
854 Brazilian Journal of Physics, vol. 35, no. 3B, September, 2005
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I discuss recent applications of chiral effective field theory to study the properties of few–nucleon systems.

I. INTRODUCTION

During the past decade, significant progress has been achie-
ved towards an accurate, microscopic description of few– and
even many–body systems. Most of the microscopic calcula-
tions performed so far are based on phenomenological mo-
dels for nuclear forces and current operators. Such a scheme
has proven to be useful for a microscopic understanding of
nuclear structure physics but suffers from the obvious defici-
encies such as the lack of consistency and systematics. It is
therefore desirable to approach the problem on a more funda-
mental level. Chiral Effective Field Theory (EFT) has become
a standard tool for analyzing the properties of hadronic sys-
tems at low energy in a systematic and controlled way. It is
based upon the approximate and spontaneously broken chiral
symmetry of Quantum Chromodynamics (QCD). The corres-
ponding Nambu–Goldstone bosons can be identified with pi-
ons if one considers the two flavor sector of the up and down
quarks as done here. Due to the fact that Goldstone bosons do
not interact at vanishingly low energies in the chiral limit, the
S–matrix in the pion and single–baryon sectors can be calcu-
lated perturbatively via simultaneous expansion in energy and
around the chiral limit. The situation in the few–nucleon sec-

tor is far more complicated. Due to the presence of shallow
bound states, an additional non–perturbative resummation is
required. One possible way to deal with this difficulty was
suggested by Weinberg, who proposed to apply chiral EFT
to the kernel of the corresponding scattering equation which
can be viewed as an effective nuclear potential [1, 2]. In this
manuscript, I will consider recent applications of this method
to describe properties of few–body systems. In section II I
present our recent results for the two–nucleon (2N) system at
next–to–next–to–next–to–leading order (N3LO) in the chiral
expansion. More complex systems with up to six nucleons
are discussed in section III. Brief summary is presented in
section IV.

II. TWO NUCLEONS

The two–nucleon system has been extensively studied in
chiral EFT during the past decade. One starts from the ef-
fective Lagrangian for pions and nucleons which is consistent
with the approximate and spontaneously broken chiral sym-
metry of QCD and can be constructed along the lines of [3, 4].
The first few terms read:
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where I switch to the nucleon rest–frame and list only first
few terms. Here,Mπ (Fπ) refers to the pion mass (decay cons-
tant) andgA, ci andCi are the low–energy constants (LECs).
Further, σi and τa denote spin and isospin Pauli matrices,
respectively. Following Weinberg [1, 2], the Lagrangian (1)
can be applied to derive nuclear forces which might then be
used in the corresponding dynamical equation to calculate the
S–matrix elements. In the language of old–fashioned time–
ordered perturbation theory, nuclear forces are given by a set
of irreducible diagrams, i.e. those diagrams which do not con-
tain purely nucleonic intermediate states. The relevant contri-
butions to the nuclear forces can be identified from the infinite
set of possible time–ordered diagrams by counting the powers
of the low–momentum scaleQ associated with external nu-

cleon momenta orMπ. More precisely, the N–nucleon force
receives contributions of the order∼ (Q/Λχ)ν with Λχ being
the pertinent hard scale and

ν =−2+2N−2C+2L+∑
i

Vi∆i , where ∆i = di +
1
2

ni−2.

(2)
Here,L (C) is the number of loops (separately connected pi-
eces),Vi refers to the number vertices of typei and∆i is the
corresponding chiral dimension. Further,ni is the number of
nucleon field operators anddi the number of derivatives and/or
insertions ofMπ. For example, the leading interactions given
in the first line of eq. (1) have dimension∆i = 0, while the
subleading ones in the second line correspond to∆i = 1. No
interactions with∆i < 0 are allowed by spontaneously broken
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FIG. 1: Two–nucleon force up to N3LO. Solid (dashed) lines denote nucleons (pions). Solid dots, filled circles, filled rectangles and crossed
circles refer to vertices with∆i = 0, 1, 2 and4, respectively.
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FIG. 2: np differential cross section and vector analyzing power atElab = 25 MeV (left panel),Elab = 50 MeV (middle panel) andElab = 96
MeV (right panel). The light (dark) shaded bands show the NNLO (N3LO) results. The Nijmegen PWA result is taken from [17]. For data see
[15].

chiral symmetry. Consequently, the chiral orderν is bounded
from below and for any givenν only a finite number of dia-
grams needs to be taken into account. Notice further that the
boundaryν≥ 2N−4, which follows from eq. (2) for connec-
ted diagrams, implies a rather natural picture, in which nu-
cleons interact mainly via 2N forces while many–body forces
provide small corrections.

