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A natural and very important development of constrained system theory is a detail study of the relation
between the constraint structure in the Hamiltonian formulation with specific features of the theory in the La-
grangian formulation, especially the relation between the constraint structure with the symmetries of the La-
grangian action. An important preliminary step in this direction is a strict demonstration, and this is the aim of
the present article, that the symmetry structures of the Hamiltonian action and of the Lagrangian action are the
same. This proved, it is sufficient to consider the symmetry structure of the Hamiltonian action. The latter prob-
lem is, in some sense, simpler because the Hamiltonian action is a first-order action. At the same time, the study
of the symmetry of the Hamiltonian action naturally involves Hamiltonian constraints as basic objects. One can
see that the Lagrangian and Hamiltonian actions are dynamically equivalent. This is why, in the present article,
we consider from the very beginning a more general problem: how the symmetry structures of dynamically
equivalent actions are related. First, we present some necessary notions and relations concerning infinitesimal
symmetries in general, as well as a strict definition of dynamically equivalent actions. Finally, we demonstrate
that there exists an isomorphism between classes of equivalent symmetries of dynamically equivalent actions.
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I. INTRODUCTION dynamically equivalent actions is given in sec. 3. Finally, in
sec. 4, we demonstrate that there exists an isomorphism be-

_ ) _ tween classes of equivalent symmetries of dynamically equiv-
The most of contemporary particle-physics theories are foryjent actions.

mulated as gauge theories. It is well known that within the

Hamiltonian formulation gauge theories are theories with con-

straints. This is the main reason for a long and intensive . SYMMETRIES
study of the formal theory of constrained systems, see [1].
It still attracts considerable attention of researchers. From
the very beginning, it became clear that the presence of first-
class constraints among the complete set of constraints in the ) o ) ) )
Hamiltonian formulation is a direct indication that the the- \We consider finite-dimensional systems which are de-
ory is a gauge one, i.e., its Lagrangian action is invariangcribed by the generalized coordinates= {q7; a =
under gauge transformations. A next natural, and very im1,2,...,n}. The space of the variabled",

portant, step would be a detail study of the relation between

the constraint structure and constraint dynamics in the Hamil- 2l — (g q?, | =0,1,...,N,, (qa[O] = qa> o= E7 (1)
tonian formulation with specific features of the theory in the dt

Lagrangian formulation, especially the relation between the

constraint structure with the gauge transformation structure o onsidered as independent variables, with fihlge or with
) . gaug ome infiniteN, , is called the jet space. The majority of phys-
the Lagrangian action. An important problem to be solve

in this direction would be a strict demonstration, and this is cal quantities are described by so-called local functions (LF)

; . hich are defined on the jet space. The LF dependoru
the aim of the present article, that the symmetry structures (ﬁ(’) some finite orders < I\JIa N % The followingpnotgiiﬂin Fi)s

the Hamiltonian action and of the Lagrangian action are th% .

. . L ? ften used[6]:
same. This proved, it is sufficient to consider the symmetry
structure of the Hamiltonian action. The latter problem is, in E (qa[o} ol A2 ) _E (q”)
some sense, simpler because the Hamiltonian action is a first- ’ ’ e
order action. At the same time, the study of the symmetry of ]
the Hamiltonian action naturally involves Hamiltonian con- for the LF. In what follows, we also deal with so-called lo-
straints as basic objects, see [2, 3]. It follows from the result§al operators ('—ao)- L@Ipa are matrix gperatorsAwhlgh acton
of the article [4] that the Lagrangian and Hamiltonian actionscolumns of LFf# producing column§” of LF, F™ = Uaaf®.
are dynamically equivalent. This is why in the present article-O have the form
we consider from the very beginning a more general problem: K <oo
how the symmetry structures of dyna_\mlcally equivalent ac- Upa = z Ul/(xa (dt)k : @)
tions are related. The article is organized as follows: In sec. =0
2, we present some necessary notions and relations concern-
ing infinitesimal symmetries in general. A strict definition of whereu, are LF. We call the operator

