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Superconducting Properties of Mesoscopic Squares
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We apply the complete nonlinear Time Dependent Ginzburg Landau (TDGL) equations to study the vortex
dynamics in a mesoscopic type II superconductor using the numerical method based on the technique of gauge
invariant variables. The solution of these equations shows how the vorticity penetrates into and goes out of
the superconductor through the surface boundary. We calculate the spatial distribution of the superconduct-
ing electron density and the phase of the superconducting order parameter in a mesoscopic superconducting
square sample containing two holes in the presence of a uniform perpendicular magnetic field. The dynamics of
different vortex states are studied as a function of the external magnetic field.
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I. INTRODUCTION

For a bulk type II superconductor, the magnetic field can
penetrate in the form of vortices, each carrying one single
flux quantum arranged in a triangular lattice. This so called
mixed state takes place between the first and the second criti-
cal magnetic fields. For mesoscopic samples, i.e., for samples
whose size is of the order of the penetration or the coherence
lengths, the superconducting properties, such as the critical
magnetic fields and the critical current, as well as the vortex
configurations, can present new and very interesting proper-
ties. For example, it is observed an increase in the critical
fields, the formation of chain like structure in superconduct-
ing strips and giant vortices carrying more than one quantum
flux in mesoscopic disks. The possibility of improving the
superconducting parameters by nanostructuring existing su-
perconducting materials had called attention of both theoret-
ical and experimental researchers. For example, L. F. Chib-
otaru et al [1] studied the formation of vortices and antivor-
tices in mesoscopic superconductor square. C. Bolech and
G. Buscaglia [2], reported numerical simulations of vortex ar-
rays in thin superconducting films, L.R.E. Cabral et al [3],
investigated the dynamics of stable vortex configurations in
thin superconducting disk using both the nonlinear Ginzburg
Landau theory and the London approximation. C.C. de Souza
Silva and co-authors [4], studied the vortex dynamics in ho-
mogeneous superconducting films of arbitrary thickness under
parallel magnetic field. G.R Berdiyorov et al. [5] used nonlin-
ear Ginzburg-Landau theory (GL) to investigate theoretically
the influence of various holes into the superconducting sample
on the penetration and on the arrangement of vortices. Also
the numerical method has been used to study, for example,
the magnetic flux penetration and exit in a superconducting
mesoscopic sample through the surface boundary [6,7].

II. THEORETICAL FORMALISM

In the present work, we considered a mesoscopic super-
conducting cylinder with rectangular cross section which is
immersed in an insulating medium in the presence of an ap-

plied perpendicular uniform magnetic field Ha. We used the
time dependent Ginzburg Landau equations (TDGL) coupled
with Maxwell equations, leading to the following mathemati-
cal problem for the order parameter ψ and the vector potential
A.
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Where lengths have been scaled in units of ξ(0), time in
units of t0 = π~/(96KBTC), A units of HC2(0)ξ(0), tempera-
tures in units of TC, η is a positive constant, f̃ a random force
simulating thermal fluctuations.

In the following we considered a thin superconductor cylin-
der of square cross section, we will refer to this geometry as
a square superconductor. Thus, we are allowed to take the or-
der parameter and the local magnetic field invariant along to
the z direction. The superconducting wave function satisfies
the boundary conditions n̂.(−i∇−A)ψ = 0 where n̂ denotes
the normal to the superconductor - vacuum interface, and the
boundary conditions for A, namely that BZ = êz.∇×A at the
external surface must equal to Ha, the applied field.

The Link Variable Method, two auxiliary fields Ux and Uy

are related to A by:
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Uy (x,y, t) = exp
(
−i
Z y

y0
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)

(4)

The outline of this simulation procedure is as follows: The
sample is divided in a rectangular mesh consisting of Nx×Ny
cells, with mesh spacing ax × ay (in our simulation we use
the simple Euler method with time step ∆t = 0.0005, space
step ax = ay = 0.2, the grid size 160×160, κ = 2, for 8×106

steps), each hole has dimensions 10ξ(0)× 10ξ(0), Ha is
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FIG. 1: The magnitude of the order parameter (left) and its phase
(right) for the mesoscopic square with two square holes with (a) L =
4, (b) L = 7, (c) L = 13, and (d) L = 15 respectively, at Ha = 0.200,
0.225, 0.245 and 0.250, dark and bright regions represents values of
the modulus of the order parameter (as well as the ∆φ/2π, from 0 to
1).

increased lineary with time from 0 to 1, with small intervals
of ∆H = 2.5×10−7. variables are homegeneously initialized
to a perfect Meissner state ψ(t = 0)) = 1, A(t = 0) = 0 (for
every point in the domain).

Let us first examine the time development of the supercon-
ducting state by integrating the TDGL equations starting with
the perfect Meissner state.

The magnitude of the order parameter |ψ| and its phase are
plotted in Fig. 1 for the superconductor with two holes. When
the holes are placed in the sample, the square symmetry is
broken and the holes act like a pinning center. In Figs. 1(a -
d), values of the phase close to zero are given by dark gray
regions and close to 2π by light gray regions. The phase

FIG. 2: The same as Fig. 1, but for (a) Ha = 0.300, (b) 0.330, (c)
0.585, (d) 0.750, (e) 0.965 respectively.

allows to determine the number of vortices in a given region,
by counting the phase variation in a closed path around this
region. If the vorticity in this region is L, then the phase
changes by ∆φ = 2πL [5].

In the Fig. 1(a) the first four vortices will sit in the holes
symmetrically, two in each hole. Although they are not visible
in the contour plot of the magnitude of order parameter, there
is a change in the phase around each hole equal to ∆φ = 4π.
The vortex entry occurs through the closest points in the outer
sample surface to the holes. By increased the magnetic field
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three more vortices appear in the sample, as shown in Fig 1(b),
they are localized in the superconductor region opposed to the
holes position, for L = 13 Fig. 1(c), two vortex sit in each hole
and five vortex are in the superconducting region, while four
more vortices are entering in the sample (two in each hole,
situated close to the holes). In Fig 1(d), with L = 15, four vor-
tices are in each hole and seven in the superconducting region.

In Fig. 2, we can see the vortices in the superconducting
region forming a vortex configuration symmetric to the geom-
etry made by both holes. By increasing the magnetic field one
vortex enter in each hole for Ha = 0.300, one more vortex en-
ter in each hole, and we have ten vortices in the holes together
with twelve in the superconducting region [see Fig 2 (a)]. At
Ha = 0.330 [Fig. 2(b)], 29 vortices are in the sample, 15 of
them inside the holes. For the states with higher vorticity Fig.
2 (c - e), vortices are too close to each other in the region
opposed to the holes position (vortices can still be clearly dis-
tinguished from one another in Fig. 2 (c) in the space between
the holes and the outer sample surface). A giant rectangle of
depreciated superconductivity is observed, with an extended
region of large vorticity inside (see in the right of Figs. 2(c)

and 2(d)), because the vortices are overlapping. For magnetic
fields near to HC2(0) the sample reach the normal state except
in the region between the holes.

III. CONCLUSIONS

We investigated theoretically the spatial distribution of the
vortices in a square mesoscopic superconductor with two
square holes. The presence of the holes affects the vortex
distribution, as well as the vortex entry. Vortices not in
the holes are mainly located in the superconducting region
opposed to the holes. At high magnetic field, there is a
rectangular region of high vorticity symmetrical to the holes.
Close to HC2(T ) superconductivity survives only in the region
of the superconductor between the holes.
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