As shown in Fig. 1, the general structure of the NN force in
the chiral EFT approach can be expressed as

V2N = VNN +V1π +V2π +V3π + . . . , (3)

where the NN contact termsVNN and the pion–exchange con-
tributions can be obtained order–by–order, see eqs. (1) and

(2):

VNN = V(0)
NN +V(2)

NN +V(4)
NN + . . . ,
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Here the superscript means the chiral orderν. The NN poten-
tial was first worked out up by Ordóñez, Ray and van Kolck
[5], who derived an energy–dependent, non–hermitian two–
nucleon (2N) potential up to next–to–next–to–leading order
(NNLO) in the chiral expansion and applied it to the nucleon–
nucleon system. The explicit energy dependence of the po-
tential is a severe complication for applications in three– (3N)
and more–nucleon systems. Energy–independent expressions
for the chiral potential at NNLO have been derived by seve-
ral groups independently using different methods [6–8] and
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NLO NNLO N3LO Exp

Ed [MeV] −2.171. . .−2.186 −2.189. . .−2.202 −2.216. . .−2.223 −2.224575(9)
AS [fm−1/2] 0.868. . .0.873 0.874. . .0.879 0.882. . .0.883 0.8846(9)
ηd 0.0256. . .0.0257 0.0255. . .0.0256 0.0254. . .0.0255 0.0256(4)

TABLE I: Deuteron observables at NLO, NNLO and N3LO in chiral EFT in comparison to the data.

FIG. 3: 3N force at NNLO. For notation see Fig. 1
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FIG. 4: Nd elastic observables at 65 MeV.

applied to the 2N system in [9]. Recently, N3LO correc-
tions to the 2N force have been calculated by Kaiser [10–
13] and applied to study the properties of the 2N system in
[14, 15]. In our N3LO analysis [15], a novel regularization
scheme for pion loop integrals in the2π–exchange potential
is applied, which is based on the spectral–function representa-
tion [16] and allows for a better separation between the long–
and short–distance contributions compared to dimensional re-
gularization. Within this scheme, we found the3π–exchange
contribution to the potential to be negligibly small. We have
fixed 24 LECs related to contact interactions with up to four
derivatives from a fit tonpphase shifts in S–, P– and D–waves
and the corresponding mixing angles.

The resulting potential at N3LO leads to an accurate des-
cription of the phase shifts and the low–energy observables in
the 2N system. In Fig. 2 we show the NNLO and N3LO results
for np differential cross section and vector analyzing power
at three different energy. The bands correspond to the varia-
tion of the cut–offs in the spectral–function representation of
the potential and in the Lippmann–Schwinger equation. They
may serve as a rough estimation of the theoretical uncertainty,
which at N3LO is expected to be of the order∼ 0.5%, 7% and
25% at laboratory energy∼ 50, 150 and250 MeV, respecti-
vely, see [15] for more details.

In Table I we show our predictions for the deuteron binding
energy, asymptotic S–wave normalizationAS and asymptotic
D/S ratio at various orders in chiral EFT. All these observa-
bles are well described at N3LO.

III. THREE AND MORE NUCLEONS

3N and 4N systems have been studied at NLO [18] and
NNLO [19] in the chiral EFT framework solving rigorously
the Faddeev–Yakubovsky equations in momentum space.
Chiral 3N force starts formally to contribute at NLO (ν = 2),
see eq. (2). It is, however, well known that the leading 3N
force at this order vanishes provided one uses an energy–
independent formulation such as the method of unitary trans-
formation [8, 20], see also [21–23]. Consequently, only
the 2N interaction needs to be taken into account at NLO,
which is already completely fixed from the 2N system. The
first nonvanishing 3N forces appear at NNLO and are given
by the diagrams shown in Fig. 3 [19, 22]. While the2π–
exchange contribution is parameter–free, the1π–exchange
and contact interactions depend on one parameter each. These
two parameters cannot be determined in the 2N system and
were fixed from the triton binding energy and thend doublet
scattering length. Our prediction for theα–particle binding
energy based upon the resulting parameter–free 3N Hamilto-
nian, BE(4He) = −29.51. . .− 29.98MeV, agrees well with
the empirical (corrected for missingnn andpp forces) num-
ber,−29.8 MeV.

We also observe good description of the 3N scattering data
at NNLO at low and intermediate energies. For example, dif-
ferential cross section and vector analyzing power for elastic
Nd scattering atElab = 65 MeV are shown at NLO (light sha-
ded band) and NNLO (dark shaded band) in Fig. 4.

Recently, first and very promising parameter–free results
for the 1+ ground and3+ excited states of6Li were obtai-
ned using chiral forces at NLO and NNLO within the no–core
shell model framework [24]. At NNLO both the ground and
excited state energies are reproduced within the theoretical un-
certainty of5.7% and7.6% (based on the cut–off variation),
respectively.

IV. SUMMARY AND OUTLOOK

Chiral EFT provides a systematic framework to study the
low–energy dynamics of hadronic systems. Recent applica-
tions in the few–nucleon sector show promising results. The
two–nucleon system has been studied at N3LO. Accurate re-
sults for the deuteron and low–energy scattering observables
have been obtained. 3N, 4N and 6N systems have been analy-
zed at NNLO. For the first time, the chiral 3N force has been
included in few–body calculations. In the future, N3LO analy-
sis of the 2N system should be extended to heavier systems.
One should also consider reactions with external electroweak
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and/or pionic probes.
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