A. Basic notation and relations

)
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0. Via O(F) we denote any LF that vanishes on the equations
) K<oo Fa (q“) = 0. More exactly, we defin® (F) = V°F,, where
(U7 an= kz (—ch)“ua (4)  VUbisan LO. Besides, we denote W= O(F) any LO that
- X vanish on the equatioris, (qﬂ) = 0. That means that the LF
the transposed operator with respectUiq. The following | that enter into (3) vanish on these equatians; O (F), or

relation holds true for any LFA and fy: equivalentlyU f = O(F) forany LF f.
FApqf = [(UT)aAFA] 21 40, (®) We consider Lagrangian theories given by an ac8fy,
~ t2
whereQ is an LF. The LOUg, is symmetric ¢) or antisym- Slg= Ldt,L=L (QH) ; (7)
metric (—) respectively if(UT) _ = +Uqp. Thus, for any an- gl
tisymmetric LOUgy, relation (5) is reduced to the following:  where a Lagrange functiob is defined as an LF on the jet
f8Uapf? = dQ/dt, whereQis a LF. _ space[7]. The Euler-Lagrange equations are
Suppose the total time derivative of an LF vanishes. Then
this LF is a constant. Namely, 3S oL
sa =0 () 5 =0. ®)
oq % acell]
@0) *
—_— == F = .
dt 0= (q ) const ©) Any LF of the formO(8S/dq) is called an extremal.

. 0 i
Indeed, let us suppose thdt are the orders of the coordinates For any LFF (q ) the operation

o?inthe LF, i.e.F (q“]> =F (mqa[Na]). Then according to

(6) the following relation holds true deF Na d\' oF .
- d@ 2 (_dt> PRl ©)
oF qa[Na+1] =_ atF+Z az F qa[k+1] )
0cPNe] & & 0Pl is called the Euler—Lagrange derivative with respect to the co-

_ . _ ordinateg?. One can see that the functional derivative of the
The right hand side of the above relation does not depend o#ction S coincides with the Euler-Lagrange derivative of the

@t Thus, oF /ag?el = 0, and thereforeF (q[”) must  Lagrange function,
not depend or@Nel. In the same manner we can see that
S drL
F (q“]) must not depend og™~ and so on. IF (q“]) does 3E  dp (10)

(1 1 =
not depend on ang™ , thend;F (q ) = 0 as well, and we The Euler—Lagrange derivative has the following property:

getF (q“]> = const

dg. d
We recall thafa (qﬂ) = 0 andxq (qﬂ) = O are equivalent dpdi 0. (11)
sets of equations whenever they have the same sets of solu-
tions. In what follows, we denote this factBs=0«<= x = To prove this, one may use the relation

o d 0 bi+1 O _ 0
rqa[k] a = rqa[k] (at + I;q 6qb['] - (1— 6k0) aqa[kfl]

o) o d a 9
bll+1] _d L0
' (at +|;q aqu> 0gak  dt agelK +(1-50) a1 °

Thus, one gets
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dad_o( d\od_

def dt kZO dt/ ool dt kZO
_d (_dk o _d (_d
_dtk;) dt) ocl <3|th1 dt

B. Noether symmetries

Consider an infinitesimal inner[8] trajectory variatidég?

