
1088 Brazilian Journal of Physics, vol. 36, no. 3B, September, 2006

Quasiparticle Energy Spectrum and Josephson Current in
Superconducting SNINS Junctions

William J. Herrera, J. Virgilio Niño, and J. Jairo Giraldo
Departamento de Fı́sica,

Universidad Nacional de Colombia, Bogotá- Colombia.

Received on 8 December, 2006

Through the solution of the Bogoliubov de Gennes equations we analyze the effect of different symmetries of
the pair potential on the quasiparticle energy spectrum in SNINS junctions (S: superconductor, N: normal metal
and I: Insulator). We find that the energy levels are strongly affected by the symmetry of the pair potential,
the width of each normal metal (a and b) and the strength of the insulating barrier. The energy levels equation
generalizes previous results in SNS and SIS junctions. The energy dispersion relation depends on the phase
difference of the pair potential. The Josephson current is related to the Andreev levels; when a = b ' ξ0 and
T << Tc this current is approximately 1/2 of the Josephson current transported in an SIS junctions. In general,
we find that for dxy symmetries there is always a zero energy state independent of the value of Z, a and b.

Keywords: Josephson effect; Superconductivity; Andreev levels

I. INTRODUCTION

The symmetry of the pair potential is one of the most stud-
ied aspects in high critical temperature superconductors. It
plays an important role in different transport properties [1].
Inhomogeneities of the order parameter or pair potential ∆
lead to scattering of electrons into holes and vice versa (An-
dreev reflections)[2]. The Andreev reflections have been used
in isotropic and anisotropic superconductors to explain trans-
port properties mainly in NIS, SIS and SNS junctions [3]-[6].
When a normal metal is placed between two superconductors,
bound states with |E|<< |∆| are formed by multiple Andreev
reflections in the SN and NS interfaces . The energy levels of
these bound states are called Andreev Levels. They are im-
portant to explain the Josephson effect in these junctions [7]
and the quasiparticles behavior in the core of the vortices [8].
The Andreev levels have been determined in SNS anisotropic
junctions [9], [10] and the Josephson effect has been studied
in SsNSd [11] ( s: s-symmetry , d: d-symmetry ) and SIS [12]
junctions. The study of the bound states and the Josephson ef-
fect in SINS and SNINS junctions have been only carried out
in isotropic superconductors [13]. A general equation for the
quasiparticles energy spectrum is found for SNINS junctions.
It is applied to SNS, SIS, INS and SNINS junctions, and to
study dc Josephson effect in symmetrical SNINS junctions.

II. THEORY

The elementary excitations or quasiparticles in a supercon-
ductor are described by the Bogoliubov de Gennes (BdG)
equations , which can be generalized for anisotropic super-
conductors [14]. For steady states these equations are

He(r1)ũ(r1)+
Z

dr2∆̃(r1,r2)ṽ(r2) = Eũ(r1) ,

−H∗
e (r1)ṽ(r1)+

Z
dr2∆̃∗(r1,r2)ũ(r2) = Eṽ(r1) ,

(1)

where He(r1) = −~2∇2/2m +V (r1)− µ is an electronic hamil-
tonian and µ the chemical potential. ∆̃(r1,r2) is the pair poten-
tial , ũ(r1) and ṽ(r1) are the wave functions for the electron-
and hole-like components of a quasiparticle. The pair po-
tential ∆̃(r1,r2) is a function of the position coordinates r1
and r2, and can be transformed to ∆̄(R,r) = ∆̃(r1,r2), with
R = r1 − r2 and r = (r1 + r2)/2. The Fourier transform of
∆̄(R,r) is

∆FT (k,r) =
Z

dRe−ik·R∆̄(R,r). (2)

Using the quasiclassical approximation [14], the pair poten-
tial ∆FT (k,r) is aproximated by, ∆FT (k,r) = ∆(k̂,r), where
k̂ = k/ |k| is a unit wavevector. Using ∆(k̂,r), the BdG equa-
tions are

He(r)uk(r)+∆(k̂,r)vk(r) = Euk(r),

−H∗
e (r1)vk(r)+∆∗(k̂,r)uk(r) = Evk(r).

