5)

whereQ is an LF. The LOÛab is symmetric (+) or antisym-
metric (−) respectively if

(
ÛT

)
ab = ±Ûab. Thus, for any an-

tisymmetric LOÛab relation (5) is reduced to the following:
f aÛab f b = dQ/dt , whereQ is a LF.

Suppose the total time derivative of an LF vanishes. Then
this LF is a constant. Namely,

dF
(

q[l ] (t)
)

dt
≡ 0 =⇒ F

(
q[l ]

)
≡ const. (6)

Indeed, let us suppose thatNa are the orders of the coordinates

qa in the LF, i.e.F
(

q[l ]
)

= F
(
· · ·qa[Na]

)
. Then according to

(6) the following relation holds true

∂F

∂qa[Na]
qa[Na+1] ≡−

[
∂tF +∑

a

Na−1

∑
k=0

∂F

∂qa[k] q
a[k+1]

]
.

The right hand side of the above relation does not depend on

qa[Na+1]. Thus, ∂F/∂qa[Na] ≡ 0, and thereforeF
(

q[l ]
)

must

not depend onqa[Na] . In the same manner we can see that

F
(

q[l ]
)

must not depend onq[N−1] and so on. IfF
(

q[l ]
)

does

not depend on anyq[l ] , then∂tF
(

q[l ]
)
≡ 0 as well, and we

getF
(

q[l ]
)

= const.

We recall thatFA

(
q[]

)
= 0 andχα

(
q[]

)
= 0 are equivalent

sets of equations whenever they have the same sets of solu-
tions. In what follows, we denote this fact asF = 0⇐⇒ χ =

0. Via O(F) we denote any LF that vanishes on the equations

Fa

(
q[]

)
= 0. More exactly, we defineO(F) = V̂bFb , where

V̂b is an LO. Besides, we denote viâU = Ô(F) any LO that

vanish on the equationsFa

(
q[]

)
= 0. That means that the LF

u that enter into (3) vanish on these equations,u = O(F), or
equivalentlyÛ f = O(F) for any LF f .

We consider Lagrangian theories given by an actionS[q] ,

S[q] =
Z t2

t1
Ldt , L = L

(
q[]

)
, (7)

where a Lagrange functionL is defined as an LF on the jet
space[7]. The Euler–Lagrange equations are

δS
δqa = ∑

l=0

(−dt)
l ∂L

∂qa[l ] = 0. (8)

Any LF of the formO(δS/δq) is called an extremal.
For any LFF

(
q[]

)
the operation

dELF
dqa =

Na

∑
l=0

(
− d

dt

)l ∂F

∂qa[l ] (9)

is called the Euler–Lagrange derivative with respect to the co-
ordinateqa. One can see that the functional derivative of the
actionS coincides with the Euler–Lagrange derivative of the
Lagrange function,

δS
δqa =

dELL
dqa . (10)

The Euler–Lagrange derivative has the following property:

dEL

dqa

d
dt

= 0. (11)

To prove this, one may use the relation

∂
∂qa[k]

d
dt

=
∂

∂qa[k]

(
∂t + ∑

l=0

qb[l+1] ∂
∂qb[l ]

)
= (1−δk0)

∂
∂qa[k−1]

+

(
∂t + ∑

l=0

qb[l+1] ∂
∂qb[l ]

)
∂

∂qa[k] =
d
dt

∂
∂qa[k] +(1−δk0)

∂
∂qa[k−1] .

Thus, one gets
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dEL

dqa

d
dt

= ∑
k=0

(
− d

dt

)k ∂
∂qa[k]

d
dt

=−∑
k=0

(
− d

dt

)k+1 ∂
∂qa[k] + ∑

k=1

(
− d

dt

)k ∂
∂qa[k−1]

=
d
dt ∑

k=0

(
− d

dt

)k ∂
∂qa[k] −

d
dt ∑

k=1

(
− d

dt

)k−1 ∂
∂qa[k−1] =

d
dt

dEL

dqa −
d
dt

dEL

dqa = 0.