-
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) g (a)

0 _dde dda _
afk 1~ dtdg  didgp

d
dt

0

el

_d
dt

d

aqa[kf l]

Any linear combination of symmetry transformations is a
symmetry.
Indeed, letdig be some symmetry transformations, and

(inner variations vanish together with all their time derivativesdd = ¢'8ig, wherec' are some constants. Then, taking into

att; andty). Namely,
Q?(t) — g (t) = o (t) +dc?. (12)

We suppose thai? = 3o (q“) is an LF. The correspond-
ing first variation of the action can be written as follows:

(13)

where the operatcﬁs, which will be called the transformation
operator, acts on the corresponding LF as[9]

2 0
= a[k] =
0 kZO oq PReCs O5q - (14)
Two simple but useful relations follow from (14):
O = 8CF, 8Ci5iq =854 (15)

The variation (12) is a symmetry transformation of the ac-
OPne ought to remark that the sum (19) that presBritsrun-

tion S, or simply a symmetry of the actid® whenever the cor-
responding first variation of the Lagrange function is reduce
to the total time derivative of a LF. NameRyg is a symmetry

if

dF

a )
whereF is an LF. In this case the first variation (13) of the
action depends on the complete set of the variafplest = t;
andt =t only,

oL = (16)

Zy, .
3S=  oldt=F|2.

5]

account (15), we obtain:

2 dR 2 dF i
65iqL_:d—t':>65qL:E, F=cF. 17)
Transformation operators that correspond to symmetry
transformations are called symmetry operators.
The above-described symmetry transformations are called
Noether symmetries.
Below, we list some properties of the transformation oper-
ators and of the symmetry transformations:
a) Any first variation of the Lagrange function can be pre-
sented as

dell  dP . 3S dP

s s _ 505 dP
oL = dq —dqa + at q 6qa+ gt (18)
whereP is an LF of the form
Na e/ d\T" AL
_ <’/ ms~am-1 m _ =
P Za”;paéq ; Pa ;( dt) Frch (19)

ning only over those for which N, > 0. However, it can be
extended over all’s since the momenia]' that correspond to
the degenerate coordinates are zero. Thus, the prime over the
sum above can be omitted.
b) Any transformation operator commutes with the total
time derivative:
[ } —o.

The latter property is justified by the following relations:

d
" dt

d (20)

ds_ akry) 0 saw 0 bi+1 xal] 0
ot~ kZO {&] ok % 02K A k.,Z:oq % aqelkagPl]”
59 < [ap0+0] 9 3 Aol 0% ds
6& = l; [éq } 3l +6at+k,z=06q q PToE ~ >
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¢) The commutator of any two transformation operators is e) The commutator of two symmetry operators is a symme-

a transformation operator as well. try operator as well. .
Namely, letd, q = 3q;, andd,q = ddp. Then Indeed, led, q = &y, andd,q = dg, be symmetry transfor-
o L ~ ~ mations, i.e.p;L = dF/dt, andd,L = dF,/dt. Then, taking
[51, 52] — 83, 830 = 31500 — 3,50 . (21)  into account (20) and (21), we obtain
Indeed, one can write: {81,82} L= 83L = %Fg, F= 81F2 — 82F1 . (26)
515, = % (515q2[ ]) 9 + Z 5qi‘[k qg[' o o0 Thus, the set of symmetry operators of the acBdarms a
= aqPll aqPl] ol Lie subalgebra of the Lie algebra of all transformation opera-
[ tors.
Zyd 68 ,00) 0 + q1 qz“ 0 _0 , (22) f) Symmetry transformations transform extremals into ex-
dtt  ocpll Z 9Pl gl tremals.
- A K s d 9 The validity of this assertion follows from the relations
0201 = kz (6825% ) 9K 7+ g oa, *0d) 3cel agpll proven belgvy. '
Suppose is a symmetry operator; then the following rela-
tion takes place:
o (Baa) L5 st O 0 p
L dik acEK KZ:O 12 oghl] ggalk 335 _ g0 @7
(23) 6qa aoqP
Then subtracting Eq. (23) from Eq. (22), we obtain the rela-lndeed' by virtue of (10), (11), and (24), we can write
tion (21). de (3L
In other words, the set of all transformation operators form 8§ SdELL _ CEL ( ) _ ApYeLl
a Lie algebra. O d¢ d@? 2 dep
d) The commutator of the Euler-Lagrange derivative and a de, dF & 8S . 3S
: ) . _ bO>  Ab
transformation operator is proportional to the Euler—Lagrange = ﬁa - Qaéfqb = *Qaéfqb .

