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It is reviewed what can be considered as the present research trends in what regards to the construction of an
ensemble formalism – Gibbs’ style – for the case of far-from-equilibrium systems. The main questions involved
are presented accompanied with brief discussions. The construction of a nonequilibrium statistical operator
is described and its applications commented, and, particularly, it is presented the derivation of an Irreversible
Thermodynamics based on the statistical foundations that the nonequilibrium ensemble formalism provides.

I. INTRODUCTION

It is generally considered that the aim of Statistical Me-
chanics of many-body systems away from equilibrium is to
determine their thermodynamic properties, and the evolution
in time of their macroscopic observables, in terms of the dy-
namical laws which govern the motion of their constitutive
elements. This implies, first, in the construction of an irre-
versible thermodynamics and a thermo-hydrodynamics (the
latter meaning the particle and energy motion in fluids, rhe-
ological properties, etc., with the transport coefficients de-
pending on the macroscopic thermodynamic state of the sys-
tem). Second, we need to face the all-important derivation
of a generalized nonlinear quantum kinetic theory and a re-
sponse function theory, which are of fundamental relevance
to connect theory with observation and experiment, basic for
the corroboration of any theory [1], that is, the synthesis leg
in the scientific method born in the seventeenth century.

Oliver Penrose [2] has noted that Statistical Mechanics is
notorious for conceptual problems to which is difficult to give
a convincing answer, mainly:

What is the physical significance of a Gibbs’ ensemble?;
How can we justify the standard ensembles used in equilib-

rium theory?;
What are the right ensembles for nonequilibrium prob-

lems?;
How can we reconcile the reversibility of microscopic me-

chanics with the irreversibility of macroscopic behavior?
Moreover, related to the case of many-body systems out

of equilibrium, the late Ryogo Kubo, in the opening address
in the Oji Seminar [3], told us that statistical mechanics of
nonlinear nonequilibrium phenomena is just in its infancy and
further progress can only be hoped by closed cooperation with
experiment. Some progress has been achieved since then, and
we try in this review to describe, in a simple manner, some
attempts in the direction to provide a path for one particular
initial programme to face the questions posited above.

Statistical Mechanics is a grandiose theoretical construc-
tion whose founding fathers include the great names of James
C. Maxwell, Ludwig Boltzmann and J. Willard Gibbs [4].
We may recall that it is fundamental for the study of con-
densed matter, which could be said to be statistical mechanics
by antonomasia. Therefore statistical mechanics can be con-
sidered the science mother of the present day advanced tech-
nology, which is the base of our sophisticated contemporary

civilization. Its application to the case of systems in equilib-
rium proceeded rapidly and with exceptional success: equi-
librium statistical mechanics gave - starting from the micro-
scopic level - foundations to Thermostatics, its original objec-
tive, and the possibility to build a Response Function Theory.
Applications to nonequilibrium systems began, mainly, with
the case of local equilibrium in the linear regime following
the pioneering work of Lars Onsager (see, for example, [5]).

For systems arbitrarily deviated from equilibrium and
governed by nonlinear kinetic laws, the derivation of an
ensemble-like formalism proceeded at a slower pace than in
the case of equilibrium, and somewhat cautiously. A long list
of distinguished scientists contributed to such development,
and among them we can mention Nicolai Bogoliubov, John
Kirkwood, Sergei Krylov, Melvin Green, Robert Zwanzig,
Hazimi Mori, Ilya Prigogine, Dimitri Zubarev. It must be
added the name of Edwin Jaynes, who systematized, or better
to say codified, the matter on the basis of a variational princi-
ple in the context of what is referred to as Predictive Statistical
Mechanics [6–13], which is based on a framework provided
by Information Theory.

It can be noticed that the subject involves a number of ques-
tions to which it is necessary to give an answer, namely

1. The question of the choice of the basic variables

2. The question of irreversibility

3. The question of the initial value condition

4. The question of historicity

5. The question of providing the statistical operator

6. The question of building a non-equilibrium grand-
canonical ensemble

7. The question of the truncation procedure

8. The question of the equations of evolution (nonlinear
quantum kinetic theory)

9. The question of a response function theory

10. The question of validation (experiment and theory)

11. The question of the approach to equilibrium
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12. The question of a non-equilibrium statistical thermody-
namics

13. The question of a thermo-statistical approach to com-
plex systems

14. The question of a nonlinear higher-order thermo-
hydrodynamics

15. The question of statistical mechanics for complex struc-
tured systems

which are addressed in [13, 14].
In the study of the macroscopic state of nonequilibrium sys-

tems we face greater difficulties than those present in the the-
ory of equilibrium systems. This is mainly due to the fact
that a more detailed analysis is necessary to determine the
temporal dependence of measurable properties, and to cal-
culate transport coefficients which are time-dependent (that
is, depending on the evolution in time of the nonequilibrium
macrostate of the system where dissipative processes are un-
folding), and which are also space dependent. That depen-
dence is nonlocal in space and non-instantaneous in time, as
it encompasses space and time correlations. Robert Zwanzig
[15] has summarized the basic goals of nonequilibrium statis-
tical mechanics as consisting of: (i) To derive transport equa-
tions and to grasp their structure; (ii) To understand how the
approach to equilibrium occurs in natural isolated systems;
(iii) To study the properties of steady states; and (iv) To calcu-
late the instantaneous values and the temporal evolution of the
physical quantities which specify the macroscopic state of the
system. Also according to Zwanzig, for the purpose to face
these items, there exist several approaches which can be clas-
sified as: (a) Intuitive techniques; (b) Techniques based on the
generalization of the theory of gases; (c) Techniques based
on the theory of stochastic processes; (d) Expansions from an
initial equilibrium ensemble; (e) Generalization of Gibbs’ en-
semble formalism.

The last item (e) is connected with Penrose’s questions no-
ticed above concerning if there are, and what are, right ensem-
bles for nonequilibrium problems. In the absence of a Gibbs-
style ensemble approach, for a long time different kinetic the-
ories were used, with variable success, to deal with the great
variety of nonequilibrium phenomena occurring in physical
systems in nature. We describe here a proposition for the con-
struction of a Nonequilibrium Statistical Ensemble Formal-
ism, or NESEF, for short, which appears to provide grounds
for a general prescription to choose appropriate ensembles for
nonequilibrium systems. The formalism has an accompanying
nonlinear quantum transport theory of a large scope (which
encompasses as particular limiting cases Boltzmann’s and
Mori’s approaches), a response function theory for arbitrarily-
away-from-equilibrium systems, a statistical thermodynamics
(the so-called Informational Statistical Thermodynamics), and
an accompanying Thermo-Hydrodynamics.

NESEF appears as a very powerful, concise, based on
sound principles, and elegant formalism of a broad scope to
deal with systems arbitrarily away from equilibrium. Zwanzig

stated that the formalism “has by far the most appealing struc-
ture, and may yet become the most effective method for deal-
ing with nonlinear transport processes” [15]. Later devel-
opments have confirmed Zwanzig’s prediction. The present
structure of the formalism consists in a vast extension and gen-
eralization of earlier pioneering approaches, among which we
can pinpoint the works of Kirkwood [16], Green [17], Mori-
Oppenheim-Ross [18], Mori [19], and Zwanzig [20]. NESEF
has been approached from different points of view: some are
based on heuristic arguments [18, 21–24], others on projection
operator techniques [25–27] (the former following Kirkwood
and Green and the latter following Zwanzig and Mori). The
formalism has been particularly systematized and largely im-
proved by the Russian School of statistical physics, which can
be considered to have been initiated by the renowned Nicolai
Nicolaievich Bogoliubov [28], and we may also name Nico-
lai Sergeivich Krylov [29], and more recently mainly through
the relevant contributions by Dimitrii Zubarev [24, 30], Sergei
Peletminskii [22, 23], and others.

These different approaches to NESEF can be brought to-
gether under a unique variational principle. This has been
originally done by Zubarev and Kalashnikov [31], and later
on reconsidered in Ref. [32] (see also Refs. [33] and [34]).
It consists on the maximization, in the context of Information
Theory, of Gibbs statistical entropy (to be called fine-grained
informational-statistical entropy), subjected to certain con-
straints, and including non-locality in space, retro-effects, and
irreversibility on the macroscopic level. This is the foundation
of the nonequilibrium statistical ensemble formalism that we
describe in general terms in following sections. The topic has
surfaced in the section “Questions and Answers” of the Am.
J. Phys. [6, 35]. The question by Baierlein [35], “A central
organizing principle for statistical and thermal physics?”, was
followed by Semura’s answer [6] that “the best central orga-
nizing principle for statistical and thermal physics is that of
maximum [informational] entropy [...]. The principle states
that the probability should be chosen to maximize the average
missing information of the system, subjected to the constraints
imposed by the [available] information. This assignment is
consistent with the least biased estimation of probabilities.”

The formalism may be considered as covered under the um-
brella provided by the scheme of Jaynes’ Predictive Statis-
tical Mechanics [7]. This is a powerful approach based on
the Bayesian method in probability theory, together with the
principle of maximization of informational entropy (MaxEnt),
and the resulting statistical ensemble formalism is referred-
to asMaxEnt-NESEF. Jaynes’ scheme implies in a predictive
statistics that is built only on the access to the relevant infor-
mation that there exists of the system [6–12]. As pointed out
by Jaynes [8]. “How shall we best think about Nature and
most efficiently predict her behavior, given only our incom-
plete knowledge [of the microscopic details of the system]?
[...]. We need to see it, not as an example of the N-body equa-
tions of motion, but as an example of the logic of scientific
inference, which by-passes all details bygoing directly from
our macroscopic information to the best macroscopic predic-
tions that can be made from that information”(emphasis is
ours) [...]. “Predictive Statistical Mechanics is not a physical
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theory, but a method of reasoning that accomplishes this by
finding, not the particular that the equations of motion say in
any particular case, but the general things that they say in ‘al-
most all’ cases consisting with our information; for those are
the reproducible things”.