B. Noether symmetries

Consider an infinitesimal inner[8] trajectory variationδqa

(inner variations vanish together with all their time derivatives
at t1 andt2). Namely,

qa (t)→ q′a (t) = qa (t)+δqa . (12)

We suppose thatδqa = δqa
(

q[]
)

is an LF. The correspond-

ing first variation of the action can be written as follows:

δS=
Z t2

t1
δ̂Ldt , (13)

where the operator̂δ, which will be called the transformation
operator, acts on the corresponding LF as[9]

δ̂ = ∑
k=0

δqa[k] ∂
∂qa[k] = δ̂δq . (14)

Two simple but useful relations follow from (14):

δ̂qa = δqa , δ̂ciδiq = ci δ̂δiq. (15)

The variation (12) is a symmetry transformation of the ac-
tion S, or simply a symmetry of the actionS, whenever the cor-
responding first variation of the Lagrange function is reduced
to the total time derivative of a LF. Namely,δq is a symmetry
if

δ̂L =
dF
dt

, (16)

whereF is an LF. In this case the first variation (13) of the
action depends on the complete set of the variablesq[] att = t1
andt = t2 only,

δS=
Z t2

t1
δ̂Ldt = F |t2t1 .

Any linear combination of symmetry transformations is a
symmetry.

Indeed, letδiq be some symmetry transformations, and
δq = ciδiq, whereci are some constants. Then, taking into
account (15), we obtain:

δ̂δiqL =
dFi

dt
=⇒ δ̂δqL =

dF
dt

, F = ciFi . (17)

Transformation operators that correspond to symmetry
transformations are called symmetry operators.

The above-described symmetry transformations are called
Noether symmetries.

Below, we list some properties of the transformation oper-
ators and of the symmetry transformations:

a) Any first variation of the Lagrange function can be pre-
sented as

δ̂L = δqa dELL
dqa +

dP
dt

= δqa δS
δqa +

dP
dt

, (18)

whereP is an LF of the form

P = ∑′
a

Na

∑
m=1

pm
a δqa[m−1] , pm

a =
Na

∑
s=l

(
− d

dt

)s−m
∂L

∂qa[s] . (19)

One ought to remark that the sum (19) that presentsP is run-
ning only over thosea for which Na > 0. However, it can be
extended over alla′s since the momentapm

a that correspond to
the degenerate coordinates are zero. Thus, the prime over the
sum above can be omitted.

b) Any transformation operator commutes with the total
time derivative:

[
δ̂ ,

d
dt

]
= 0. (20)

The latter property is justified by the following relations:

d
dt

δ̂ = ∑
k=0

[
δqa[k+1] ∂

∂qa[k] +δqa[k] ∂
∂qa[k] ∂t

]
+ ∑

k,l=0

qb[l+1] δqa[k] ∂2

∂qa[k]∂qb[l ] ,

δ̂
d
dt

= ∑
l=0

[
δ̂qb[l+1]

] ∂
∂qb[l ] + δ̂∂t + ∑

k,l=0

δqa[k]qb[l+1] ∂2

∂qb[l ]∂qa[k] =
d
dt

δ̂ .
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c) The commutator of any two transformation operators is
a transformation operator as well.

Namely, letδ̂1q = δq1, andδ̂2q = δq2. Then
[
δ̂1, δ̂2

]
= δ̂3 , δ̂3q = δ̂1δq2− δ̂2δq1 . (21)

Indeed, one can write:

δ̂1δ̂2 = ∑
l=0

(
δ̂1δqb[l ]

2

) ∂
∂qb[l ] + ∑

k,l=0

δqa[k]
1 δqb[l ]

2
∂

∂qb[l ]
∂

∂qa[k]

= ∑
l=0

dl (δ̂ε1δqb
2)

dtl
∂

∂qb[l ] + ∑
k,l=0

δqa[k]
1 δqb[l ]

2
∂

∂qb[l ]
∂

∂qa[k] , (22)

δ̂2δ̂1 = ∑
k=0

(
δ̂ε2δqa[k]

1

) ∂
∂qa[k] + ∑

l ,k=0

δqb[l ]
2 δqa[k]

1
∂

∂qa[k]
∂

∂qb[l ]

= ∑
k=0

dk
(

δ̂ε2δqb
1

)

dtk
∂

∂qa[k] + ∑
k,l=0

δqa[k]
1 δqb[l ]

2
∂

∂qb[l ]
∂

∂qa[k] .