(3)
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FIG. 1: SNINS junction. The thickness of the normal region is a+b,
the superconducting regions are semi-infinite and occupy the space
defined by x <−b (∆L) and x > a (∆R). The insulating barrier is lo-
cated in x = 0 and is modeled by a delta function. For d-symmetry,
the pair potential is modeled as ∆L(θ) = ∆0 cos(2θ−2αL), ∆R(θ) =
eiϕ∆0 cos(2θ− 2αR), where ϕ is the a global phase difference be-
tween the two superconducting regions. The solid and dashed lines
represent the electron and the hole-like components of a quasiparti-
cle, respectively.

In the rest of the paper we concentrate on cuprate super-
conductor junctions. It is suppossed that the quasiparticle
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moves on the CuO2 plane with the a and b axes in the x− y
plane; the interfaces are normal to x axis, as indicated in
Fig. 1. The insulating barrier is modeled by a delta func-
tion, V (x) = U0δ(x) and the pair potential by ∆∗(k̂,r) =
Θ(−b− x)∆L(k̂) + Θ(x− a)∆R(k̂), where Θ(x) is the Heav-
iside function and ∆L(R) is the pair potential of the left (right)
superconductor region. The solutions of the BdG equations
for ψ(x) ( ψ(x,y) = ψ(x)eikyy ) in the SL, NI , NII and SR
regions are respectively,

ψSL(x) =C+
−

(
uL,−

0
vL,−

0 e−iϕL−

)
e−ikL,+

− x

+C−+

(
vL,+

0
uL,+

0 e−iϕL
+

)
eikL,−

+ x

ψNI (x) =
(

1
0

)
(U1eik+

1 x +U2e−ik+
1 x)

+
(

0
1

)
(V1eik−1 x +V2e−ik−1 x)

ψNII (x) =
(

1
0

)
(U3eik+

1 x +U4e−ik+
1 x)

+
(

0
1

)
(V3eik−1 x +V4e−ik−1 x)

ψSR(x) =C+
+

(
uR,+

0
vR,+

0 e−iϕR
+

)
eikR,+

+ x

+C−−

(
vR,−

0
uR,−

0 e−iϕR−

)
e−ikR,−

− x, (4)

with

uβ,±
0 =

√√√√1
2

[
1+ i

Ωβ
±

E

]
, v±0 =

√√√√1
2

[
1− i

Ωβ
±

E

]
,

kβ,ε
± =

√
k2

0xF + iε
2m
~2 Ωβ

±, k0xF =
√

k2
F − k2

y ,

Ωβ
± =

√∣∣∣∆β
±
∣∣∣
2
−E2,k± =

√
k2

0xF ±
2mE
~2 ,ε =±, (5)

where β denotes R or L, k± are the wave numbers of the elec-
trons (+) and holes (−) in the normal regions, kβ,ε

± are the wave
numbers of the quasiparticles that move in the potentials ∆±L
in the left superconducting region and in the potentials ∆±R in
the right superconducting region. These potentials are

∆β
± = ∆(±kβ,ε

± + ky ĵ)≡
∣∣∣∆β
±
∣∣∣eiϕ± , (6)

where ϕβ
+ and ϕβ

− are the phases of the effective pair potentials
∆+ and ∆− respectively. For d-symmetry ∆β

± = ∆0 cos(2(θ∓
αβ)), where αβ is the angle between the (100) axis of the su-
perconductor and the normal to the interface (cf. fig. 1).

III. ENERGY SPECTRUM

From the solution Eq. (4) and the boundary conditions for
ψ(x) in x =−b,x = 0 and x = a we find that the bound states

energy levels equation is
F+(E)F−(E)+Z2MRML = 0 (7)

with

F± =ΓR
±ΓL

±− eirde±i(γ±+ϕ),MR = ΓR
+ΓR

−− e−2ir(d−x0)eiγR

ML =ΓL
+ΓL

−− e−2ir(d+x0)e−iγR ,γβ = ϕβ
+−ϕβ

−,

γ± =ϕR
±−ϕL

±, r =
kF

cosθ
E
EF

, d = a+b,

x0 =
b−a

2
,Γβ
± =

E− iΩβ
±∣∣∣∆β

±
∣∣∣

,Z =
kFU0

2EF cosθ
. (8)

Z is the strength of the insulating barrier. Equation (8) allows
us to find the energy spectrum for any value of Z and a, as well
as for several symmetries of the pair potentials ∆L and ∆R.
The general solution of this equation is rather difficult. We
consider first some special cases, which permit to obtain easily
the energy spectrum of SNS, SIS, INS and SNINS systems.