Again following Jaynes’ reasoning, the construction of a
statistical approach is based on “a rather basic principle [...]:
If any macrophenomenon is found to be reproducible, then it
follows that all microscopic details that were not under the
experimenters’ control must be irrelevant for understanding
and predicting it”. Further, “the difficulty of prediction from
microstates lies [..] in our own lack of the information needed
to apply them. We never know the microstates; only a few
aspects of the macrostate. Nevertheless, the aforementioned
principle of [macroscopic] reproducibility convinces us that
this should be enough;the relevant information is there, if
only we can see how to recognize it and use it” [emphasis is
ours].

As noticed, Predictive Statistical Mechanics is founded on
the Bayesian approach in probability theory. According to
Jaynes, the question of what are theoretically valid, and prag-
matically useful, ways of applying probability theory in sci-
ence has been approached by Sir Harold Jeffreys [36, 37], in
the sense that he stated the general philosophy of what scien-
tific inference is and proceeded to carry both the mathematical
theory and its implementations. Together with Jaynes and oth-
ers, the Nobelist Philip W. Anderson [38] maintains that what
seems to be the most appropriate probability theory for the sci-
ences is the Bayesian approach. The Bayesian interpretation
is that probability is the degree of belief which is consistent
to hold in considering a proposition as being true, once other
conditioning propositions are taken as true [39]. Or, also ac-
cording to Anderson: “What Bayesian does is to focus one’s
attention on the question one wants to ask of the data. It says
in effect, how do these data affect my previous knowledge
of the situation? It is sometimes calledmaximum likelihood
thinking, but the essence of it is to clearly identify the possi-
ble answers, assign reasonable a priori probabilities to them
and then ask which answers have been done more likely by the
data” [emphasis is ours].

The question that arises is, as stated by Jaynes, “how shall
we use probability theory to help us do plausible reasoning in
situations where, because of incomplete information we can-
not use deductive reasoning?” In other words, the main ques-
tion is how to obtain the probability assignment compatible
with the available information, while avoiding unwarranted
assumptions. This is answered by Jaynes who formulated the
criterion that: the least biased probability assignment{p j},
for a set of mutually exclusive events{x j}, is the one that
maximizes the quantitySI , sometimes referred to as theinfor-
mational entropy, given by

SI =−∑
j

p j ln p j , (1)

conditioned by the constraints imposed by the available infor-
mation. This is based on Shannon’s ideas in the mathematical
theory of communications [40], who first demonstrated that,
for an exhaustive set of mutually exclusive propositions, there

exists a unique function measuring the uncertainty of the prob-
ability assignment. This is the already mentioned principle of
maximization of the informational-statistical entropy, MaxEnt
for short. It provides the variational principle which results
in a unifying theoretical framework for NESEF, thus intro-
ducing, as we have noticed, MaxEnt-NESEF as a nonequilib-
rium statistical ensemble formalism. It should be stressedthat
the maximization ofSI implies in making maximum the un-
certainty in the information available(in Shannon-Brillouin’s
sense [40, 41]), to have in fact the least biased probability as-
signment.

We proceed next to describe the construction of NESEF and
of an irreversible thermodynamics founded on its premises.
This is done, as indicated above, in the context of the vari-
ational principle MaxEnt, but an alternative derivation along
traditional (heuristic) ways is also possible and described in
Ref. [14].

II. A NONEQUILIBRIUM STATISTICAL ENSEMBLE
FORMALISM

In the construction of nonequilibrium statistical ensem-
bles, that is, a Nonequilibrium Statistical Ensemble Formal-
ism (NESEF), basically consisting into the derivation of a
nonequilibrium statistical operator (probability distribution in
the classical case), first it needs be noticed that for systems
away from equilibrium several important points need be care-
fully taken into account in each case under consideration [cf.
the list of questions above], particularly:

(1) The choice of the basic variables(a wholly different
choice than in equilibrium when it suffices to take a subset
of those which are constants of motion), which is to be based
on an analysis of what sort of macroscopic measurements and
processes are actually possible, and, moreover one is to focus
attention not only on what can be observed but also on the
character and expectative concerning the equations of evolu-
tion for these variables (e.g. Refs. [15, 42]). We also notice
that even though at the initial stage we would need to intro-
duce all the observables of the system, as time elapses more
and more contracted descriptions can be used as enters into
play Bogoliubov’s principle of correlation weakening and the
accompanying hierarchy of relaxation times [42].

It can be noticed that to consider all the observables of
the system is consisting with introducing the reduced one-
particle, n̂1, and two-particle,n̂2, dynamical operators [13,
14, 42, 43] in classical mechanics given by

n̂1 (r ,p) = ∑
j

δ(r − r j) δ(p−p j) , (2)

n̂2 (r ,p; ŕ , ṕ)= ∑
j 6=k

δ(r − r j) δ(p−p j) δ(ŕ − r k) δ(ṕ−pk) ,

(3)
with r j andp j being the coordinate and linear momentum of
the j-th particle in phase space andr and p the continuous
values of position and momentum, which are called field vari-
ables (for the quantum case see [13]). For simplicity we are
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considering a system ofN particles of massm; the case of
systems with several kinds of particles are straightforwardly
included in the treatment: it suffices to introduce a second in-
dex to indicate them, i.ers j,ps j, etc. [see SubsectionIV.B
below].

But it is pertinent to look for what can be termed as a gen-
eralized grand-canonical ensemble, what can be done [13] by
introducing in place of̂n1, andn̂2 independent linear combi-
nation of them. For simplicity consider onlŷn1, and the new
variables are the densities of kinetic energy and of particles

ĥ(r)=
Z

d3p
p2

2m
n̂1 (r ,p) ; n̂(r)=

Z
d3p n̂1 (r ,p) ,

(4)
and their fluxes of all order, namely,

Î [r]
h (r) =

Z
d3p u[r] (p)

p2

2m
n̂1 (r ,p) , (5)

Î [r]
n (r) =

Z
d3p u[r] (p) n̂1 (r ,p) , (6)

wherer = 1 for the vectorial flux or current,r ≥ 2 for the other
higher-order fluxes;r also indicates the tensorial rank, and

u[r] (p) =
[ p

m
... (r− times) ...

p
m

]
(7)

stands for the tensorial product ofr-times the vectorp/m, ren-
dering a tensor of rankr. The contributions associated ton̂2
are of the form [13]

∧
C

[r+ŕ]

pṕ (r , ŕ) =
[
Î [r]
p (r) Î [ŕ]

ṕ (ŕ)
]

, (8)

where p and ṕ are indexesh or n; r, ŕ = 0 (the
densities),1,2, ..., and[...] as above stands for tensorial prod-
uct. The question oftruncation of description, that is to take
a reduced number of the above variables (associated to Bo-
goliubov´s principle of correlation weakening and hierarchy
of relaxation times) and the question of the approach to equi-
librium is discussed elsewhere [13, 14] (In equilibrium, be-
cause there survive only the variables of Eqs. (8) only for
r, ŕ = 0, there follows a nonextensive description, becoming
approximately extensive in the thermodynamic limit [14]).

(2) It needs be introduced historicity, that is, the idea that
it must be incorporated all the past dynamics of the system
(or historicity effects), all along the time interval going from
a starting description of the macrostate of the sample in the
given experiment, say atto, up to the time t when a measure-
ment is performed. This is a quite important point in the case
of dissipative systems as emphasized among others by John
Kirkwood and Hazime Mori. It implies in that the history of
the system is not merely the series of events in which the sys-
tem has been involved, but it is the series of transformations
along time by which the system progressively comes into be-
ing at time t (when a measurement is performed), through the
evolution governed by the laws of mechanics [16, 18].

(3) The question of irreversibility(or Eddington’s arrow of
time) on what Rudolf Peierls stated that: “In any theoretical

treatment of transport problems, it is important to realize at
what point the irreversibility has been incorporated. If it has
not been incorporated, the treatment is wrong. A description
of the situation that preserves the reversibility in time is bound
to give the answer zero or infinity for any conductivity. If we
do not see clearly where the irreversibility is introduced, we
do not clearly understand what we are doing” [44].

The question is then to find the proper nonequilibrium sta-
tistical operator that MaxEnt-NESEF should provide. The
way out of the difficulties pointed out above is contained in
the idea set forward by John Kirkwood in the decade of the
forties [16]. He pointed out that the state of the system at
time t is strongly dependent on all the previous evolution of
the nonequilibrium processes that have been developing in it.
Kirkwood introduces this fact, in the context of the transport
theory he proposes, in the form of a so-calledtime-smoothing
procedure,which is generalized in MaxEnt-NESEF as shown
below.

