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Boundary Conditions in Theory of Photothermal Processes
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Col. San Francisco, Culhuacán, C.P. 04430, D.F., Mexico, Mexico
2Physics Department of Ternopil National Pedagogical University, Krivonosa str., 2, Ternopil, Ukraine

3Depto. Fisica Aplicada-Electronica, Universidad Salamanca,
Plaza de la MerSed s/n. Edificio Trilingue, E-37008, Salamanca, Spain

Received on 5 of December 2005

The general boundary conditions for the thermal diffusion equation are obtained. It is shown that in the gen-
eral case of a nonstationary photothermal process these boundary conditions must include both the surface ther-
mal conductivity and surface thermal capacity. One more parameter, the surface capacity thermal impedance,
appears in the boundary conditions when the photothermal process is the thermal wave propagation.
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I. INTRODUCTION

The main idea of the photothermal experiments is the gen-
eration of nonstationary temperature in a sample due to ab-
sorption of the modulated laser beam [1]. The surface de-
tection of temperature fluctuations by means of photothermal
techniques enables to obtain various thermal, optic and re-
laxation parameters of a matter. These techniques are versa-
tile, nondestructive and can be employed under different ex-
perimental conditions. The most techniques used in the har-
monic photothermal processes (thermal waves), such as pho-
toacoustic detection, photothermal beam deflection and others
are described in [1,2].

In all cases, the photothermal signal depends on the mate-
rial properties, features of the energy interaction between the
quasiparticles as well as on the geometry of the sample.

The theoretical model of studying of photothermal phe-
nomena is based on the equation of heat flow. In one-
dimensional case and with taken into account the light absorp-
tion throughout the sample it can be written as following,

ρc
∂T (x, t)

∂t
=

∂
∂x

[
κ(x)

∂T (x, t)
∂x

]
+βe−βxI(t). (1)

Here T (x, t) is nonequilibrium temperature; κ, ρ and c are
the thermal conductivity, density and the bulk specific heat
respectively; I(t) is the intensity of the incident modulated
light beam at the illuminated surface of the sample;β is the
light absorption coefficient. The space coordinate is x, and t
is time.

It is clear that the space temperature distribution depends
strongly on the light absorption coefficient. One can consider
two special cases according to correlation between the coeffi-
cient β and the sample length l [3]. One of them is the case of
the weak light absorption, and it corresponds to βl ≤ 1. In this
case the intensity of the incident beam weakly changes with
coordinates within the sample length.

The second one is the case of the strong light absorption,
and it corresponds to βl >> 1. If the last condition takes place
the light intensity sharply decreases from the illuminated sam-

ple surface x = 0 deep into the sample. One may consider that
the light is absorbed at the surface.

In both cases the main feature of all photothermal tech-
niques is the detection of the temperature fluctuations created
by the modulated light absorption on the sample surface. Fre-
quently, two different ways of the sample heating are used
in the photoacoustic experiments being the most popular of
photothermal techniques [1,2]. First of them is the front sur-
face illumination (the detecting photoacoustic cell is replaced
at the irradiated sample surface, and it is called by the close
photocoustic cell). The second one is the rear surface illumi-
nation (the photoacoustic cell is replaced at the back sample
surface, and it is called by the open photoacoustic cell). In
the first case the nonequilibrium temperature is detected at the
same surface on which the modulated laser beam falls. The
second method assumes the detection of this temperature at
the opposite sample side.

Rosencwaig and Gersho [4] and many other scientists con-
sider the temperature and heat flux continuity at the surface in
order to describe thermal waves in photothermal experiments
by Eq.(1). Opsal and Rosenswaig [5] have used a periodic
heat source Qeiωt at the surface of a semi-infinite body as a
boundary condition to study the thermal waves, ω is the light
modulation frequency.