(23)

Then subtracting Eq. (23) from Eq. (22), we obtain the rela-
tion (21).

In other words, the set of all transformation operators form
a Lie algebra.

d) The commutator of the Euler–Lagrange derivative and a
transformation operator is proportional to the Euler–Lagrange
derivative. Namely, if̂δq = δqb, then

[
dEL

dqa , δ̂
]

= Q̂b
a
dEL

dqb , Q̂b
a = ∑

k=0

(
− d

dt

)k ∂
∂qa[k] δqb . (24)

To prove this property, one may consider a sequence of
equalities,

Z t2

t1

dEL

(
δ̂F

)

dqa ζadt =
Z t2

t1
δ̂ζδ̂Fdt

=
Z t2

t1
δ̂δ̂ζFdt+

Z t2

t1
δ̂δ̂ζδqFdt

=
Z t2

t1
ζa ∑

k=0

(
− d

dt

)k

δ̂
∂F

∂qa[k] dt +
Z t2

t1
δ̂ζδqb dELF

dqb dt

=
Z t2

t1
ζa

(
δ̂δb

a + Q̂b
a

) dELF
dqb dt ,

(
δ̂ζqa = ζa

)
,

whereζ(t) is an arbitrary inner variation, andF is an LF.
It is useful to keep in mind the following generalization of

relation (24):
[(

d
dt

)k dEL

dqa , δ̂

]
=

(
d
dt

)k

Q̂b
a

dEL

dqb , (25)

which follows immediately from (20) and (24).

e) The commutator of two symmetry operators is a symme-
try operator as well.

Indeed, let̂δ1q= δq1, andδ̂2q= δq2 be symmetry transfor-
mations, i.e.,̂δ1L = dF1/dt , andδ̂2L = dF2/dt . Then, taking
into account (20) and (21), we obtain

[
δ̂1, δ̂2

]
L = δ̂3L =

d
dt

F3 , F3 = δ̂1F2− δ̂2F1 . (26)

Thus, the set of symmetry operators of the actionS forms a
Lie subalgebra of the Lie algebra of all transformation opera-
tors.

f) Symmetry transformations transform extremals into ex-
tremals.

The validity of this assertion follows from the relations
proven below.

Supposêδ is a symmetry operator; then the following rela-
tion takes place:

δ̂
δS
δqa =−Q̂b

a
δS
δqb . (27)

Indeed, by virtue of (10), (11), and (24), we can write

δ̂
δS
δqa = δ̂

dELL
dqa =

dEL

(
δ̂L

)

dqa − Q̂b
a
dELL
dqb

=
dEL

dqa

dF
dt
− Q̂b

a
δS
δqb =−Q̂b

a
δS
δqb .

A generalization of (27) based on the relation (24) reads:

δ̂
dk

dtk
δS
δqa =− dk

dtk
Q̂b

a
δS
δqb . (28)

g) Symmetry transformations transform genuine trajecto-
ries into genuine trajectories.

Indeed, suppose thatq̃a be a genuine trajectory, that is

δS
δqa

∣∣∣∣
q̃
= 0, (29)

andδqa be a symmetry transformation. Then the transformed
trajectory q̃′a = q̃a + δqa is also a genuine one. Indeed, by
virtue of (27) and (29), we get:

δS
δqa

∣∣∣∣
q̃′=q̃+δq

=
δS
δqa

∣∣∣∣
q̃
+ δ̂

δS
δqa

∣∣∣∣
q̃
=

(
δb

a− Q̂b
a

) δS
δqb

∣∣∣∣
q̃
= 0.

C. Trivial symmetries

Below, we are going to describe so-called trivial symme-
tries transformations, which exist for any action.

A symmetry transformation is called a trivial symmetry
transformation whenever the corresponding trajectory varia-
tion has the form

δqa = Ûab δS
δqb , (30)
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whereÛ is an antisymmetric LO, that is
(
ÛT

)ab = −Ûab .
Thus, trivial symmetry transformations do not affect genuine
trajectories. (One can prove, see below, that any symme-
try transformation that vanishes on the equations of motion,
δqa = O(δS/δq) , is trivial, namely it has the form (30)). With
the help of relations (5) and (18), we can easily verify that (30)
is actually a symmetry transformation. Indeed,

δ̂L =
dELL
dqb ÛabdELL

dqb +
dP
dt

=
dF
dt

+
dP
dt

=
d(F +P)

dt
,

whereF andP are some LF.
Since trivial symmetry transformations are proportional to

the equations of motion, they do not change genuine trajecto-
ries, as was already mentioned above.