derivative. Namely, iﬁq = &qP, then

k
[dEL } deELQQZZ(_(i) 0 5P. (24)

A generalization of (27) based on the relation (24) reads:

dep’ “deP &o 0K <d< 88  dk ., 8S 08
. . dFoR ks (28)
To prove this property, one may consider a sequence of
equalities, g) Symmetry transformations transform genuine trajecto-
. ries into genuine trajectories.
Z t, degL (6F) Zy, . . Indeed, suppose thégt be a genuine trajectory, that is
— 7%t = O OF dt
t1 do? ty
0S
—| =0, (29)
Z ty Z t . O g

= OyFdt+ & s Fdt
t R anddg? be a symmetry transformation. Then the transformed

trajectory§® = G2 + 6¢? is also a genuine one. Indeed, by

Z 7 _ :
T 2 d ksaidt N t 3 qudELF ot virtue of (27) and (29), we get
TS a) Pt X g 5S S| 58S| 8S| _
h 67qa 302 +657qa *< Qa) 6qb =0.

q/=~ G q

Z, . i
_ za(aag+Qa) 5(} dt, (5an:za),

t1

C. Trivial symmetries

where( (1) is an arbitrary inner variation, arfelis an LF.

It is useful to keep in mind the following generalization of _Below, we are going to describe so-called trivial symme-

relation (24): tries transformations, which exist for any action.
A symmetry transformation is called a trivial symmetry
d\Xde - d transformation whenever the corresponding trajectory varia-
K) dr ] ( ) Raa (25)  tion has the form
dt/) dg’ dt adep’

b3S

which follows immediately from (20) and (24). o =UT5g (30)
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whereU is an antisymmetric LO, that ig0T)*" = —Ja .
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then

Thus, trivial symmetry transformations do not affect genuine

trajectories.

0q? = O(3S/dq) , is trivial, namely it has the form (30)). With

(One can prove, see below, that any symme-
try transformation that vanishes on the equations of motion,

S

{81,82} L =L, 3sq® = 8% = U2

the help of relations (5) and (18), we can easily verify that (30)

is actually a symmetry transformation. Indeed,

de L "adeLL dP dF

oL = chU FTI

whereF andP are some LF.

dP  d(F+P)

dt — dt

whereV2® andU2P are some antisymmetric LO.

To verify (31), we remark that, according to (Zﬁ); is a
symmetry operator, witbsq = 81329 — 8,019, whered,q=
0102. The termd; 8,9 can be calculated with the help of (14),

Since trivial symmetry transformations are proportional to
the equations of motion, they do not change genuine trajecto-

ries, as was already mentioned above.

The commutator of a symmetry operator and a trivial-
Namely,

symmetry operator is a trivial-symmetry operator.
if

dil =dR/dt, &L = dR/dt, S02 = 2 = V2°8S/3¢P,

8,810F = (6 vab) ;qs Vb, O

Thus, we obtainds(f = Ss@

We call two symmetry transformatioRgq and &,q equiv-
alent 19 ~ &,0) whenever they differ by a trivial symmetry
transformation:

8S

310 ~ &0 <= 5107 — 5 = U 5P

(32)

Here(UT)ab: —ab,

oS
o

B 0(520?) dk ~ch 0S
6 5 q kZl aqc[k] |:dtk <V éqb )

and the ternﬁzélq can be calculated with the help of (27),

38
aapP

~c 0S

_ \‘/ab
Qdxre ek

- s

= Ua555/5qP, whereU2? is an antisymmetric LO of the form

~ (50 [ d\*wep
ab __ el cb
v kzol ol \dt) VTV

ac (d)ka@qu)