In Ref.[6] it was mentioned that in according with Op-
sal and Rosencwaig boundary conditions , only the periodi-
cally modulated part of the light beam generates heat diffusion
process, and the contribution of the static carrier-light was ig-
nored. Moreover, heat flux Qeiωt takes negative values, what
has no physical sense.

In this connection in Refs. [7],[8] the incident modulated
light beam at the illuminated surface x = 0 was written as

I(t) = I0 +∆Ieiωt , (2)

where I0 is the average over time the total light intensity I(t),
∆I is the intensity of the modulated light component, I0 ≥ ∆I.

In this case the corresponding boundary conditions for the
surface light absorption were represented by equation Q(x =
0, t) = [Q0 + ∆Qeiωt −η(T −T0)]x=0 [8], where Q0 is the av-
erage over time the total thermal flux Q(x = 0, t) at the surface
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x = 0, and it is proportional to I0. The thermal flux component
∆Q corresponds to the intensity ∆I. ∆Q ≤ Q0, so the non-
physical situation with negative values of the thermal flux is
removed. T is the temperature of the sample on the boundary
x = 0; T0 is the ambient temperature; η is the surface thermal
conductivity.

One need to note that practically in all cases boundary con-
ditions are postulated and by this reason have no the properly
argumentation. In the present paper we suggest the logical
derivation of the boundary conditions for equations. From our
point of view they have the most general form, and include all
known special cases.

II. GENERAL BOUNDARY CONDITION

Let the modulated laser beam is incident onto the left sur-
face x = 0 of an unipolar, isotropic semiconductor slab with
the unit section. Let the beam intensity is given by Eq.(2). The
right surface x = l for simplicity is supposed to be kept up at
the temperature T0. The lateral sides are to be supposed adi-
abatically insulated, so the problem is one-dimensional. We
solve the linear problem, so the light intensity is to be so small
that all kinetic coefficients do not depend on the nonequilib-
rium temperature, and the nonequilibrium temperature can be
represented as T (x, t) = T0 +∆T (x, t) with ∆T (x, t) << T0.

Really the boundary between two arbitrary mediums is a
transitional layer along which parameters describing the one
matter’s properties continually transfer to parameters of an-
other matter.

Let us consider that layer 0 ≤ x ≤ δ where δ is arbitrary
small magnitude. Thus, the region −δ ≤ x ≤ 0 applies to the
ambient surrounding, which we suppose to be described by
the temperature T0 . Besides, we assume the light absorption
is absent in this surrounding. This situation is closed to the
photoacoustic spectroscopy when the sample is placed inside
a cell containing a gas [4] .

To obtain the boundary condition at the surface x = 0 for
Eq.(1) in the case of the weak light absorption it is convenient
to represent Eq.(1) in the following form,

ρc
∂T (x, t)

∂t
=

∂
∂x

[
κ(x)

∂T (x, t)
∂x

]
+βe−βxI(t)Θ(x), (3)

where Θ(x) =
[

0, −δ≤ x≤ 0,
1, 0≤ x≤ δ.

Let us now integrate Eq.(1) over x from ξ to δ, where ξ
is the arbitrary space point within the layer −δ ≤ x ≤ δ and
divide the obtained expression by κ(ξ),

1
κ(ξ)

δZ

ξ

ρ(x)c(x)
∂T (x, t)

∂t
dx =

=
1

κ(ξ)

(
κ

∂T (x, t)
∂x

)

x=δ
− ∂T (ξ, t)

∂ξ
+

βI(t)
κ(ξ)

δZ

ξ

e−βxΘ(x)dx.

(4)
Integrating this equation over ζ from −δ to δ again and go-

ing to the limit δ→ 0 (the approximation of the abrupt bound-
ary) we obtain,

η lim
δ→0

δZ

−δ

1
κ(ξ)




δZ

ξ

ρ(x)c(x)
∂T (x, t)

∂t
dx


dξ =

=
(

κ
∂T
∂x

)

x=0
+η(T0−T (x = 0, t))+

+ηβI (t) lim
δ→0

δZ

−δ

1
κ(ξ)




δZ

ξ

e−βxΘ(x)dx


dξ, (5)

where η−1 = lim
δ→0

δR
−δ

dξ
κ(ξ) .