The commutator of a symmetry operator and a trivial-
symmetry operator is a trivial-symmetry operator. Namely,
if

δ̂1L = dF1/dt , δ̂2L = dF2/dt, δ̂2qa = δ2qa = V̂abδS/δqb ,

then

[
δ̂1, δ̂2

]
L = δ̂3L , δ̂3qa = δ3qa = Ûab δS

δqb , (31)

whereV̂ab andÛab are some antisymmetric LO.

To verify (31), we remark that, according to (21),δ̂3 is a
symmetry operator, withδ3q = δ̂1δ2q− δ̂2δ1q, whereδ1q =
δ̂1qa. The termδ̂1δ2q can be calculated with the help of (14),

δ̂1δ2qa = ∑
k=0

∂(δ2qa)
∂qc[k]

[
dk

dtk

(
V̂cb δS

δqb

)]
,

and the term̂δ2δ1q can be calculated with the help of (27),

δ̂2δ1qa =
(

δ̂2V̂
ab

) δS
δqb +V̂abδ̂2

δS
δqb =

(
δ̂2V̂

ab
) δS

δqb −V̂abQ̂c
b

δS
δqc .

Thus, we obtain:̂δ3qa = δ3qa = ÛabδS/δqb, whereÛab is an antisymmetric LO of the form

Ûab = ∑
k=0

[
∂(δ2qa)

∂qc[k]

(
d
dt

)k

V̂cb+V̂ac
(
− d

dt

)k ∂
(
δ2qb

)

∂qc[k]

]
− δ̂2V̂

ab.

We call two symmetry transformationsδ1q andδ2q equiv-
alent (δ1q∼ δ2q) whenever they differ by a trivial symmetry
transformation:

δ1q∼ δ2q⇐⇒ δ1qa−δ2qa = Ûab δS
δqb . (32)

Here
(
ÛT

)ab =−Ûab.
Let G(S) be the Lie algebra of all symmetries of the action

S. The trivial symmetries form the idealGtr (S) in the Lie
algebraG(S). Then the classes of equivalent symmetries form
a Lie algebraGPh(S) isomorphic to the quotient algebra:

GPh(S) = G(S)/Gtr (S) .

III. DYNAMICALLY EQUIVALENT ACTIONS

Very often we encounter an action

SE[q,y] =
Z

LE

(
q[],y[]

)
dt , (33)

which contains two groups of coordinatesq[] andy[] such that
the Euler–Lagrange allow one to express ally via q[]. It is
convenient to callSE[q,y] the extended action. One can try to
eliminate the variablesy from the extended action to get some
reduced action, which depends now only onq, and ask the
question: What is the relation between the extended and the
reduced actions? There exist a case when this question has a
definite answer [2, 5]. Namely, let us suppose that the Euler–
LagrangeδSE [q,y]/δy = 0 allow one to express uniquely the
variablesy as LF of the variablesq,

δSE [q,y]
δy

= 0⇐⇒ y = ȳ
(

q[]
)

. (34)

Then we define the reduced actionS[q]

S[q] = SE[q, ȳ] =
Z

LE

(
q[], ȳ[]

)
dt =

Z
L

(
q[]

)
dt . (35)

Let us compare the Euler–Lagrange that correspond to both
actions. First consider the variation of the reduced action
δS under arbitrary inner variationsδq,
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δS[q] =
Z (

δSE [q,y]
δqi

∣∣∣∣
y=ȳ

δqi +
δSE [q,y]

δyα

∣∣∣∣
y=ȳ

δȳα

)
dt =

Z δS[q]
δqi δqidt . (36)

In virtue of (34), the Euler–Lagrange of the reduced action
read

δS[q]
δq

=
δSE [q,y]

δq

∣∣∣∣
y=ȳ

= 0. (37)

On the other hand, the Euler–Lagrange of the extended ac-
tion SE [q,y] are

δSE [q,y]
δq

= 0,
δSE [q,y]

δy
= 0⇐⇒ y = ȳ

(
q[]

)
.