_ X\7ab
at) “agw | %V

which contains two groups of coordinatgsandy! such that

the Euler-Lagrange allow one to expressyatlia q. It is
convenient to calf:[q,y| the extended action. One can try to
eliminate the variablegfrom the extended action to get some
reduced action, which depends now only gnand ask the
qguestion: What is the relation between the extended and the
reduced actions? There exist a case when this question has a
definite answer [2, 5]. Namely, let us suppose that the Euler—
LagrangedS [q,y] /0y = O allow one to express uniquely the

Let G (S) be the Lie algebra of all symmetries of the action variablesy as LF of the variables,

S. The trivial symmetries form the ide&y (S) in the Lie

algebraG (S). Then the classes of equivalent symmetries form

a Lie algebraGpp (S) isomorphic to the quotient algebra:

Gpn(§ =G (9 /G (S .

.  DYNAMICALLY EQUIVALENT ACTIONS

Very often we encounter an action
Z

Sloyi= Le(aly!)dt (33)

0%(a.y] _ A
5 =0=y=vy(d). (34)
Then we define the reduced actiB[g]
z z
Sl =Sl = Le(d.5)dt= L(d)at. (35)

Let us compare the Euler-Lagrange that correspond to both
actions. First consider the variation of the reduced action
0S under arbitrary inner variatiordg,
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Z
~ T 3S[g] 4
69“) dt = B—qiéq dt. (36)

z
o i O
y=y

y=y

In virtue of (34), the Euler-Lagrange of the reduced actionBesides, the action (38) can be presented in the form
read Z

S = S[a] +AS[d], AS[g] = ALdt,

oSlq] _ o%fayl| _, (37)
5q 54 ly—y

~ On the other hand, the Euler-Lagrange of the extended ac- —Le (q[],zﬂ +yﬂ) e (q[hyﬂ) _ (40)
tion Sg[q,y] are

3%(q, 3%, . The variablez are auxiliary ones for the actid§d], and, in

6[3 A 0, 6[3 /. O=y=y (qﬂ> : particular,z= 0 on the Euler-Lagrange. Indeed,
They are reduced to (37) in thesector. We can see that 854 O3&[qy] oAl _

the extended action and the reduced action lead to the same &z =0 dy _O:y_y(q ) —2=0. (41)
Euler-Lagrange fog. This is why the variableg are called o
the auxiliary variables. The auxiliary variablggsan be elim- The latter implies:
inated from the action with the help of the Euler-Lagrange. 58 BAS
Further, we call the actionS:[q,y] andSg] the dynamically —_— UaBZﬁ =0. (42)

equivalent actions. o O~

One ought to stress that the above equivalence is a consgince equation (41) has the unique solutios 0, one can
quence of the assumption that the variabjeare expressed gasily verify thatU is an invertible LO. The equation (42)
via q by means of the equatioS/dy = 0 only. If, for this  jmpjies
purpose, some of the equatiodS/dg = 0 are used as well,
then the above equivalence can be absent. Of course, the so-
lutions of the Euler—Lagrange for the reduced action, together
with the definitiony =y, contain all solutions of the Euler— . . . )
Lagrange for the extended action (as it is easily seen from EqvhereK is a symmetric LO, ané is an LF. Besides, one can
(36)). However, the reduced action can imply additional soluWrite
tions. ~_1yap OAS ~ 1.ap 8S

Actions containing auxiliary variables and the correspond- Z=(U ‘1) — = ‘1) —.
ing reduced actions have similar properties, in particular, there o2 o2
exists a direct relation between their symmetry transforma- On the other hand, due to the property (11), one can write
tions.

As was mentioned above, we are going to relate the sym- 0AS dg AL dep [ AR A zﬂ

a .