The last term in Eq.(5) is equal to zero. Really,

ηβI (t) lim
δ→0

δZ

−δ

1
κ(ξ)




δZ

ξ

e−βxΘ(x)dx


dξ =

= ηβI (t) lim
δ→0

δZ

0

1
κ(ξ)




δZ

ξ

e−βxdx


dξ =

= ηI(t) lim
δ→0

δZ

0

1
κ(ξ)

(
e−βξ− e−βδ

)
dξ. (6)

The expression between the brackets has no singularities
and can be outside the integral. It tends to zero when δ→ 0.

The comparison the value η with obtained earlier bound-
ary conditions [8,9] allows to conclude that η is the surface
thermal conductivity.

Generally, the thermal conductivity κcan depend on δ in the
limit transition to zero. One can suppose that the following
cases are possible:
a) κ remains the finite value at δ tending to zero.
b) κ tends to zero with the same speed as well as δ;
c) κ tends to zero with a higher speed than δ;

In the first case the surface heat conductivity tends to infin-
ity, so this situation describes the isothermal boundary condi-
tion. The boundary is defined by the finite surface heat con-
ductivity in the second case, and this case is general. The
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third case corresponds to an adiabatic insulation of the sam-
ple. Realization of the concrete situation can be understood
only from the microscopic analysis of the surface energy re-
laxation mechanisms. The given question, however, demands
separate research and does not enter into a subject of consid-
eration of the present work.

The derivation ∂T (x,t)
∂t have no singularities and it can be

outside the integral.
As a result we can write the founded boundary conditions

by the following way,

cs
∂T (x, t)

∂t

∣∣∣∣
x=0

= κ
∂T (x, t)

∂x

∣∣∣∣
x=0

+η(T0−T (x = 0, t)) . (7)

Here the value cs = η lim
δ→0

δR
−δ

1
κ(ξ)

(
ξR
0

ρ(x)c(x)dx

)
dξ is the

surface heat capacity by our definition.
The physical meaning of this value is the surface’s abil-

ity to accumulate the heat energy at the surface. The surface
heat capacity differs from the bulk heat capacity because of
the different properties of the surface and volume as well as
the surface thermal conductivity differs from the bulk thermal
conductivity.

Let us now obtain the boundary conditions for the case of
the very strong surface light absorption, i.e. for the case when
all irradiation’s energy is absorbed completely in the layer
with the zero thickness at the surface x = 0.

To obtain these boundary conditions within the frame of
the method described above let us write Eq(1) with the point
source of heat at the surface x = 0,

ρc
∂T (x, t)

∂t
=

∂
∂x

[
κ(x)

∂T (x, t)
∂x

]
+ I(t)δ(x), (8)

where δ(x) is the Dirac function.
Caring out the calculation similar to the previous case it is

easy to obtain the following boundary conditions,

cs
∂T (x, t)

∂t

∣∣∣∣
x=0

− I(t) =

κ
∂T (x, t)

∂x

∣∣∣∣
x=0

+η(T0−T (x = 0, t)) . (9)

Let us note that Eq.(8) was considered in the form (10) only
for obtaining the boundary conditions. Really, one needs to
use equation

ρc
∂T (x, t)

∂t
=

∂
∂x

[
κ(x)

∂T (x, t)
∂x

]
(10)

for the case of the surface absorption and the boundary condi-
tions (9) to it.

III. BOUNDARY CONDITIONS FOR THE STATIC AND
DYNAMIC TEMPERATURE. SURFACE HEAT

IMPEDANCE.

In this section we will restrict ourselves by analysis of the
boundary conditions (6). Discussion of the boundary condi-
tions is practically the same.