After the choice of the basic dynamical variables has been
performed, and let us call them generically as

{
P̂j (ξ)

}
, where

ξ indicates the set of all variables on which theP̂j may depend
[cf. Eqs. (2) and (3), and Eqs. (4) to (6) and (8)], introducing
in MaxEnt-NESEF [13, 14, 31–34] the idea that it must be
incorporated all the past history of the system (orhistoricity
effects), all along the time interval going from the initial con-
dition of preparation of the sample in the given experiment at,
say, timeto up to timet when a measurement is performed
(i.e., when we observe the macroscopic state of the system),
we proceed to maximize Gibbs’ entropy (sometimes called
fine-grained entropy)

SG (t) =−Tr{ρ(t) lnρ(t)} , (9)

with the normalization and constraints given at any timet ′ in
the intervalto ≤ t ′ ≤ t, namely

Tr
{

ρ
(
t ′
)}

= 1 , (10)

Q j
(
ξ, t ′

)
= Tr

{
P̂j (ξ)ρ

(
t ′
)}

, (11)

with Q j (ξ, t ′) being the nonequilibrium thermodynamic
(macroscopic) variables for the description of the accompa-
nying irreversible thermodynamics described in next section.

Resorting to Lagrange’s procedure we find that

ρ(t)= exp



−Ψ(t)−∑

j

Z
dξ

tZ

to

dt′ ϕ j
(
ξ; t, t ′

)
P̂j

(
ξ; t− t ′

)


 ,

(12)
where

Ψ(t)=lnTr



exp


−∑

j

Z
dξ

tZ

to

dt′ ϕ j
(
ξ; t, t ′

)
P̂j

(
ξ; t− t ′

)




 ,

(13)
and theϕ j are the corresponding Lagrange multipliers deter-
mined in terms of the basic macrovariables by Eq. (11), and
operatorsP̂j are given in Heisenberg representation.
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Further an additional basic step needs now be considered,
namely a generalization of Kirkwood’stime-smoothing pro-
cedure. This is done introducing an extra assumption on the
form of the Lagrange multipliersϕ j , in such a way, we stress,
that (i) irreversible behavior in the evolution of the macro-
scopic state of the system is satisfied; (ii) the instantaneous
state of the system is given by Eq. (11); (iii) it is introduced
the set of quantities

{
Fj (ξ, t)

}
as intensive variables thermo-

dynamically conjugated to basic macrovariables
{

Q j (ξ, t)
}

,
what allowsa posteriori to generate satisfactory Thermody-
namic and Thermo-Hydrodynamic theories. This is accom-
plished introducing the definition

ϕ j
(
ξ; t, t ′

)
= w

(
t, t ′

)
Fj (ξ, t) , (14)

wherew(t, t ′) is an auxiliary weight function, which, to satisfy
the four points just listed immediately above, must have well
defined properties which are discussed elsewhere [32], and it
is verified that

Ψ(t) =
tZ

−∞

dt′w
(
t, t ′

)
φ
(
t ′
)

. (15)

The functionw(t, t ′) introduces thetime-smoothing proce-
dure, and, because of the properties it must have to accomplish
its purposes, it is acceptable any kernel that the mathematical
theory of convergence of trigonometrical series and transform
integrals provides. Kirkwood, Green, Mori and others have
chosen what in mathematical parlance is Fejèr (or Ces̀aro-1)
kernel, while Zubarev introduced the one consisting in Abel’s
kernel forw in Eq. (15) - which apparently appears to be the
best choice, either mathematically but mainly physically - that
is, takingw(t, t ′) = εexp{ε(t ′− t)}, whereε is a positive in-
finitesimal that goes to zero after the calculation of averages
has been performed, and withto going to minus infinite. Once

this choice is introduced in Eq. (12), in Zubarev’s approach
the nonequilibrium statistical operator, designated byρε (t),
after integration by parts in time, can be written in the form

ρε (t) = exp



−Ŝ(t,0)+

tZ

−∞

dt′ eε(t ′−t) d
dt′

Ŝ
(
t ′, t ′− t

)


 ,

(16)
where

Ŝ(t,0) =− ln ρ̄(t,0) = Φ(t) 1̂+∑
j

Z
dξ Fj (ξ, t) P̂(ξ) , (17)

with 1̂ being the unit operator, and
it is introduced the auxiliary operator
ρ̄(t,0) = exp

{−Ŝ(t,0)
}

, referred-to as an instantaneous
quase equilibrium statistical operator, moreover

Ŝ
(
t ′, t ′− t

)
= exp

{
− 1

i}
(
t ′− t

)
Ĥ

}

Ŝ
(
t ′,0

)
exp

{
1
i}

(
t ′− t

)
Ĥ

}
. (18)

The operatorŜ(t,0) is designated as theinformational-
entropy operator, whose relevance and properties are dis-
cussed in [45].

In the framework of the nonequilibrium grand-canonical
ensemble, namely, when the basic variables are those of Eqs.
(4) to (8), we do have that

ρ̄(t,0) = exp
{−Ŝ(t,0)

}
, (19)

where

Ŝ(t,0) = φ(t)+ ∑
r,ŕ≥0

Z
d3r

[
F [r]

h (r , t)⊗ Î [r]
h (r)+F [r]

n (r , t)⊗ Î [r]
n (r)

]
+

+ ∑
r,ŕ≥0

∑
pṕ

Z
d3r

Z
d3ŕF [r+ŕ]

pṕ (r , ŕ , t)⊗ ∧
C

[r+ŕ]

pṕ (r , ŕ) , (20)

where⊗ stands for fully contracted product of tensors, we re-
call thatr andŕ equal to0 stands for the densities, and theF ’s
are the nonequilibrium thermodynamic variables associated to
the corresponding observable [13, 46].

Several important points can be stressed in connection with
the nonequilibrium statistical operator of Eq. (16). First,the
initial conditionat timeto →−∞, is

ρε (to) = ρ̄(to,0) , (21)

what implies in a kind of initialStosszahlanzatz, in the sense
that the initial state is defined by the instantaneous general-
ized canonical-like distribution̄ρ, thus ignoring correlations
among the basic variables prior to timeto. Second,ρε (t) can
be separated into two parts [13, 24, 30–33], see also [18],
namely,

ρε (t) = ρ̄(t,0)+ρ′ε (t) , (22)

where ρ̄(t,0) is the instantaneous distribution of Eq. (19).
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The first one,ρ̄, defines an instantaneous, at timet, distri-
bution, which describes a “frozen” equilibrium providing at
such given time the macroscopic state of the system, and for
that reason is sometimes dubbed as thequasi-equilibrium sta-
tistical operator.This distribution describes the macrostate of
the system in a time interval, aroundt, much smaller than the
relaxation times of the basic variables (implying in a “frozen”
equilibrium or quasi-equilibrium in such interval). But, of
course, for larger time intervals the effect of the dissipational
processes comes into action. The dynamics that has led the
system to that state at timet from the initial condition of
preparation at timeto [cf. Eq. (21)], as well as its continuing
dissipative evolution from that state at timet to eventually a
final full equilibrium, is contained in the fundamental contri-
butionρ′ε (t) . Furthermore, there exists a time-dependent pro-
jection operatorP (t) with the property that [32, 33]

P (t) lnρε (t) = ln ρ̄(t,0) . (23)

This projection procedure, a generalization of those of
Zwanzig (apparently the first to introduce projection tech-
niques in statistical physics [20]), Mori [19], Zubarev and
Kalashnikov [27], and Robertson [25], has interesting char-
acteristics. We recall that the formalism involves the macro-
scopic description of the system in terms of the set of
macrovariables

{
Q j (ξ, t)

}
, which are the average over the

nonequilibrium ensemble of the set of dynamical quantities{
P̂j (ξ)

}
. The latter are called the “relevant” variables, and

we denote the subspace they define as theinformational sub-
spaceof the space of states of the system. The remaining
quantities in the dynamical description of the system, namely,
those absent from the informational space associated to the
constraints in MaxEnt, are called “irrelevant” variables. The
role of the projection operation is to introduce what can be re-
ferred to as acoarse-graining procedure,in the sense that it
projects the logarithm of the “fine-grained” statistical operator
ρε (t) onto the subspace of the “relevant” (informational) vari-
ables, this projected part being the logarithm of the auxiliary
(or quasi-equilibrium, or “instantaneous frozen”, or “coarse-
grained”) distributionρ̄(t,0), and, consequently, the proce-
dure eliminates the “irrelevant” variables, quite in the spirit of
the Bayesian-based approach and MaxEnt. The “irrelevant”
variables are “hidden” in the contributionρ′ε (t) to the full dis-
tributionρε (t) of Eq. (22), since it depends on the last term in
the exponential of Eq. (16), where the differentiation in time
drivesln ρ̄ outside the subspace of “relevant” (informational)
variables. We stress that the projection operation is time de-
pendent, such dependence corresponding to the fact that the
projectionP (t) is determined by the macroscopic state of the
system at the time the projection is performed. Further consid-
erations of this projection procedure will appear in the kinetic
and thermodynamics theories based on this informational ap-
proach. Moreover, geometrical-topological implications are
derived and discussed in detail by Balian et al. [47].