They are reduced to (37) in theq-sector. We can see that
the extended action and the reduced action lead to the same
Euler–Lagrange forq. This is why the variablesy are called
the auxiliary variables. The auxiliary variablesy can be elim-
inated from the action with the help of the Euler–Lagrange.
Further, we call the actionsSE [q,y] andS[q] the dynamically
equivalent actions.

One ought to stress that the above equivalence is a conse-
quence of the assumption that the variablesy are expressed
via q by means of the equationsδS/δy = 0 only. If, for this
purpose, some of the equationsδS/δq = 0 are used as well,
then the above equivalence can be absent. Of course, the so-
lutions of the Euler–Lagrange for the reduced action, together
with the definitiony = ȳ, contain all solutions of the Euler–
Lagrange for the extended action (as it is easily seen from Eq.
(36)). However, the reduced action can imply additional solu-
tions.

Actions containing auxiliary variables and the correspond-
ing reduced actions have similar properties, in particular, there
exists a direct relation between their symmetry transforma-
tions.

As was mentioned above, we are going to relate the sym-
metry properties of the extended and reduced actions. To this
end, it is convenient to make an invertible coordinate replace-

ment, (qa,yα) → q̃A = (qa,zα), y = z+ ȳ
(

q[l ]
)

, in the ex-

tended action. In fact, we are going to consider a modified
extended actioñS[q̃], which is obtained from the extended ac-
tion SE[q,y] as follows:

S̃[q̃] =
Z

L̃
(

q̃[]
)

dt = SE[q,z+ ȳ] =
Z

LE

(
q[],z[] + ȳ[]

)
dt .

(38)
The extended actionSE[q,y] and the modified extended ac-
tion S̃[q̃] are completely equivalent. They lead to completely
equivalent Euler–Lagrange. Thus, it is sufficient to study the
relation between the symmetry properties of the modified ex-
tended actioñS[q̃] and the reduced actionS[q] .

Note that

S[q] = S̃[q̃]
∣∣
z=0 , L

(
q[]

)
= L̃

(
q̃[]

)∣∣∣
z=0

. (39)

Besides, the action (38) can be presented in the form

S̃[q̃] = S[q]+∆S[q̃] , ∆S[q̃] =
Z

∆Ldt ,

= LE

(
q[],z[] + ȳ[]

)
−LE

(
q[], ȳ[]

)
. (40)

The variablesz are auxiliary ones for the actioñS[q̃], and, in
particular,z= 0 on the Euler–Lagrange. Indeed,

δS̃[q̃]
δz

= 0⇐⇒ δSE[q,y]
δy

= 0=⇒ y= ȳ
(

q[]
)

=⇒ z= 0. (41)

The latter implies:

δS̃
δzα =

δ∆S
δzα = Ûαβzβ = 0. (42)

Since equation (41) has the unique solutionz = 0, one can
easily verify thatÛ is an invertible LO. The equation (42)
implies

∆L = zαK̂αβzβ +
d
dt

F , (43)

whereK̂ is a symmetric LO, andF is an LF. Besides, one can
write

zα =
(
Û−1)αβ δ∆S

δzβ =
(
Û−1)αβ δS̃

δzβ . (44)

On the other hand, due to the property (11), one can write

δ∆S
δqa =

dEL∆L
dqa =

dEL

dqa

[
zαK̂αβzβ

]
.

Then, taking into account (43, 44), and the definition of the
Euler–Lagrange derivative, we get the following useful rela-
tion:

δ∆S
δqa = Λ̂α

a
δ∆S
δzα , Λ̂α

a = ∑
l=0

(
− d

dt

)l

zν ∂K̂νβ

∂qa[l ]

(
Û−1)βα

, (45)

whereΛ̂α
a is an LO.