According to Eq.(3) the temperature distribution can be rep-
resented in the following general form,

T (x, t) = T s(x)+T d(x) · eiωt , (11)

where T s(x) is the static temperature component originated
due to the absorption of the intensity I0e−βx and T d(x)eiωt is
the dynamic temperature component arising due to absorption
of the intensity ∆Ie−βxeiωt . Let us note that T d(x) is the com-
plex function.

Substituting Eq.(11) to Eq.(6) we obtain the boundary con-
ditions for the static and dynamic temperatures separately,

κ
dT s (x)

dx
|x=0 = η[T s(x)−T0] |x=0 (12)

κ
dT d(x)

dx
|x=0 = η

(
1+ i

ω
ωs

)
T d(x) |x=0 , (13)

where ωs = η
/

cs. To our opinion this frequency determines
the relaxation rate of the accumulated heat at the surface into
surrounding.

It is easy to see that the boundary conditions (12) and (13)
are reduced to

T s(x = 0) = T0 (14)

and

T d(x = 0) = 0 (15)

when η→ ∞. There are the isothermal boundary conditions.
Only one condition, η → 0 is necessary for adiabatic in-

sulation of the static thermal flux, while for the adiabatic in-
sulation of the dynamic thermal flux it is necessary the same
condition η → 0, and one more, cs → 0. The last condition
is clear because the dynamic thermal energy can accumulated
on the boundary when cs 6= 0 , and, thus, thermal diffusion
flux is different from zero even if η→ 0.

At the static case (∆I = 0) only boundary condition (11)
occurs which is well known from the earliest papers (see, for
example [ 8]).

The boundary condition (12) is quasistatic if the modulation
frequency ω << ωs. In this case the surface properties are
characterized only by the surface thermal conductivity, like to
Eq.(12),
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κ
dT d(x)

dx
|x=0 = ηT d(x) |x=0 . (16)

In this case the surface energy accumulation is absent, and
both static and dynamic heat components relax to the sur-
rounding medium by means of the surface thermal conduc-
tivity.

We obtain another boundary condition when ω >> ωs,

κ
dT d(x)

dx
|x=0 =

i
Zs

T d(x) |x=0 , (17)

where Zs = (ωcs)
−1. By analogy with electrics (see Ref.[10

]) we call this value the surface heat capacity impedance or
the surface thermal capacity resistance. This analogy can be
justified if the electric current compare with the thermal flux
(I → q = −κ dT d

dx ), and the voltage compare with the temper-
ature difference [V → ∆T d = (0−T d)]. In this case we can
write the boundary condition (16) at the surface x = 0 as

qZs |x=0 = ∆T d |x=0 . (18)

In conclusion let us note that in electric circuits, containing
the ohm resistance (R) and the electric capacity (c) we can
introduce the total impedance [11],

Z = R+
i

ωec
, (19)

where ωe is the frequency of electric oscillations.
In the considered case of the thermal fluxes we can not in-

troduce the total heat impedance. Instead of it we can define
the dynamic surface thermal conductivity

ηd = η+ iωcs. (20)

Now the isothermal and adiabatic conditions for the dy-
namic thermal flux can be determined as Reηd → ∞ and∣∣ηd

∣∣→ 0 respectively.

IV. CONCLUSIONS

In this work the general boundary conditions for the ther-
mal diffusion equation are obtained when the photothermal
phenomena are considered. Really, these boundary conditions
represents only their structure and do not pretend to be the ex-
act expressions. The later can be obtained only on the base
of the microscopic analysis. By this reason, the surface para-
meters like surface thermal conductivity and surface thermal
capacity have to be measured from experiments. Some calcu-
lation of the temperature distribution in the photothermal phe-
nomena with taken into account the surface thermal capacity
resistance can be found in Ref. [11]. The results of this paper
can be useful and for analyses of two-layer samples like to the
samples described in Ref. [12 ].
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