Two further comments are of relevance. First, for a given
dynamical quantityÂ, its average value in MaxEnt-NESOM,
that is, the expected value to be compared with the experimen-

tal measure, is given by

〈Â | t〉 = lim
ε→+0

Tr
{

Âρε (t)
}

= Tr
{

Âρ̄(t,0)
}

+ lim
ε→+0

Tr
{

Âρ′ε (t)
}

, (24)

the last equality following after the separation given by Eq.
(21) is introduced. This is the said generalization of Kirkwood
time-smoothing averaging [16], and we can see that the aver-
age value is composed of two contributions: one is the average
with the quasi-equilibrium distribution (meaning the contri-
bution of the state at the timet), plus the contribution arising
out of the dynamical behavior of the system (the one that ac-
counts for the past history and future dissipational evolution).
Moreover, this operation introduces in the formalism the so-
calledBogoliubov’s method of quasi-averages[42, 48]. Bo-
goliubov’s procedure involves a symmetry-breaking process,
which is introduced in order to remove degeneracies con-
nected with one or several groups of transformations in the
description of the system. According to Eq. (24) the regu-
lar average withρε (t) is followed by the limit of cancelling
thead hocsymmetry-breaking introduced by the presence of
the weight functionw in Eq. (14) (which is Abel’s kernel in
Zubarev approach, cf. Eq. (16), and follows forε going to
+0), which imposes abreaking of the time-reversal symme-
try in the dynamical description of the system. This is mir-
rored in the Liouville equation forρε (t): Zubarev’s nonequi-
librium statistical operatordoessatisfy Liouville equation, but
it must be reckoned the fact that the group of its solutions is
composed of two subsets, the one corresponding to the re-
tarded solutions and the one corresponding to the advanced
solutions. The presence of the weight functionw (Abel’s ker-
nel in Zubarev’s approach) in thetime-smoothing or quasi-
average procedurethat has been introducedselects the subset
of retarded solutionsfrom the total group of solutions of Li-
ouville equation. We call the attention (as Zubarev had; see
Appendix in the book of reference [24]) that this has a cer-
tain analogy with Gell-Mann and Goldberger [49] procedure
in scattering theory, where these authors promote a symmetry-
breaking in Bogoliubov’s sense in Schroedinger equation, in
order to represent the way in which the quantum mechanical
state has been prepared during times−∞≤ t ′ ≤ t, adopting for
the wave function a weighted time-smoothing as the one used
in Zubarev’s approach to NESEF. More precisely,ρε (t) satis-
fies a Liouville equation of a form that automatically, via Bo-
goliubov’s procedure, selects the retarded solutions, namely

∂
∂t

lnρε (t)+ iΛ̂ε (t) lnρε (t) = 0 , (25)

whereΛ̂ε is the modified Liouville operator

iΛ̂ε (t) = i
∧
L +ε [1−P (t)] , (26)

with
∧
L being the regular Liouville operator andP (t) the pro-

jection operator of Eq. (23). Equation (25) is of the form
proposed by Ilya Prigogine [50], witĥΛε being composed of
even and odd parts under time-reversal. Therefore, the time-
smoothing procedure introduces a kind ofPrigogine’s dynam-
ical condition for dissipativity[50, 51].



Brazilian Journal of Physics, vol. 35, no. 3A, September, 2005 695

Using Eq. (23) we can rewrite Eq. (25) in the form

∂
∂t

lnρε (t)+
1
i}

[
lnρε (t) , Ĥ

]
=−ε [lnρε (t)− ln ρ̄(t,0)] ,

(27)
viz., a regular Liouville equation but with an infinitesimal
source, which introduces Bogoliubov’s symmetry breaking of
time reversal, and is responsible for disregarding the advanced
solutions. Equation (27) is then said to have Boltzmann-
Bogoliubov-Prigogine symmetry. Following Zubarev [24],
Eq. (27) is interpreted as the logarithm of the statistical opera-

tor evolving freely under Liouville operator
∧
L , from an initial

condition at timeto, and with the system undergoing random
transitions, under the influence of the interaction with the sur-
roundings. This is described by a Poisson distribution (w in
the form of Abel’s kernel), and the result at timet is obtained
by averaging over allt ′ in the interval (to, t) [cf. Eq. (12)].
This is the time-smoothing procedure in Kirkwood’s sense [cf.
Eq. (24)], and therefore, it is introduced information related
to the past history in the thermo-hydrodynamic macrostate of
the system along its evolution from the initialto.

Two points need be considered here. One is that the initial
to is usually taken in the remote past (to→−∞), and the other
that the integration in time in the interval (to, t) is weighted
by the kernelw(t, t ′) (Abel’s kernel in Zubarev’s approach,
Fej́er’s kernel in Kirkwood, Green , Mori approaches; and
others are possible). As a consequence the procedure intro-
duces a kind ofevanescent historyas the system macrostate
evolves toward the future from the initial condition at timeto
(→−∞). Therefore, the contributionρ′ε (t) to the full statis-
tical operator, that is, the one describing the dissipative evo-
lution of the state of the system, to be clearly evidenced in
the resulting kinetic theory, clearly indicates that it has been
introduced afading memoryprocess. This may be consid-
ered as the statistical-mechanical equivalent of the one pro-
posed in phenomenological continuum-mechanical-based Ra-
tional Thermodynamics [52, 53]. In Zubarev’s approach this
fading process occurs in an adiabatic-like form towards the re-
mote past: as time evolves memory decays exponentially with
lifetime ε−1.

We may interpret this considering that as time evolves cor-
relations established in the past fad away, and only the most
recent ones strongly influence the evolution of the nonequi-
librium system; here again is in action Bogoliubov’s principle
of correlations weakening. This establishesirreversible be-
havior in the system introducing in a peculiar way a kind of
Eddington’stime-arrow: Colloquially speaking, we may say
that because of its fading memory, the system can only evolve
irreversibly towards the future and cannot “remember” how
to retrieve the mechanical trajectories that would return it to
the past situations (what is attained when neglecting the ad-
vance solutions of Liouville equation). In a sense we may
say that Boltzmann original ideas are here at work in quite
general conditions [54, 55], and in its evolution towards the
future, once any external perturbating source is switched off,
the system tends to a final state of equilibrium irrespective of
the nonequilibrium initial condition of preparation.

Alvarez-Romero and Garcia-Colin [34] has presented an in-

teresting alternative approach to the derivation of Zubarev’s
form of MaxEnt-NESEF, which however differs from ours
in the interpretation of the time-smoothing procedure, which
they take as implying the connection of an adiabatic pertur-
bation fort ′ > to (we think that these authors mean adiabatic
switch on of the interactions inH ′ responsible for the dissipa-
tive processes), instead of implying in a fading-memory inter-
pretation. We need notice that both are interpretations which
we feel are equally satisfactory and may be equivalent, but
we side with the point of view of irreversible behavior follow-
ing from - in Boltzmann-Bogoliubov-Prigogine’s sense - adia-
batic decorrelation of processes in the past. This is the fading-
memory phenomenon, introduced in Zubarev’s approach as
a result of the postulated Poissonian random processes (on
the basis that no real system can be wholly isolated), as al-
ready discussed. This interpretation aside, we agree with the
authors in Ref. [34], in that the method provides adequate
convergence properties (ensured by Abel’s kernel in Zubarev’
approach) for the equations of evolution of the system. These
properly describe the irreversible processes unfolding in the
media, with an evolution from a specific initial condition of
preparation of the system and, after remotion of all external
constraints - except thermal and particle reservoirs - tending
to the final grand-canonical equilibrium distribution.

Moreover, the convergence imposed by Abel’s kernel in
Zubarev’s approach appears as the most appropriate, not only
for the practical mathematical advantages in the calculation
it provides, but mostly important, by the attached physical
meaning associated to the proposed adiabatic decoupling of
correlations which surface in the transport equations in the ac-
companying MaxEnt-NESEF kinetic theory [56]. In fact, on
the one hand this kinetic theory produces, when restrictions
are applied on the general theory, the expected collision oper-
ators (as those derived in other kinetic theories) introducing,
after the time integration in the interval (to, t) has been done,
the expected terms of energy renormalization and energy con-
servation in the collision events. Furthermore, as pointed out
by Zubarev [24], Abel’s kernel ensures the convergence of the
integrals in the calculation of the transport coefficients, which
in some cases show divergences when, instead, Fejèr kernel
is used (as in Green, Mori, etc. approaches). The procedure
also appears as having certain analogies with the so-called re-
peated randomness assumptions [57, 58] as discussed by del
Rio and Garcia-Colin [59].

We need now to consider the construction of aMaxEnt-
NESEF-based Nonlinear Kinetic Theory,that is, the transport
(evolution) equations for the basic set of macrovariables that
describe the irreversible evolution of the macrostate of the sys-
tem. They are, in principle, straightforwardly derived, consist-
ing in Heisenberg equations of motion for the corresponding
basic dynamical variables (mechanical observables) or Hamil-
ton equations in the classical case, averaged over the nonequi-
librium ensemble, namely

∂
∂t

Q j (ξ, t) = Tr

{
1
i}

[
P̂j (ξ) , Ĥ

]
ρε (t)

}
. (28)

Using the separation of the Hamiltonian as given byĤ =
Ĥo+Ĥ ′, whereĤo is the kinetic energy and̂H ′ contains the in-
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teraction and the separation of the statistical operator as given
by Eq. (21), it follows that Eq. (28) can be written in the form
[56, 60]

∂
∂t

Q j (ξ, t) = J(0)
j (ξ, t)+J(1)

j (ξ, t)+ J j (ξ, t) , (29)

where on the right-hand side are present the contributions

J(0)
j (ξ, t) = Tr

{
1
i}

[
P̂(ξ) , Ĥo

]
ρ̄(t,0)

}
, (30)

J(1)
j (ξ, t) = Tr

{
1
i}

[
P̂(ξ) , Ĥ ′] ρ̄(t,0)

}
, (31)

J j (ξ, t) = Tr

{
1
i}

[
P̂(ξ) , Ĥ ′] ρ′ε (t)

}
. (32)

As shown elsewhere [32, 56, 60] this Eq. (29) can be con-
sidered as a far-reaching generalization of Mori’s equations
[19, 61]. It also contains a large generalization of Boltzmann’s
transport theory, with the original Boltzmann equation for the
one-particle distribution retrieved under stringent asymptotic
limiting conditions; details and discussions are given in Refs.
[33] and [62].