IV. SYMMETRIES OF THE EXTENDED AND THE
REDUCED ACTIONS

There exists a one-to-one correspondence (isomorphism)
between the symmetry classes of the extended actionS̃[q̃] and
the reduced actionS[q] . Below, we prove a set of assertions,
which justify, in fact, this correspondence.
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i) If the transformation

δq̃A =
(

δ′qa

δzα

)
, (46)

is a symmetry of the extended actionS̃, then the transforma-
tion

δqa = δ′q
∣∣
z=0 (47)

is a symmetry of the reduced actionS.
Indeed, let (46) be a symmetry of the actionS̃. Then

δ̂δq̃L̃ =
d
dt

F̃ , (48)

whereF̃ is an LF. Considering (48) atz= δz= 0, we get

δ̂δqL =
d
dt

F , δqa = δ′q
∣∣
z=0 , F = F̃

∣∣
z=0 ,

whereL is given by (39). Thus, any symmetry of the action
S̃ implies a symmetry of the actionS. The symmetryδq ob-
tained in such a way can be called the symmetry reduction of
the extended action.

ii) If the transformationδq is a symmetry of the reduced
actionS, then the transformation

δq̃A =
(

δqa

δzα

)
, δzα =−(

Λ̂T)α
a δqa , (49)

where the LOΛ̂ defined by Eq. (45) is a symmetry of the
extended actioñS.

To prove this assertion, let us consider the first variation
δ̂δq̃L̃ of the Lagrange functioñL . Sinceδq is a symmetry of

the reduced actionS, the relationδ̂δqL = dF/dt , whereF is
an LF, holds true. Thus, with the help of the property (15),
one may write the variation̂δδq̃L̃ in the form

δ̂δq̃L̃ =
(

δ̂δq + δ̂δz

)
L̃ =

d
dt

F +
(

δ̂δq + δ̂δz

)
∆L . (50)

Now, we present the variationsδ̂δq∆L andδ̂δz∆L with the help
of relation (18). Besides, taking into account the expression
(49) for the variationδz, we get

δ̂δq̃L̃ =
d
dt

(F +Pq +Pz)+δqa δ∆S
δqa −

[(
Λ̂T)α

a δqa
] δ∆S

δzα ,

(51)
wherePq and Pz are some LF. Using (45) and (5), we may
write

δqa δ∆S
δqa = δqaΛ̂α

a
δ∆S
δzα =

[(
Λ̂T)α

a δqa
] δ∆S

δzα +
dG
dt

, (52)

whereG is an LF. Thus, the variation̂δδq̃L̃ is reduced to the
total derivative of an LF,

δ̂δq̃L̃ =
d
dt

(F +Pq +Pz+G) .

Thus,δq̃ is a symmetry of the extended actionS̃.
iii) Any symmetry of the form

δq̃ =
(

0
δz

)
(53)

of the extended actioñS is trivial.
Sinceδq̃ is a symmetry of the actioñS, one can write

δ̂δq̃L̃ = δ̂δzL̃ =
dF
dt

, (54)

whereF is an LF. Taking into account (18), we may rewrite
Eq. (54) as

δzα δS̃
δzα =

dF′

dt
, (55)

whereF ′ is an LF. The left-hand side of equation (55) can be
transformed, with the help of (42) and (5), to the form

δzα δS̃
δzα = δzαÛαβzβ =

[(
ÛT)

βα δza
]

zβ +
dF′′

dt
,

whereF ′′ is an LF. Thus, the equation (55) may be reduced to

zβ fβ =
dΦ
dt

, fβ =
(
ÛT)

βα δza , (56)

where f
(

Q[]
)

andΦ
(

Q[]
)

are some LF. Let us present the

LF Φ as

Φ
(

Q[]
)

= Φ0

(
q[]

)
+Φ1

(
Q[]

)
,

Φ0 = Φ|z=0 , Φ1|z=0 =
N

∑
k=0

Φα(k)

(
Q[]

)
zα[k] , N < ∞ . (57)

It follows from equation (56) thatdΦ0/dt ≡ 0. According to
(6), the latter impliesΦ0≡ const. From (56), we get the equa-
tion

N+1

∑
k=0

ϕα(k)z
α[k] = 0, (58)

where

ϕα(0) = fα− Φ̇α(0) , ϕα(N+1) =−Φα(N) ,

ϕα(k) =−[
Φα(k−1) + Φ̇α(k)

]
, k = 1, ...,N . (59)

The general solution of Eq. (58) is

ϕα(k) =
N+1

∑
l=0

mα(k)|β(s)l zβ[s], mα(k)|β(s)l =−mβ(s)|lα(k) , (60)

wheremα(k)|β(s)l

(
Q[]

