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Hamilton-Jacobi Approach for Power-Law Potentials
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Rua do Matão, 1226 - Cid. Universitária, 05508-900, São Paulo, SP, Brazil

Received on 25 August, 2006

The classical and relativistic Hamilton-Jacobi approach is applied to the one-dimensional homogeneous po-
tential, V (q) = αqn, where α and n are continuously varying parameters. In the non-relativistic case, the exact
analytical solution is determined in terms of α, n and the total energy E. It is also shown that the non-linear
equation of motion can be linearized by constructing a hypergeometric differential equation for the inverse prob-
lem t(q). A variable transformation reducing the general problem to that one of a particle subjected to a linear
force is also established. For any value of n, it leads to a simple harmonic oscillator if E > 0, an “anti-oscillator”
if E < 0, or a free particle if E = 0. However, such a reduction is not possible in the relativistic case. For a
bounded relativistic motion, the first order correction to the period is determined for any value of n. For n >> 1,
it is found that the correction is just twice that one deduced for the simple harmonic oscillator (n = 2), and does
not depend on the specific value of n.
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I. INTRODUCTION

The Hamilton-Jacobi (HJ) equation is a powerful method
either to the relativistic and classical framework, and also
plays a prominent role in quantum mechanics as a special
route for a comprehension of the Schrödinger equation[1, 2].
The associated action variable method, which is a slight mod-
ification of the HJ approach, is also quite useful for deter-
mining frequencies and energies of periodic systems. Even
for the general relativity theory, the importance of the HJ ap-
proach has long been recognized by many authors (see, for in-
stance, [3] and Refs. therein). Indeed, one of the most elegant
methods for describing geodesics and orbits of test particles in
Schwarzchild and Kerr spacetimes, as well as for any station-
ary gravitational configuration, is provided by the relativistic
HJ equation[3-5].

In the nonrelativistic domain, the standard applications of
the HJ theory are the harmonic oscillator, the Kepler prob-
lem, and charged particles moving in electro-magnetic fields.
Recently, the method has also been applied to the rocket
problem[6]. Pars[7] studied the motion of a classical particle
in a plane under central attraction derived from the potential,
V (r) = αrn, for some particular values of n. However, to the
best of our knowledge, if α and n are continuously varying pa-
rameters the general solution has not been obtained even for
the one-dimensional case.

In this letter we discuss an analytical solution for the power
law potential both for the classical and relativistic case. As
we shall see, the HJ equation for a particle moving under the
action of a one-dimensional potential, V (q) = αqn, has a gen-
eral and unified solution in terms of hypergeometric functions.
The period of the motion as a function of the power index n
and of the α parameter are easily determined from the general
solution. For completeness, we also show that such a prob-
lem may also be exactly solved starting from the nonlinear
equation of motion by employing a slightly modified Euler-
Lagrange approach. By changing the coordinate and adopting

an auxiliary time, we show that the motion of the particle in
such a potential may be reduced to the problem of a parti-
cle under the action of a linear force: an oscillator if E > 0, an
“anti-oscillator” if E < 0 or a free-particle if E = 0, where E is
the total energy of the particle. Classically, these results hold
regardless of the value of n. Such a reduction cannot be imple-
mented in the relativistic case. However, the general problem
may be reduced to an integral, which is a natural extension
of the earlier Synge’s treatment for the relativistic harmonic
oscillator[8].

II. HAMILTON-JACOBI APPROACH

The classical Lagrangian for a particle subject to the one-
dimensional potential, V (q) = αqn, reads

L(q, q̇, t) =
1
2

mq̇2−αqn , (1)

where an overdot means total derivative. The parameters α,
n, vary continuously, and m, q are, respectively, the mass of
the particle and its generalized coordinate. The Hamiltonian
is given by (p is the canonical momentum)

H(q, p) =
p2

2m
+αqn = E , (2)

and since it does not depend explicitly on the time, it repre-
sents a conserved quantity which is the energy of the system.
The Hamilton-Jacobi equation for the Hamiltonian (2) assume
the following form [1]

1
2m

(
∂S
∂q

)2

+αqn +
∂S
∂t

= 0 , (3)

where S is the Hamilton’s principal function. Since the ex-
plicit dependence of S on time is involved only in the last term,
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the variables can be separated. Following standard lines, the
solution is assumed to have the form

S(q,E, t) = W (q,E)−Et , (4)

where E, the constant of integration, has been identified with
the total energy. With this choice, the time is readily elimi-
nated from (3), and Hamilton’s principal function S becomes