In this Eq. (29), in most cases of interest the contribution
J(1) is null because of symmetry properties of the interactions
in Ĥ ′, and the termJ(0) provides a conserving part consisting
in the divergence of the flux of quantityQ j (ξ, t) [63, 64]. The
last term, i.e. the one of Eq. (32), is the collision integral
responsible for relaxation processes, which, evidently, can-
cels if Ĥ ′ or ρ′ε is null, what clearly indicates that dissipative

phenomena are described by these contributions to the Hamil-
tonian, and to the statistical operator in Eq. (21), respectively.
Hence, as already anticipated, dissipation is not present in the
instantaneous quasi-equilibrium operatorρ̄(t,0) of Eq. (19),
but in the nonequilibrium operator containing the history and
time-smoothing characteristic ofρ′ε (t) of Eqs. (16) and (22).
We notice that ifĤ ′ is null, so isρ′ε (t), when Ĥo coincides
with the whole Hamiltonian corresponding to a full equilib-
rium condition.

The collision integral of Eq. (32) requires an, in general,
quite difficult, and practically unmanageable, mathematical
handling. But for practical use, it can be reformulated in the
form of an infinite series of partial collision integrals in the
form

J j (ξ, t) =
∞

∑
n=2

Ω(n)
j (ξ, t) , (33)

where quantitiesΩ(n) for n = 2,3, .... can be interpreted
as describing two-particle, three-particle, etc., collisional
processes. These partial collision integrals, and then the trans-
port equation (29), are highly nonlinear, with complete details
given in Refs. [56, 60].

An interesting limiting case is the Markovian approxima-
tion to Eq. (29), consisting into retaining in the collision inte-
gral of Eq. (33) the interaction̂H ′ strictly up to second order
(limit of weak interactions) [13, 60, 65] to obtain for a density
Q j (ξ, t) the equation [13, 22, 63, 64]

∂
∂t

Q j (ξ, t) = J(0)
j (ξ, t)+J(2)

j (ξ, t) , (34)

where

J(2)
j (ξ, t) =

tZ

−∞

dt′eε(t ′−t)Tr
{[

Ĥ ′ (t ′− t
)

0 ,
[
Ĥ ′, P̂j (ξ)

]]
ρ̄(t,0)

}
, (35)

once J(1)
j is taken as null, and subindex nought indicates

mechanical evolution under̂Ho alone (interaction representa-
tion).

Finally, an additional step is the construction of the all im-
portant MaxEnt-NESEF response function theory for systems
arbitrarily away from equilibrium, to connect theory with ob-
servation and measurement in the experimental procedure: see
for example [66–81] and Chapter6 in the book of Ref. [13].
We simply notice that as in the traditional response function
theory around equilibrium [82, 83], the response of the sys-
tem away from equilibrium to an external probe is expressed
in terms of correlation functions but defined over the nonequi-
librium ensemble. Moreover, also in analogy with the case
of systems in equilibrium it is possible to construct a double
time nonequilibrium thermodynamic Green function formal-

ism [84–87].
In this way, through the realization of the basic steps we

have described, a nonequilibrium statistical ensemble formal-
ism - the MaxEnt-NESEF - can be built. We consider in con-
tinuation the use of NESEF for the construction of a Nonequi-
librium Statistical Thermodynamics [46, 88].

III. INFORMATIONAL-STATISTICAL
THERMODYNAMICS

Several formulations of nonequilibrium thermodynamics at
the phenomenological level are presently available. The first
theory set forth to extend the concepts of equilibrium ther-
modynamics (or thermostatics) goes back to the early thirties,
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with the work of de Donder [89] and Onsager [90], giving
rise to what is referred to as Classical (sometimes called Lin-
ear) Irreversible Thermodynamics [5, 91, 92], described in the
already classical textbook by de Groot and Mazur [93]. Ex-
tension of Classical Irreversible Thermodynamics to encom-
pass nonlinear conditions not so near to equilibrium, in what
is termed Generalized Non-Equilibrium Thermodynamics is
due to the Brussels’ School [94]. The inclusion of nonlin-
ear effects in Generalized Nonequilibrium Thermodynamics
allows to incorporate in the theory a particular situation in
the field of nonlinear complex systems [95–97], namely, the
case of dissipative evolution in open irreversible systems, with
the possible emergence of ordered patterns on a macroscopic
scale, the so-called Prigogine’s dissipative structures [98, 99].
Classical Irreversible Thermodynamics is a well established
theory but within its own domain of validity, which has severe
limitations. To remove such conceptual and practical limita-
tions of this theory and, in particular, to encompass arbitrarily
far-from-equilibrium situations, phenomenological Classical
Irreversible Thermodynamics is being superseded by new at-
tempts.

It is worth recalling that it is considered that the several
approaches to Thermodynamics can be classified within the
framework of at least four levels of description [100–102],
namely:

(i) The so-calledengineering approach or CK Thermody-
namics(for Clausius and Kelvin), based on the two laws of
Thermodynamics and the rules of operation of Carnot cycles;

(ii) The mathematical approach, as the one based on differ-
ential geometry instead of Carnot cycles, sometimes referred
to as theCB Thermodynamics(for Caratheodory and Born);

(iii) The axiomatic point of view replacing Carnot cycles
and differential geometry by a set of basic axioms, which try
to encompass the previous ones and extend them; let us call it
theTC Thermodynamics(for Tisza and Callen), orAxiomatic
Thermodynamics;

(iv) The statistical-mechanical point of view, based of
course on the substrate provided by the microscopic mechan-
ics (at the molecular, or atomic, or particle, or quasiparticle,
level) plus theory of probability, which can be referred to as
Gibbsian Thermodynamicsor Statistical Thermodynamics.

This field has not as yet achieved a definitive closed level of
description and, therefore, it is natural for it to be the subject
of intense discussion and controversy. Each school of thought
has its virtues and defects, and it is not an easy task to readily
classify within the above scheme the variety of existing theo-
ries: among several approaches we can mention and we apol-
ogize for those omitted,Rational Thermodynamics,as pro-
posed by Truesdell [52]; what we callOrthodox Irreversible
Thermodynamics, as proposed by B. Chan Eu [103];Extended
Irreversible Thermodynamics, originated and developed by
several authors and largely systematized and improved by
J. Casas V́azquez, D. Jou, and G. Lebon of the so-called
Catalan School of Thermodynamics [104, 105]; aGeneral-
ized Kinetic approachdeveloped by L. S. Garcı́a Coĺın and
the so-called Mexican School of Thermodynamics [106]; the
Wave approach to Thermodynamicsdue to I. Gyarmati [107];
the approach so-calledGenericsby M. Grmela [108]; the

Holotropic approachby N. Bernardes [109];Informational
Statistical Thermodynamics(or Information-theoretic Ther-
modynamics) with mechanical statistical foundations, initi-
ated by A. Hobson [110] and whose systematization and ex-
tension is described here.

We may say that Rational Thermodynamics and Generics
belong to level (ii); Orthodox Irreversible Thermodynamics to
level (i); Extended Irreversible Thermodynamics to level (iii);
Holotropic Thermodynamics also to level (iii); Informational
Statistical Thermodynamics, evidently, to level (iv).

The latter one, to be referred to as IST for short, is partially
described next. This frontier area of Physics is presently un-
der robust development, but, it ought to be stressed, not com-
pletely settled in a closed form. As noticed, several schools
of thought are, in a sense, in competition and, consequently,
the developments in the field are accompanied with intense
and lively controversy (for a particular aspect of the question
– the role of irreversibility and entropy – see Letters Section
in Physics Today, November 1994, pp. 11-15 and 115-117).
Quite recently the statistical physics and thermodynamics of
nonlinear nonequilibrium systems has been discussed in a rel-
evant set of articles published in the namesake book [111],
to which we call the attention of the reader: the present sec-
tion may be considered as a complement to this book by par-
tially touching upon the question of the statistical foundations
of irreversible thermodynamics on the basis of a Gibbs-like
ensemble approach for nonequilibrium (and then dissipative)
systems.

Consider the question of kinetic and statistical theories for
nonequilibrium processes. Presently several approaches are
being pursued, which have been classified by R. Zwanzig [15].
Among them we do have NESEF described in the preced-
ing section, which is considered to have an appealing struc-
ture and offering a very effective technique to deal with a
large class of experimental situations [15]. Such NESEF ap-
pears as a quite appropriate formalism to provide microscopic
(mechanical-statistical) foundations to phenomenological ir-
reversible thermodynamics [46, 112, 113], and nonclassical
thermo-hydrodynamics [114].