SNS junctions. We obtain from equation (7) for Z = 0:
F+(E)F−(E) = 0. Two sets of energy levels E+ and E− are
found, which correspond to particles with wave number kx
positive or negative respectively. The energy levels satisfy the
equations

ΓR
±ΓL

± = e−irde±i(ϕR±−ϕL±+ϕ). (9)
This spectrum is formed by the Andreev reflections that oc-

cur in the SN and NS interfaces.The E+ and E− levels are
equivalent to the levels of an SL+NSR+ and SL−NSR− junc-
tions respectively, where the subscript L± or R± denote the
superconductor region with pair potential ∆L± or ∆R± respec-

tively. For E <<
∣∣∣∆L(R)
±

∣∣∣we find that the two sets of energy
levels are given by

En,± = E0(2n+1± ((ϕR
±−ϕL

±+ϕ)/π) (10)
with

E0 = EF πcosθ/d. (11)

INS interfaces. If Z >> 0 equation (7) is reduced to
MRML = 0,; when ML = 0, we obtain

ΓL
+ΓL

− = e−2irbe±i(ϕL
+−ϕL−) (12)

Comparing this equation with (9), we see that the spectrum
is equivalent to one of a junction SL+NSL− with thickness 2b
and pair potential ∆L

+ and ∆L−, our result agree with Ref. [12]
for surface states, where ZES (zero energy states) appear for
ϕL

+−ϕL− = π.

SINS junctions. In this section we analyze the spectrum
of an SINS junction. This is obtained when b = 0. For E <<∣∣∣∆L(R)
±

∣∣∣ it is possible to find analytic solutions of equation (7),
which can be written as

cos
(

Eπ
E0

)(
cos

γ+− γ−
2

+(1−TN)cos
γR + γL

2

)

+ sin
(

Eπ
E0

)(
sin

γ+− γ−
2

+(1−TN)sin
γR + γL

2

)

+TN cos
γ+ + γ−+2ϕ

2
= 0 (13)
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where E0 is given by (11) with d = a and TN = 1/(1 + Z2)
is the transparence of the junction. We show in table I the
energy spectrum for several symmetries of the pair potential.
For s symmetries the energy spectrum depends on Z and on
the phase ϕ and agrees with previous results [15]. For these
junctions the energy spectrum is proportional to the quantum
number n, as in an SNS junction. The fundamental difference
between SINS and SNS junctions is the ϕ dependence of the
energy levels. We note that for the symmetries shown in Tab.
I, (c) and (d) cases, the epectrum is completely independent
of TN , as well as in (b) and (c ) cases if ϕ = 0. In figure 2 it is
shown the behavior of the energy spectrum with ϕ forn = 0,
for an SsINSs junction the energy is 0 only for ϕ = 0 and
TN = 1 while that for an SsINSdxy or Sdx2y2INSdxy junction
the energy is 0 for ϕ = 0, π for any value of TN . This shows
that the ZES are independent of the strenght of the insulating
barrier in these junctions. On the other hand, if the insulating
barrier is very strong TN << 1(Z >> 0) the energy is inde-
pendent of the phase ϕ because we have two isolated systems
(SI and INS).
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FIG. 2: Energy spectrum for n = 0 in an SINS junction as a function
of ϕ. (a) SsINSs junction (b) Sdx2−y2 INSdxy junction.

TABLE I: Andreev levels of an SINS junction for E <<
∣∣∣∆L(R)
±

∣∣∣. The
symmetry of each superconducting region is s or d.