S =
∫ √

2mE−2mαqn dq−Et . (5)

It should be noticed that if the energy E is positive, the con-
stant α appearing in the potential may assume either negative
or positive values, however, if E ≤ 0, the allowed values of
α are necessarily negative. Since H = E, such considerations
also follows naturally from the positivity of the kinetic energy

K =
1
2

mq̇2 = E−αqn . (6)

The second integration constant is a consequence of the Ja-
cobi transformation equation

β =
∂S
∂E

=
√

m
2|E|

∫ q

0

dq√
1− α

E qn
− t . (7)

The root of |E| arises naturally if one takes for negative val-
ues of E, E∗ = −E, and compute the partial derivative with
respect to E. In order to integrate (7) we make the change of
variable u = (α/E)qn. Thus we have that

t +β =
√

m
2n2|E|

(
E
α

)1/n ∫ u

0

y1/n−1 dy√
1− y

. (8)

It is worth noticing that the integral appearing on the right
hand side of the above expression is the incomplete Beta
function[9]

Bu(a,b) =
∫ u

0
ya−1(1− y)b−1dy,

for a = 1/n and b = 1/2. Without loss of generality we may
take q(t = 0) = 0, so that β = 0 in (8). When the motion is
finite, the particle moves back and forth (oscillatory motion),
and the period T can be easily determined. We see from (6)
that at the turning points (q̇ = 0) the amplitude of the oscil-
lation is A = (E/α)1/n, and, therefore, umax = 1, is the max-
imum value in the upper limit of the integral (8). The period
of the motion is given by T = 4tmax and, taking these consid-
erations into account, we find that equation (8) yields

T = 2

√
2m
αn2 A1−1/n B(1/n,1/2) , (9)

where B(1/n,1/2) =
√

πΓ
( 1

n

)
/Γ

( 1
n + 1

2

)
is the complete

Beta function. The period of this oscillator is clearly depen-
dent on the amplitude A, unless n = 2. As should be expected,
for n = 2 equation (9) reduces to

T = 2π
√

m
2α

,

which is the well known result for the simple harmonic oscil-
lator.

It should be recalled that the incomplete Beta function is
related to the hypergeometric Gaussian F(a,b;c;u) by the fol-
lowing identity: Bu(a,b) = a−1uaF(a,1−b;1 + a;u). It thus
follows that the result (8) may be expressed as

t +β =
√

m
2|E| qF

(
1
2
,

1
n

;
1
n

+1;
α
E

qn
)

. (10)

As a check, we notice that for n = 2 the above expression can
be written as

ω(t +β) = zF
(

1
2
,

1
2

;
3
2

;z2
)

, (11)

where we have defined the variable z =
√

α/E q and ω =
2π/T is the frequency of the oscillatory motion. Since
F(1/2,1/2;3/2;z2) = z−1 arcsinz [9]; by returning to the old
variable q, the above equation can be recast as

q(t) =

√
2E

mω2 sinω(t +β) , (12)

which describes the motion of a simple harmonic oscillator
[1].

III. MODIFIED EULER-LAGRANGE APPROACH

We present here another method of solution for the problem
outlined in the introduction. In principle, by considering that
the HJ approach leads to the hypergeometric function for t(q)
as given by (10), it should be possible to obtain the differential
hypergeometric equation starting directly from the equation of
motion. The importance of this method is two-fold: the initial
conditions remains arbitrary and the linearization procedure is
a guarantee that we get the complete solution for the nonlinear
differential equation governing the motion of the particle.

The equation of motion (Euler-Lagrange equation) for the
Lagrangian given by (1) is

mq̈+nαqn−1 = 0 . (13)

Instead to solve the equation of motion above, we will con-
sider an equivalent equation. By multiplying it by q, and in-
serting the definition of the total energy of the particle given
by (6), we obtain:

qq̈− n
2

q̇2 +
nE
m

= 0 . (14)

It is worth mentioning that, if some few identifications
are made, (14) is the same differential equation describing
the evolution of the scale factor in the standard Friedman-
Robertson-Walker (FRW) cosmological model [10] (in this
connection, see also [11]).

A first integral of (14) is

q̇2 =
2E
m

(
1− α

E
qn

)
. (15)
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It should be noted that the signals for the total energy E and
for the constant α must be properly chosen. So, if E > 0 the
constant α can have any signal, but if E ≤ 0 we must have a
negative α. The integration of (15) is achieved with the intro-
duction of an auxiliary variable defined by u = (α/E)qn. With
the aid of this transformation the first integral is written as

du
dt

= nBu1−1/n(1−u)1/2 , (16)

where

B =

√
2α
m

(
E
α

)1/2−1/n

.