NESEF appears to be an appropriate formalism to yield,
as already noticed, statistical-mechanical foundations to phe-
nomenological irreversible thermodynamics, in particular
the construction of IST (also referred-to as Informational-
Theoretic Thermodynamics). It was pioneered by Hobson
[110, 115] a few years after the publication of Jaynes’ sem-
inal papers [116, 117] on the foundations of statistical me-
chanics based on information theory. A brief review is given
in Refs. [46, 112, 113], the diversity of extremum princi-
ples in the field of nonequilibrium theories is reviewed in Ref.
[118], and further material is present in Ref. [119]. We no-
tice that Thermostatics, Classical Irreversible Thermodynam-
ics and Extended Irreversible Thermodynamics are encom-
passed in Informational Statistical Thermodynamics, which
gives them a microscopic foundation. Moreover, Generalized
Nonequilibrium Thermodynamics (that is, the extension of
Classical Irreversible Thermodynamics to the nonlinear do-
main) is also contained within the informational-statistical
theory [120]. Recent attempts to improve on the construction
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of IST are reported in Refs. [46, 121–134].
The present development of theories for the thermodynam-

ics of irreversible processes contained, one way or another,
within the list of four levels presented above, and IST is one
of them, brings to the fore a fundamental question in nonequi-
librium thermodynamics, namely, which is the origin of irre-
versibility (or the origin of the so-called time-arrow problem
[50, 135, 136]) and the definition of an entropy and entropy
production functions, and the sign of the latter. This is a quite
difficult, however engaging, problem which, as noted, has as-
sociated a considerable amount of controversy. The question
has been subsumed by Leon Rosenfeld as “to express in a
precise formalism [the]complementaritybetween the thermo-
dynamic or macroscopic aspect and the atomic one” [137–
139]. Several approaches, seemingly different at first sight,
have been produced, beginning with the great contributions
of Ludwig Boltzmann [54]. Some Schools set irreversibil-
ity at the level of probability distributions but together with
methods for either discarding microscopic information that is
unnecessary for predicting the behavior of the macroscopic
state of the system (on the basis of information theory), or
introducing a dynamic of correlations; they are compared in
refs. [140–142]. More recently some approaches have re-
lied upon a description in terms of a dynamic origin of irre-
versibility as associated to ergodic properties of chaotic-like
systems [143, 144]. In Mackey’s line of thought the concept
of irreversibility appears hidden behind a rather abstract math-
ematical formalism, and no connection is made with the con-
cept of entropy production. On the other hand, Hasegawa and
Driebe’s work deals with irreversibility for a particular class
of chaotic systems; how it can be extended to quite general
thermodynamic situations is an open matter. As pointed out
by J. L. Lebowitz [55] all these approaches contain interest-
ing and useful ideas and can be illuminating when properly
applied.

We here deal with the question strictly within the frame-
work of Informational Statistical Thermodynamics. There-
fore, it must be understood that the functions that in what
follows are referred to as entropy and entropy production are
those which such theory defines. J. Meixner, over twenty
years ago in papers that did not obtain a deserved diffusion
[145, 146], gave some convincing arguments to show that it
is very unlikely that a nonequilibrium state function playing
the role that the entropy has in equilibrium may be uniquely
defined. Summarizing his ideas one may assert that the con-
clusion reached by him is that such a function either cannot be
defined, or it may be done so in an infinite number of ways.
A softened form of this idea was advanced by Grad over forty
year ago [147]. Exploring recent literature on this question
these conjectures seem to hold true in a more restricted sense
(this literature is quite broad; see for example [148, 149] and
references therein).

We call the attention, and emphasize, the fact that any the-
ory to have physical meaning needs be convalidated by com-
parison of its predictions with experimental results. In the
particular case of NESEF, which provides statistical founda-
tions to IST, as noticed in Section2, it yields a nonlinear
quantum transport theory of large scope [56], which consist

of a far-reaching generalization of Mori’s theory [19], to-
gether with an accompanying response function theory for
far-from-equilibrium systems [13, 32, 84], and a generalized
Boltzmann transport theory [33]. As already noticed, NESEF
has been applied to the study of ultrafast relaxation processes
in the so-called photoinjected plasma in semiconductors with
particular success, in the sense of obtaining very good agree-
ment between theory and experiment [66–80] and see Chap-
ter 6 in the book of the Ref. [13]. Such kind of experiments
can be used to satisfactorily allow for the characterization and
measurement of nonequilibrium temperature, chemical poten-
tials, etc., which are concepts derived from the entropy-like
function that the theory defines in a similar way to equilib-
rium and local equilibrium theories [81]. Since they depend
on such entropy-like function they are usually referred to as
quasi-temperature, quasi-chemical potentials, etc. Moreover,
without attempting a rigorous approach, we simply call the at-
tention to the fact that the formalism here presented appears
as providing a kind of partial unification of several apparently
differentiated approaches to the subject: First, the formalism
begins with a derivation within the framework of Jaynes-style
informational approach, and, therefore, the informational en-
tropy that the method introduces is dependent on a restricted
set of variables. This is the result that this entropy is a pro-
jection on the space of such contracted set of variables of the
fine-grained Gibbs entropy (as later on described and depicted
in Fig. 1). The latter is obtained, as shown in next section, on
the basis of a memory-dependent MaxEnt construction. Sec-
ond, the connection with the approach of the Brussels-Austin
School (subdynamics of correlations) appears partially with
the introduction in this particular MaxEnt approach of anad
hochypothesis that introduces irreversibility from the outset,
consisting in a mimic of Prigogine’s dynamical condition for
dissipativity [50, 51, 150, 151]. Additional discussions on the
equivalence of both approaches have been provided by sev-
eral authors [27, 140]. We return to a consideration of these
questions in last section.

Beginning in next section we describe the construction of
the Informational-Statistical Thermodynamics (IST) based on
the NESEF (we call the attention to the fact that throughout
the review is used Zubarev’s approach in NESEF, a concise,
elegant, and quite practical formalism). The attention is con-
centrated on the state function called informational-statistical
entropy. After its introduction and an accompanying general
discussion, several properties of it are considered, namely: (1)
The nonequilibrium equations of state, that is, the differential
coefficients of this IST-entropy (meaning the one defined in
the context of IST), which are the Lagrange multipliers that
the formalism introduces; (2) Derivation of aH -type theorem
and a, so-called, weak principle of increase of informational-
entropy production; (3) Criteria for evolution and (in)stability
analysis; (4) A kind of generalized Clausius-Carnot and Gibbs
relations; (5) A brief study of fluctuations and generalized
Maxwell relations; and (6) a Boltzmann-like formula, relating
the informational entropy with the extension in phase space
(or number of states at the quantum level) compatible with the
macroscopic information available.



Brazilian Journal of Physics, vol. 35, no. 3A, September, 2005 699

n
o

n
-i

n
f
o

r
m

a
t
io

n
a
l

su
b
sp

a
c
e

(o
f

“i
r
r
e
l
e
v
a
n

t
v
a
r
ia

b
l
e
s”

)

in
it

ia
l

condit
io

n
G

IB
B

S
’
A

N
D

IN
F
O

R
M

A
T

IO
N

A
L

E
N

T
R

O
P
IE

S

S̄(t) = −〈P(t) ln%(t)|t〉
(non-conserved informational entropy)

informational subspace

(of “relevant variables”)
P
(t
)P
(t
)

SG(t) = −〈ln%(t)|t〉
(conserved gibbs’ entropy)

︸
︷
︷

︸

in
f
o

r
m

a
t
io

n
l
o

s
s

∆S(t) = S̄(t)− SG(t) =

= S̄(t)− S̄(t0)

FIG. 1: An outline of the description of the non-equilibrium-
dissipative macroscopic state of the system. The projection – de-
pending on the instantaneous macrostate of the system – introduces
the coarse-graining procedure consisting into the projection onto the
subspace of the “relevant” variables associated to the informational
constraints in NESEF.

IV. PROPERTIES OF IST-ENTROPY

In its original formulation Classical (Onsagerian) Irre-
versible Thermodynamics starts with a system in conditions of
local equilibriumand introduces as basic macrovariables a set
of quasi-conserved quantities, namely the fields of energy and
mass densities. This theory introduces a state functional of
these variables satisfying a Pffafian differential form identical,
however locally, to Gibbs relation for entropy in equilibrium.
A more general approach is that of Extended Irreversible
Thermodynamics, which introduces a state functional depen-
dent on the basic variables of Classical Irreversible Thermo-
dynamics plus all dissipative fluxes elevated to the category
of basic variables. We consider now the case of Irreversible
Statistical Thermodynamics based on the state space consist-
ing, within the tenets of NESEF, of the set of basic variables{

Q j (ξ, t)
}

which can be scalars, vectors, or tensor fields of
any rank, chosen in the way described in the Section2: We
recall, and stress, that they are the statistical average values
of well defined mechanical quantities. Within this approach,
we look next for the definition of a functional of these vari-
ables playing the role of a state functional - to be called the
IST-entropy-like function or informational-statistical entropy
- that is meaningful and pertinent to the class of physical sit-
uations and accompanying experiments under analysis within
NESEF in each case. Particular care needs be exercised with
the use of the wordentropy. Entropy has a very special sta-
tus in Physics, being a fundamental state function in the case
of Thermostatics. It is a well established concept in equilib-
rium, but an elusive one in nonequilibrium conditions when it

requires an extended definition allowing for the treatment of
open systems and far-from-equilibrium conditions. Clearly,
such definition must contain as limiting cases the particular
and restricted ones of equilibrium and local equilibrium. In ar-
bitrary nonequilibrium conditions it appears to hold that there
is not any possibility to define a unique state function play-
ing the role of a nonequilibrium entropy, as forceful argued
by Meixner [145, 146] - a point we agree with and the In-
formational Statistical Thermodynamics in continuation de-
scribed, seems to reinforce. Hence, it must be kept in mind
that in what follows we are introducing this quasi-entropy
function in the context of the Informational Statistical Ther-
modynamics, namely, the based on NESEF, and therefore de-
pendent on the description to be used in each case follow-
ing Bogoliubov’s principle mentioned in Section2. Neverthe-
less, it needs be emphasized that this quasi-entropy function
goes over the thermodynamic one in equilibrium (thus recov-
ering Clausius’ result as shown by Jaynes [152]), as well as
over the local equilibrium one of classical irreversible ther-
modynamics, when the proper restrictive limits are taken. Al-
ternatives for a nonequilibrium quasi-entropy have been pro-
posed by several authors, we may mention the one in ex-
tended irreversible thermodynamics [104, 105] and the con-
cept of calortropy [103, 153], with both of them seemingly en-
compassed in Informational Statistical Thermodynamics. We
return to this point of the introduction of a nonequilibrium
entropy-like state function in different approaches, along with
further commentaries, in the last section.