Junction En,±/E0 case

SsINSs 2n±1∓ 1
π cos−1

(
TN

2−TN
cosϕ

)
(a)

Sdx2−y2 INSdxy 2n± 1
π sin−1

(
TN

2−TN
sinϕ

)
(b)

Sdxy INSdxy 2n±1∓ 1
π cos−1 (cosϕ) (c)

Sdxy INSdx2−y2 2n∓ 1
π sin−1 (cosϕ) (d)

SNINS junctions. In the general case the solutions of Eq.
(7) are obtained from

cos
(

Eπ
E0
− β1

2

)
+(1−TN)cos

(
Eπ
E0

2x0

d
+

β2

2

)

+TN cos
(

β3

2
+ϕ

)
= 0 (14)

with
β1 = γ+− γ−− (φR

−+φR
+ +φL

+ +φL
−+2π)

β2 = γ+ + γ−+φR
−−φR

+ +φL
−−φL

+

β3 = γR + γL +φL
−+φL

+−φR
−−φR

+

tanφβ
± =−Ωβ

±/ |E| , β = R,L. (15)

The two superconductor regions are correlated by the phase
ϕ, factor TN cos(β3/2 + ϕ) in Eq. (14). If TN = 0 the two
regions are isolated and the spectrum is independent of ϕ.
Equation (14) is completely general and allows us to find the
energy spectrum of a SNINS junction for any value of a, b,
and TN , and different symmetries of the pair potential of each
superconductor region. Now we consider the case of a sym-
metrical junction with a = b = d/2 and symmetry dxy in both
superconductors. Equation (14) can be written as

cos(rd +2φ) = 2TN cos2
(ϕ

2

)
−1, φ = cos−1

(
E
|∆|

)
. (16)

For d = 0 we get the spectrum of SIS junction

ε± =±ε, ε = |∆|
√

TN |cos(ϕ/2)| . (17)
For a thickness d ∼ ξ0, Eq. (16) can be solved approxi-

mately and two energy levels are found
E± =±ηε, (18)

with

η =

√
4+δ2−δ

√
16(1− ε2)+δ2

2(2+(2ε2−1)δ2)
,δ =

2d
πξ0 cosθ

. (19)

For TN << 1, η only depends in d and the effect of the
normal region is to decrease the value of the energy levels, as
is shown in Fig. 3(a)

IV. JOSEPHSON CURRENT

The Josephson current transported by quasiparticles in the
Andreev levels is given by

Ix =
2e
~ ∑

n

〈
dE
dϕ

f (En)
〉

, (20)

where < ...> denotes integration over the angle θ and f (En) is
the Fermi-Dirac distribution. Using Eq. (18) Ix at temperature
T is

Ix =
2e
~

sin
ϕ
2

sgn
(

cos
ϕ
2

)
×

〈√
TNη |∆| tanh

√
TNη |∆| |cos(ϕ/2)|

2kBT

〉
. (21)

At T = 0 this current is carried by quasiparticles with en-
ergy E− and is given by

Ix = sin
ϕ
2

sgn
(

cos
ϕ
2

)
Ic(0), Ic(0) =

2e
~

〈√
TNη |∆|

〉
(22)
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FIG. 3: (a) Energy spectrum for n = 0 in Sdxy ISdxy and Sdxy NINSdxy

junctions as a function of ϕ. (b) Current-phase relation for the same
junctions at temperature T = 0.01T c.
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where sgn is the signum function and Ic(0) is the critical cur-
rent at T = 0, it is proportional to

√
TNη, lower than in the

case of an SIS junction (d = 0) in a factor η. Figure 3(b)
the current-phase relation is ploted for T = 0.01T c, in this
case the quasiparticles with energy E+ and E− carry currents
in opposite directions and the total current decreases. This is
observed in Fig. 4 where Ic is plotted as a function of temper-
ature. When E+ << kBT a 1/T dependence current is found
and Ic is proportional to TNη2, lower than the critical current
of an SIS junction in a factor η2, this is in agreement with the
results shown in the inset of Fig. 4.

V. CONCLUSIONS

We have found a general equation for the energy quasipar-
ticles spectrum in SNINS junctions. With this equation we
have analysed the energy spectrum in anysotropic SNS, SIS,
INS and SNINS junctions. We have found analytic solutions
of the general equation for energies E << |∆R/L|. For the
SINS junction the energy spectrum depends on the phase dif-
ference between the two superconducting regions, the strength
of the barrier and the thickness of the normal region. We
have analysed several symmetries of the pair potentials; table
I shows the behaviour of the energy spectrum for these sym-
metries. In general, we see that for d symmetries we always
obtain a zero energy state independent of the value of TN . For
the symmetrical SNINS junction and dxy symmetry of the pair
potential the energy levels are modulated by an amplitude η
that depends on d. As a consequence the critical current in
SNINS junctions is lower than the critical current of an SIS
junction.
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