At this stage we could integrate (16), as it was done in Sec.
(II). Instead, on may consider the inverse problem, i.e., the
solutions for a differential equation expressing the time as a
function of the auxiliary variable u(q). This inversion is read-
ily done through (16), which provides the first derivative of
t(u):

dt
du

=
1

nB
u1/n−1(1−u)−1/2 , (17)

whereas the second derivative may be put in the form

u(1−u)
d2t
du2 +[c− (a+1)u]

dt
du

= 0 . (18)

where c = 1−1/n and a = 1/2−1/n. This is Gauss’s hyper-
geometric differential equation. Its general solution consists
of a linear combination of two linearly independent solutions
[13]:

t(u) = C1F(a,0;c;u)+C2u1−cF(1+a− c,1− c;2− c;u) ,
(19)

where F is the hypergeometric function, and C1, C2 are the ar-
bitrary constants of integration to be determined by the bound-
ary conditions. It is a property of the hypergeometric function
that if any of the first two parameters is zero, then the series
terminates (i.e., F(a,0;c;u) = 1). It thus follows that the so-
lution (19) reduces to

t = C1 +C2

( α
E

)1/n
qF

(
1
2
,

1
n

;
1
n

+1;
α
E

qn
)

, (20)

where we have substituted the value of the parameters a and
c. The case n = 2 gives

q(t) =

√
E
α

sinω(t− t0) , (21)

where the constant ω = 1/C2 and t0 = C1 remain to be deter-
mined.

IV. PARAMETRIC SOLUTIONS AND PERIODICITY

As we have seen, if E 6= 0, the general solution t(q) cannot
be inverted to obtain explicitly q(t). In such cases, parametric

solutions are usually more enlightening. Some simplicity is
achieved when we replace the pair (t,q)→ (τ,Q), where the
“conformal time” τ and the new coordinate Q are defined by

dt = q(τ)dτ, (22)

and

Q = q−
n
2 . (23)

Under the above transformations, the expressions for the
Lagrangian and energy E, given by (1) and (2), become

L =
2m
n2 Q−2Q′2−αQ−2, (24)

E =
2m
n2 Q−2Q′2 +αQ−2, (25)

where a prime denotes derivative with respect to τ. As one
may check, the Euler-Lagrange equations are now given by

QQ′′−Q′2− αn2

2m
= 0, (26)

and inserting Q′2 from the energy conservation law, we obtain

Q′′−
(

n2E
2m

)
Q = 0. (27)

This is an interesting result. The above equation describes
the motion of a classical particle under the action of a linear
force. If E < 0 (E > 0) the force is of restoring (repulsive)
type, while the motion of a free particle corresponds to E = 0.
The general solution of (27) is

Q =
Q0√

ε
sin
√

ε(ωτ+δ) , (28)

where ε =−2E/m, ω = n/2 is the frequency of the oscillator
(anti-oscillator) and Q0, δ are integration constants. Since the
energy E may be negative, the “phase” δ may assume complex
values. The constant Q0 can be determined using the energy
equation written in terms of the conformal time. It turns out
that Q0 =

√
−2α/m. Substituting this into (28), and returning

to the original coordinate q, we have

q(τ) = (−m/2α)1/n
(

sin
√

εωτ√
ε

)−2/n

, (29)

where we have put δ = 0 in (28).

V. RELATIVISTIC HAMILTON-JACOBI APPROACH

Let us now consider the relativistic treatment for the ho-
mogeneous potential. For a single-particle the relativistic La-
grangean is

L =−mc2

√
1− q̇2

c2 −αqn . (30)
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The Hamiltonian function for the particle is given by the gen-
eral formula

H = q̇
∂L
∂q̇
−L =

√
p2c2 +m2c4 +αqn , (31)

where p is the canonical momentum. The Hamilton-Jacobi
equation for S is obtained by replacing in (31) p by ∂S/∂q and
H by −(∂S/∂t):

c2
(

∂S
∂q

)2

−
(

∂S
∂t

+αqn
)2

+m2c4 = 0 . (32)

As before, a solution for (32) can be found separating the vari-
ables in the form

S(q,E, t) = W (q,E)−Et , (33)

where the integration constant E is again the total energy.
With the above choice one finds from (32)

S =
1
c

∫ √
(E−αqn)2−m2c4dq−Et , (34)

which should be compared with its classical version (5). The
second integration constant arises out from the transformation
equation (β = ∂S