A. The IST-informational entropy or quasientropy

Gibbs’ entropy, the straightforward generalization of equi-
librium and Classical Irreversible Thermodynamics and the
one used in the variational approach to NESEF containing
memory, namely

SG (t) =−Tr{ρε (t) lnρε (t)} , (36)

cannot represent an appropriate entropy since it is conserved,
that isdSG (t)/dt = 0. This is the result thatρε satisfies a mod-
ified Liouville equation with sources [cf. Eq. (27)], the latter
going to zero withε going to zero after the calculation of the
regular average has been performed, and is a manifestation of
the fact that it is afine-grained entropy which preserves in-
formation. The latter is the information provided at the initial
time of preparation of the system as given by Eq. (21), i.e. the
one given in terms of the initial values of the basic variables,
namelyQ j (to). Hence, for any subsequent timet > to we
introduce acoarse-grained NESEF-based informational en-
tropysuch that, according to the foundations of the formalism,
is dependent on the information provided by the constraints of
Eq. (11) at each given time and only on this information.We
introduce the IST-informational entropyS(t), which can also
be calledquasientropy, given by

S(t) =−Tr{ρε (t)Pε (t) lnρε (t)}=−Tr{ρε (t) lnρ(t,0)}=

=−Tr
{

ρε (t) Ŝ(t,0)
}

=−Tr{ρ(t,0) lnρ(t,0)} . (37)
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In this Eq. (37),Ŝ is the informational-entropy operator of
Eq. (17) [45], andPε (t) is a time-dependent projection op-
erator, defined in Eq. (23) [32], which projects over the sub-
space spanned by the basic set of dynamical variables to be
called theinformational subspace(or relevant subspace) as il-
lustrated in Fig.1. Moreover, the last equality in Eq. (37) is
a consequence of the coarse-graining condition consisting in
that [13, 31]

Q j (r , t) = Tr
{

P̂j (r) ρε (t)
}

= Tr
{

P̂j (r) ρ(t,0)
}

.
(38)

For simplicity we are considering the case when the basic dy-
namical variables are local densities, i.e. they depend only on
the field variabler , the generalization to an extended set of
field variables is straightforward.

Consequently, the difference between the IST-
informational entropy of Eq. (37) and Gibbs’ entropy
of Eq. (36), is

S(t)−SG (t) =−Tr{ρε (t) [Pε (t)−1] lnρε (t)} , (39)

which can be interpreted as a kind ofmeasurement of the
information lostwhen the macroscopic state of the system
is described in terms of the reduced set of basic variables,
i.e., as already noticed, in terms of projection oflnρε (t) over
what we have called the informational subspace of “relevant
” variables, (illustrated in Fig. 1 , and as already noticed
the geometrical-topological aspects of this process are dis-
cussed in [47]). The coarse-grained auxiliary operator (the
instantaneously “frozen” quasiequilibrium)ρ(t,0) has the im-
portant property that, at any timet, it maximizes the IST-
informational entropy of Eq. (37) for the given values of the
constraints of Eq. (11), at fixed timet, and the condition of
normalization which, we recall, is ensured by the properties of
the weight functionεexp{ε(t ′− t)} and the coarse-graining
condition of Eq. (38). Furthermore, from Eq. (37) and the
definition ofρ we can write that

S(t)= φ(t)+
n

∑
j=1

Z
d3r F j (r , t) Q j (r , t)≡

Z
d3r s(r , t) ,

(40)
wheres(r , t) defines a local informational entropy density. We
recall that the variablesF andQ can be scalars, vectors or ten-
sors, and so the productFQ in Eq. (40) must be understood as
being algebraic product of scalars, scalar product of vectors,
and fully contracted product of tensors, respectively, so that
the scalarS is rendered.

Since

dφ(t) =−
n

∑
j=1

Z
d3r Q j (r , t) dFj (r , t) , (41)

once we take into account that

Q j (r , t) =− δφ(t)
δFj (r , t)

, (42)

whereδ stands for functional differentiation in the sense de-
fined in [154], we find that

dS(t) =
n

∑
j=1

Z
d3r F j (r , t) dQj (r , t) (43)

and hence

Fj (r , t) =
δS(t)

δQ j (r , t)
. (44)

Equation (43) stands for a generalized Gibbs relation in the
context of Informational Statistical Thermodynamics, which
goes over the well known expressions which follow in the
limit of the restricted cases of equilibrium and local equilib-
rium in Thermostatics and Classical (Linear or Onsagerian)
Irreversible Thermodynamics. Equations (42) and (44) tell us
that variablesF andQ are conjugated in the sense of nonequi-
librium thermodynamics (these expressions are the general-
ization of the corresponding relations in equilibrium), what
is a consequence of the properties of the weight function
εexp{ε(t ′− t)} and of the coarse-graining property of Eq.
(38). Equations (42) and (44) can be considered asnonequi-
librium equations of state,and Eqs. (41) and (42) defineφ(t)
as a kind of a logarithm of anonequilibrium partition function
in the nonequilibrium statistical ensemble formalism based on
NESEF. Furthermore,S(t) has the important property of be-
ing a convex function of the variablesQ j , what is a result of
application of MaxEnt as shown in [13].

We are now in condition to introduce the important thermo-
dynamic function which is the MaxEnt-entropy production (or
informational-entropy production), namely

σ(t)=
dS̄(t)

dt
=
Z

d3r
∂s̄(r , t)

∂t
=

n

∑
j=1

Z
d3r F j (r , t)

∂Q j (r , t)
∂t

,

(45)
where we have taken into account Eq. (41). In Eq. (45) the
evolution of the basic variables is governed by Eqs. (29),
meaning that the right-hand side of this Eq. (45) contains
the three contributions present in Eqs. (30). But, it can be
shown only the collision integrals of Eq. (32) contribute to
the informational-entropy production, i.e.

σ(t)≡
Z

d3r σ(r , t) =
n

∑
j=1

Z
d3r F j (r , t) J j (r , t) =

=
n

∑
j=1

Z
d3r F j (r , t)Tr

{
1
i}

[
P̂j (r) , Ĥ ′

]
ρ′ε (t)

}
, (46)

which clearly indicates that the informational-entropy produc-
tion follows from the fact thatρ′ε is the contribution to the sta-
tistical operator in Eq. (22) associated to relaxation effects,
while the auxiliar ensemble characterized byρ is relaxation
free. This is a manifestation of the projection procedure used
in the definition of the IST-entropy: relaxation processes are
associated to the influence of the dynamic effects (collisional
processes) generated byH ′, that acting on the initial condition
at timeto of Eq. (21) drivesρε outside the chosen informa-
tional subspace. This is illustrated in Fig.1.

Taking into account Eq. (45) and the definition of the lo-
cal informational entropy density of Eq. (40), there follows a
generalized local in space Gibbs relation,that is, it is satisfied
the relation

ds(r , t) =
n

∑
j=1

Fj (r , t) dQj (r , t) , (47)
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for the informational-entropy density of Eqs. (40) and (45).
Moreover, we recall that the equations of irreversible evo-
lution for the basic variables consistently follow from the
method [23, 24, 56]: for the space-dependent variables
Q j (r , t) these equations take the general form [13] [cf. Eqs.
(29) and (34)]

∂Q j (r , t)
∂t

=−divĨ j (r , t)+ J j (r , t) , (48)

where the first term on the right is the divergence of the flux
densityĨ j associated to the densityQ j (r , t) [13, 14, 24]. Also,
let us recall thatQ j can be a scalar, a vector, or a rank-r
(≥ 2) tensor (and so isJ j ), thenĨ j must be interpreted, respec-
tively, as a vector, a rank two tensor, and rankr (≥ 3) tensors
(see [13]). Moreover, in the equations of evolution for the
macrovariablesQ j (ξ, t), Eq. (48), for simplicity (the general

case can be straightforwardly handled) we consider thatJ(1)
j

vanishes. For better accompanying of the following results we

introduce the nomenclatureI [r]
j to indicate a flux of tensorial

rankr = 1,2,3, ..., or r−th order flux of a given density.
Using these Eqs. (48), we can write a continuity equation

for the IST-entropy density given by

∂s(r , t)
∂t

+div I s(r , t) = σs(r , t) . (49)

In this Eq. (49),I s is the flux of the IST-informational-entropy
given by

Is(~r, t) =
n

∑
j=1

∑
r>1

F [r−1]
j (r , t) ⊗ I [r]

j (r , t) , (50)

where on the rightF⊗ I stands for contracted tensorial prod-
uct (F being a tensor of rankr = 0,1,2, ..., andI is a tensor of
rankr = 1,2,3, ..., respectively) to produce the vectorIs, and
σs is an associated entropy-production density given by

σs(r , t) = σ(r , t)+
n

∑
j=1

∑
r>1

Grad F[r−1]
j (r , t) ⊗ I [r]

j (r , t) ,

(51)
whereGrad is the gradient operator in tensorial calculus and
σ(r , t) is given by Eq. (46). Using the definition of Eq. (50),
one recovers the limiting case of Classical Irreversible Ther-
modynamics, and therefore may be considered the straight-
forward generalization for the entropy flux density to arbi-
trary nonequilibrium conditions. It is worth recalling that Eq.
(48) is the average over the nonequilibrium ensemble, charac-
terized by the distribution in Eq. (16), of the corresponding
Hamiltonian equations of evolution in the classical level and
Heisenberg equations of evolution in the quantum level, for
the local-in-space-dependent dynamical variables. When one
introduces the equations for the density of mass and of energy
in the case of a fluid, there follows the equations for a non-
classical hydrodynamics, and the classical one is recovered as
a limiting restrictive case together with the use of a barycen-
tric frame of reference [14, 33].