)
are some LF. Then the LFΦα(k) and

fα can be found from Eq. (59):

Φα(k) =−
N−k

∑
m=0

N+1

∑
l=0

(
− d

dt

)m[
mα(k+m+1)|β(l)z

β[l ]
]

,

fα =
N+1

∑
m,l=0

(
− d

dt

)m[
mα(m)|β(l)z

β[l ]
]
≡ m̂αβzβ , (61)
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wherem̂αβ is an antisymmetric LO. Thus, we get from (56)

δzα = M̂αβ δS̃

δzβ , M̂αβ =
[(

ÛT)−1
]αγ

m̂γδ
(
Û−1)δβ

, (62)

whereM̂αβ is an antisymmetric LO. Therefore, the symmetry
(53) is trivial.

iv) Suppose both transformationsδq̃1 andδq̃2 to be sym-
metries of the extended actioñSsuch that their reductions co-
incide, that is

δ′q1
∣∣
z=0 = δ′q2

∣∣
z=0 = δq. (63)

Then these symmetries are equivalent,

δq̃1 ∼ δq̃2 , (64)

which means thatδq̃1 andδq̃2 differ by a trivial symmetry.
Thus, we have to prove that the transformation

∆q̃ = δq̃1−δq̃2 =
(

∆q′ = δ′q1−δ′q2
∆z= δz1−δz2

)
, ∆q′

∣∣
z=0 = 0,

is a trivial symmetry of the extended actionS̃. In virtue of Eq.
(63), the LF∆q′ may be presented as

∆q′a = m̂a
αzα , (65)

wherem̂ is an LO. With the help of (44), we get for∆q′ the
following expression:

∆q′a = M̂aβ δS̃

δzβ , (66)

whereM̂ = m̂Û−1 is an LO.
Let us present the transformation∆q̃ in the form ∆q̃ =

∆1q̃+∆2q̃, where

∆1q̃ = M̂AB δS̃
δq̃B , M̂AB =

(
0 M̂aβ

−(
M̂T

)αb
0

)
, (67)

and

∆2q̃ =
(

0
∆σ′′

)
. (68)

The transformations∆1q̃ is a trivial symmetry since the LO

M̂AB is antisymmetric, that is
(
M̂T

)AB = −M̂AB. Thus,∆2q̃
is a symmetry of the extended actionS̃. Besides, the latter

symmetry has a special form (68). It was proven in item c)
that any symmetry of such a form is trivial. Therefore, the
symmetry∆q̃ is trivial as well.

v) Let a transformationδq̃ be a trivial symmetry of the ex-
tended actioñS. Then its reductionδq is a trivial symmetry of
the reduced actionS.

According to this assumption, we may write

δq̃A =

(
δ′qa = M̂ab δS̃

δqb + M̂aβ δS̃
δzβ

δzα =−(
M̂T

)bα δS̃
δqb + M̂αβ δS̃

δzβ

)
, (69)

where the local operatorŝMab and M̂αβ are antisymmetric.
Then the reductionδq = δ′q|z=0 of the transformation (69)
reads

δqa = m̂ab δS
δqb , m̂ab = M̂ab

∣∣∣
z=0

. (70)

The LO m̂ab is antisymmetric. Thus, (70) is a trivial sym-
metry of the reduced actionS.

vi) Let a symmetryδq of a reduced actionSbe trivial. Then
any extension of this symmetry to the symmetryδq̃ of the ex-
tended actioñS is trivial as well.

Sinceδq is a trivial symmetry, one can write

δqa = m̂ab δS
δqb ,

wherem̂ab is an antisymmetric LO. Consider the following
extension of the symmetryδqa:

δq̃1 =
(

δ′q
0

)
, δ′qa = m̂ab δS̃

δqb , (71)

which is a trivial symmetry of the extended actionS̃. Any
other extension ofδq differs fromδq̃1 by a trivial symmetry,
according to item (iv). Therefore, any extension of the trivial
symmetry is a trivial symmetry as well.

Concluding, we can see that there exists an isomorphism
between classes of equivalent symmetries of dynamically
equivalent actions. Since the Lagrangian and Hamiltonian ac-
tions are dynamically equivalent, one can study the symme-
try structure of any singular theory considering the first-order
Hamiltonian action.
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