- d
ALZZGKGBZB-FaF, (43)

(44)

metry properties of the extended and reduced actions. To this o  dep  dop

end, it is convenient to make an invertible coordinate replace_—l_h Kin | (43, 44) d the definiti fth
a A _ (@ _ () i en, taking into account (43, , and the definition of the

ment, (q ’yla) — &= (@2 y .z+y(q ) ’ in the ex . Euler-Lagrange derivative, we get the following useful rela-

tended action. In fact, we are going to consider a modifiedjgp:

extended actio&[d], which is obtained from the extended ac-
tion S[q,y] as follows: 0AS d

. - ' oK -
R N« a_ 0y _vO™B o1y Ba
A z 3¢ 25 ’Aa_;( dt)zaqaﬂ](u )" @9
§q = L(q[])dt:sE[q,z+ﬂ: LE<qﬂ,Zu+¢]>dt_

(38)  whereAl is an LO.
The extended actiofg[q,y] and the modified extended ac-
tion ¢ are completely equivalent. They lead to completely
equivalent Euler—-Lagrange. Thus, it is sufficient to study the V. SYMMETRIES OF THE EXTENDED AND THE

relation between the symmetry properties of the modified ex- REDUCED ACTIONS
tended actior§ ] and the reduced actid®|q] .
Note that There exists a one-to-one correspondence (isomorphism)

between the symmetry classes of the extended aSiirand
- | “ (A the reduced actioB[qg]. Below, we prove a set of assertions,
(q ) =L (q )‘2:0 (39)  which justify, in fact, this correspondence.
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i) If the transformation Thus,3d is a symmetry of the extended actin
iii) Any symmetry of the form
56 oqg? ~ 0
ot~ (3F). (46) 20— o) (53)
is a symmetry of the extended actinthen the transforma- ©f the extended actio8is trivial. _
tion Sinced( is a symmetry of the actio one can write
+ ~ 2 ~ dF
8 = &al,q (47) Seql = bel = (54)
is a symmetry of the reduced actién whereF is an LF. Taking into account (18), we may rewrite
Indeed, let (46) be a symmetry of the acti@riThen Eq. (54) as
. da 3S dF
O — = — 55
Osal = :F (48) A= dr’ (55)

whereF’ is an LF. The left-hand side of equation (55) can be

wheref is an LF. Considering (48) at= 6z = 0, we get transformed, with the help of (42) and (5), to the form

,\ d =
65qL— th 3 = 5/Q|Z 0’ F= I:|z:0’ Bfai_ézauaﬁzﬁ [( ) éza}ZB—*—

whereL is given by (39). Thus, any symmetry of the action whereF” is an LF. Thus, the equation (55) may be reduced to
Simplies a symmetry of the actioR The symmetrydq ob-

tained in such a way can be called the symmetry reduction of do

the extended action. Plg=—, fp=(U7)
i) If the transformationdq is a symmetry of the reduced dt

actionS, then the transformation

3 = (ggj),éz“:—(f\T)Zéqa, (49)

57, (56)

where f (QH> and ® (QU) are some LF. Let us present the
LF ® as

®(Ql) =g (dl) + @1 (Ql)
where the LOA defined by Eg. (45) is a symmetry of the N
extended actio®. Po=P|,g, P1l,0= ) Pag (Q”> 28 N<o. (57)
To prove this assertion, let us consider the first variation k=0
854l of the Lagrange functiof . Sincedq is a symmetry of It follows from equation (56) that®o/dt = 0. According to
the reduced actio, the relationds,L = dF /dt , whereF is  (6). the latterimpliespo = const From (56), we get the equa-
an LF, holds true. Thus, with the help of the property (15),t0nN

one may write the varlat|065qL in the form N+1 K
Z)%(k)ZU[ I =0, (58)
Baall = (85 + 862) £ = F + (8548 <
eal. = (3sa+ 5Z)LfaF+( s+ AL (BO)
Now, we present the variationziquL andSazAL with the help ba0) = fa — d’a(m, bani1) = —Pan)
of relation (18). Besides, taking into account the expression day = — [Park-1) _,_c'pa(k)} ,k=1,...,N. (59)