∂E ) and we have finally

t +β =
1
c

∫ E−αqn
√

(E−αqn)2−m2c4
dq . (35)

Without loss of generality we take q(t = 0) = 0, so that
β = 0 in (35). We next suppose that the potential is a sym-
metric function about the origin, that is, we consider only
even values for n. Then the motion will be limited between
V (−A) and V (A) where the amplitude is now given by A =
[(E−mc2)/α]1/n, and, from (35), the period T is determined
by

T =
4
c

∫ A

0

dq√
1−

(
mc2

E−αqn

)2
. (36)

Writing the total energy as E = mc2(1 + ε), and considering
that the potential energy is small compared to the rest mass en-
ergy mc2, relativistic corrections to second order in the period
T are

T =
4
c

∫ A

0

dq√
2κ(An−qn)

(1+
3κ
4

(An−qn)), (37)

where κ = α/mc2. Introducing the variable change y = (q/A)n

the above integral can be rewritten as

T =
4

cA
n
2−1n

√
2κ

∫ 1

0
y−( n−1

n )(1− y)−( 1
2 )dy

+
3κA

n+2
2

cn
√

2κ

∫ 1

0
y−( n−1

n )(1− y)
1
2 dy, (38)

whose values are tabulated in terms of the complete Beta
function[9]. Substituting for κ we write the period as

T = 2

√
2m
αn2 A1−n/2B(1/n,1/2)

[
1+

3
8

αAn

mc2

(
2n

n+2

)]
.

(39)
Observe that for n = 2 (relativistic harmonic oscillator), the
above equation reduces to

T = 2π
√

m
2α

[
1+

3
8

αA2

mc2

]
, (40)

where the term (3αA2)/8mc2 is the first order relativistic cor-
rection earlier obtained by Synge[8] following a different ap-
proach (see Appendix).

The general form (39) is an interesting one. The term mul-
tiplying the square bracket is just the nonrelativistic period T0
for the bounded homogeneous potential as given by (9). The
remaining term represents the relativistic correction

∆T
T0

=
3
8

αAn

mc2

(
2n

n+2

)
, (41)

and, although it depends of n, we see that for nÀ 1 it saturates
around (3αAn)/4mc2 which is twice the relativistic correction
for the harmonic oscillator.

In conclusion, we have shown that the classical version
of homogeneous potential problem can completely be solved
by the HJ approach. In the relativistic case we not succeed
in obtaining an analytic solution, but the earlier Lagrangian
Synge’s treatment for the harmonic oscillator is readily gen-
eralized using the HJ transformation. Finally, we stress that
although important from their own right, such problems may
also have interest for describing some excited states appear-
ing in quantum chromodynamics which have been usually de-
scribed by the relativistic oscillator[14]. The effective homo-
geneous potential also appears naturally in the cosmological
framework. In this case, the values of the power n is closely
related to the nature of the cosmic fluid [10, 11]. Its usefulness
for providing a possible classification scheme for cosmologi-
cal models has also been recently discussed [15].
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VI. APPENDIX: REMARKS ON SYNGE’S INTEGRAL

The relativistic harmonic oscillator (n = 2) was long ago
discussed by Synge [8]. In this appendix, we show how the
exact Synge’s integral form for the period of the motion can
be generalized for a power-law index.

For an arbitrary n, the period is given by (see (36))

Tn =
4
c

∫ A

0

dq√
1−

(
mc2

E−αqn

)2
. (42)
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Now, by writing E = mc2 +αAn one finds

Tn = 2

√
2m
αAn

∫ A

0

[1+2χ2(1− (q/A)n)]dq√
1− (q/A)n +χ2(1− (q/A)n)2

, (43)

where χ2 = αAn/(2mc2).
Introducing the variable ϕ by q = Asin2/n ϕ, the above in-

tegral becomes

Tn = 4

√
2m
αn2 A1−n/2

∫ π
2

0

sin2/n−1 ϕ(1+2χ2 cos2 ϕ)dϕ√
1+χ2 cos2 ϕ

,

(44)

and, for n = 2 we have

T2 = 4
√

m
2α

∫ π
2

0

(1+2χ2 cos2 ϕ)dϕ√
1+χ2 cos2 ϕ

, (45)

which is the Synge’s integral with a slight different notation
(our α = k2/2, and A = a in Synge’s work[8]). Finally, by
expanding (44) in powers of χ, the relativistic correction for
the period as given by (39) is recovered. For n=2 it reduces to
Synge’s expression.
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