(49) for the variatiordz, we get ) )
The general solution of Eq. (58) is

Bsgl = %(F Py Py + 8RS [(i\T)gaqa} 0AS

g oL’ N+1 8
(51) bay = > Mawips 2, Magk|pis) = — latk)» (60)
wherePy and P, are some LF. Using (45) and (5), we may o |Zo (P LIPS "B
write
@ " s 4 where My a9 (QU) are some LF. Then the L, and
S ara OAS T S G fq can be found from Eq. (59):
5 g = N g = (ANgod| 52+, G2 fa Nkqu( )
+
. s o [ ZB[IJ}
whereG is an LF. Thus, the variatiodssL is reduced to the 0 le My (ke m+-1)[B(1) J
total derivative of an LF, N1 m q
_ _u N = m.o® 61
Ly . ( ) P =i, (61)
Osgl = . (F+Py+P,+G). méo dt [ Ma(mp() ] B

dt
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whereryg is an antisymmetric LO. Thus, we get from (56)

=118 25 hiod — [(07) ] Mma (09 (62)

139

symmetry has a special form (68). It was proven in item c)
that any symmetry of such a form is trivial. Therefore, the
symmetryAq is trivial as well.

V) Let a transformatiodd be a trivial symmetry of the ex-
tended actiors. Then its reductioq is a trivial symmetry of

whereM®? is an antisymmetric LO. Therefore, the symmetry the reduced actio8.

(53) is trivial.

iv) Suppose both transformatiol§; anddg, to be sym-
metries of the extended acti@such that their reductions co-
incide, that is

&1, = 80k, = 3a. (63)
Then these symmetries are equivalent,
3G ~ &Gz, (64)

which means thabf; andod;, differ by a trivial symmetry.
Thus, we have to prove that the transformation

S ms <o Aq =dq1—dq
Aq = 6q176q2 = < Az — 621 _ 622 ) Aql‘zzo =0
is a trivial symmetry of the extended actiénin virtue of Eq.
(63), the LFAQ may be presented as
AQ® =gz, (65)

wherem is an LO. With the help of (44), we get fa&q the
following expression:

38
Ag?=NM* = =t (66)
whereM = mJ ~1is an LO.

Let us present the transformatidk{ in the form Ag =
A1+ A6, where

- YES
pag= e 2 MAB—<(9 y ) 67)

éqBa MT)C(b 0

and

A= ( e ) (68)

The transformationA; § is a trivial symmetry since the LO
MAB is antisymmetric, that iil\?lT)AB = —M”B. Thus, Ay
is a symmetry of the extended acti@ Besides, the latter

According to this assumption, we may write

/ jab 88 ap 8S
6qA: <6q =M Tbb—: I\:S 62{3 o 5 ) ’ (69)
3 =— (M) +MoP LS

5qb
where the local operatog2? and M are antisymmetric.
Then the reductiodq = &'q|,_ of the transformation (69)
reads

35S
b b Jab
= Rf 5 = M| (70)

The LO?® is antisymmetric. Thus, (70) is a trivial sym-
metry of the reduced actidd

vi) Let a symmetrydq of a reduced actioBbe trivial. Then
any extension of this symmetry to the symmeiéyof the ex-
tended actiorsis trivial as well.

Sincedq is a trivial symmetry, one can write

3S
== 5’

whereri?? is an antisymmetric LO. Consider the following
extension of the symmetg?:

o= (). se=mml . a

which is a trivial symmetry of the extended acti& Any
other extension odq differs from ¢, by a trivial symmetry,
according to item (iv). Therefore, any extension of the trivial
symmetry is a trivial symmetry as well.

Concluding, we can see that there exists an isomorphism
between classes of equivalent symmetries of dynamically
equivalent actions. Since the Lagrangian and Hamiltonian ac-
tions are dynamically equivalent, one can study the symme-
try structure of any singular theory considering the first-order
Hamiltonian action.
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