Integrating in space Eq. (49), we obtain an expression for
the global informational-entropy production, namely

σ̄(t) =
dS(t)

dt
=
Z

d3r
∂s(r , t)

∂t

=
Z

d3r σs(r , t)−
Z

d3r div Is(r , t) . (52)

But, using Gauss theorem in the last integral of Eq. (52), we
can rewrite it as

dS(t)
dt

=
Z

d3r σs(r , t)−
Z

Σ

dΣ · Is(r , t) , (53)

where the last term is a surface integral over the system bound-
aries. Equation (53) allows us to separate the entropy produc-
tion into two contributions (as is usually done, cf. [94] and
[99]): one is theinternal production of informational entropy

P(t) =
Z

d3r σs(r , t) , (54)

and the other is theexchange of informational entropy with
the surroundings,or flux term

PΣ (t) = −
Z

Σ

dΣ · I s(r , t)

= −
n

∑
j=1

Z

Σ

dΣ · ∑
r>1

F [r−1]
j (r , t)⊗ I [r]

j (r , t) .(55)

Furthermore, using Eq. (41), Eq. (54) becomes

P(t)= σ(t)+
Z

d3r
n

∑
j=1

∑
r>1

Grad F[r−1]
j (r , t) ⊗ I [r]

j (r , t) ,

(56)
and then taking into account that

σ(t) =
dS(t)

dt
= P(t)+PΣ (t) , (57)

use of Eqs. (55) and (56) implies in that

n

∑
j=1

∑
r>1

Z
d3r Grad F[r−1]

j (r , t) ⊗ I [r]
j (r , t) =−PΣ (t) .

(58)
This is just a consequence that the quantitiesJ(0)

j (which gave
origin to the divergence of the flux) do not contribute to the
informational-entropy production, that is, as already noticed,
there is no dissipation in the nonequilibrium macroscopic de-
scription associated to the auxiliary operatorρ(t,0) , but the
irreversible processes are fully accounted for byρ′ε (t) [cf.
Eqs. (22), (32), and (46), and Fig.1].

Summarizing these results, the informational-entropy pro-
duction densityσs(r , t) accounts for the local internal produc-
tion of informational entropy. Moreover, using Eqs. (54) and
(55), together with Eq. (57) we can make the identifications

σ(i) (t) = P(t) ; (59)
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σ(e) (t) = PΣ (t) . (60)

Accordingly, Eq.(59) stands for internal production of
informational-entropy and the contribution in Eq. (60) is asso-
ciated to informational-entropy exchange with the surround-
ings. The informational-entropy productionσ(t) can then be
interpreted as corresponding in the appropriate limit to the en-
tropy production function of Classical Irreversible Thermody-
namics.

B. The nonequilibrium equations of state

Let us next proceed to analyze the differential coefficients
of the informational entropy [cf. Eq. (44)]. Consider a sys-
tem composed ofs subsystems. Letεl (r , t) be the locally-
defined energy densities andnl (r , t) the number densities in
eachl (= 1,2, ...,s) subsystem, which are taken as basic vari-
ables in NESEF (some of the subsystems belong to the de-
scription of the reservoirs, but we do not separate them at this
point). We callβ(r ,t) andζ(r ,t) their associated intensive vari-
ables [the Lagrange multipliersF in Eq. (17) that the formal-
ism introduces]. But, as shown elsewhere [13], it is required
the introduction of the fluxes of these quantities as basic vari-
ables, and with them all the other higher order fluxes (of ten-
sorial rankr ≥ 2). Consequently, the statistical operator de-
pends on all the densities and their fluxes, and Eq. (44) tells
us that the Lagrange multipliers associated to them depend,
each one, on all these basic variables, namely, the densities
ε(r ,t), n(r ,t), their vectorial fluxesI εl (r , t) , Inl (r , t) , and rank

r ≥ 2 tensorial fluxesI [r]
εl (r , t) , I [r]

nl (r , t) .
As noticed before, this particular choice of the basic vari-

ables implies in a description which can be considered as a
far-reaching generalization of a grand-canonical distribution
in arbitrary nonequilibrium conditions. The corresponding
auxiliary coarse-grained (“instantaneously frozen”) distribu-
tion is then

ρ̄(t,0) = exp

{
−φ(t)−∑

l

Z
d3r

[
βl (r , t) ε̂l (r)+

+ζl (r , t) n̂l (r)+αεl (r , t) · Î εl (r)+αnl (r , t) · Înl (r)+

+ ∑
r≥2

[
α[r]

εl (r , t)⊗ Î [r]
εl (r)+α[r]

nl (r , t)⊗ Î [r]
nl (r)

]]}
,

(61)
where the upper triangular hat stands for the dynamical oper-
ator of the corresponding quantity: the energy densityε̂, the
particle densitŷn, and their fluxes of all ordersr ≥ 1 [r is also
the corresponding tensorial rank, withr = 1 standing for the
vectorial fluxes, which have been explicitly separated out in
Eq. (51)]. Moreover,β, ζ, and theα’s are the correspond-
ing Lagrange multipliers (intensive nonequilibrium thermo-
dynamic variables in IST). We further recall that the proper
nonequilibrium statistical operator that describes the dissipa-
tive irreversible macrostate of the system isρε (t) of Eq. (16),
built on the basis of the auxiliary one of Eq. (61).

Thus, the quantities that are the differential coefficients of
the quasientropy in IST, which, as already noted, are in this
sense nonequilibrium thermodynamics variables conjugated
to the basic ones, are for the densities

βl (r , t) = δS(t)/δεl (r , t) , (62)

ζl (r , t) = δS(t)/δnl (r , t) , (63)

whereδ, we recall, stands for functional differential [154].
The IST-quasientropy of Eqs. (20), appropriately given in
terms ofεl , nl , and their fluxes of all order [cf. Eqs. (5) to
(6)], goes over the corresponding one of local equilibrium in
Classical Irreversible Thermodynamics, when all variablesβl
become identical for all subsystems and equal to the recipro-
cal of the local equilibrium temperature, while theζl become
equal to−βµl , whereµl are the local chemical potentials for
the different chemical species in the material. All the other
variables associated to the fluxes are null in such limit. Of
course, when the complete equilibrium is achievedβ andµ go
over the corresponding values in equilibrium.

Consequently, in NESEF we can introduce the space and
time dependent nonequilibrium temperature-like variables
Θl (~r, t) , which we callquasitemperature for each subsystem
l = 1 to s,namely

βl (r , t) = δS(t)/δεl (r , t)≡Θ−1
l (r , t) , (64)

where then

βl

{
εk,nk, I εk, Ink,

{
I [r]
εk

}
,
{

I [r]
nk

}}
≡Θ−1

l (r , t) , (65)

with Boltzmann constant taken as unit. This Eq. (65) tells
us that the Lagrange multiplierβ represents in the MaxEnt
approach to the NESEF a reciprocal quasitemperature (non-
equilibrium temperature-like variable) of each subsystem, and
which is dependent on the space and time coordinates. Ev-
idently, as we have intended to indicate between the curly
brackets in Eq. (65), it depends not only on the energiesεl and
densitiesnl (l = 1,2, ...,s) but on all the other basic variables
which are appropriate for the description of the macroscopic
state of the system, that is, the vectorial and tensorial fluxes.
The definition of Eq. (65) properly recovers as particular lim-
iting cases the local-equilibrium temperature of classical irre-
versible thermodynamics and the usual absolute temperature
in equilibrium; in both cases there follows a unique tempera-
ture for all subsystems as it should.

A quite important aspect of the question needs be stressed
at this point: Equation (64) is the formal definition of the so-
called quasitemperature in IST, a very convenient one because
of the analogy with local-equilibrium and equilibrium theo-
ries, which are recovered in the appropriate asymptotic limits:
for a general discussion on nonequilibrium temperature defin-
itions see [155]. But we recall that it is a Lagrange multiplier
that the method introduces from the outset being a functional
of the basic set of macrovariables. Therefore, its evolution in
time, and then its local and instantaneous value, follows from
the solution of the generalized transport equations, namely
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Eqs. (29), for the densities and all their fluxes. Thus, in IST,
the quasitemperature of each subsystem is, as already empha-
sized, afunctional of all the basic variables,which are, we
recall, the densities and their fluxes of, in principle, all orders.
This question is extensively dealt with in references [76, 81],
where it is also described how to measure quantities like the
quasi-temperature, quasi-chemical potentials, and drift veloc-
ities, and comparison with experiment is given: theoretical
results and experimental data shows very good agreement.

C. A generalizedH−theorem

One point that is presently missing is the attempt to extract
from this Informational Statistical Thermodynamics (and thus
to also provide for a reasonable criterion in phenomenological

irreversible thermodynamics) the sign of the entropy produc-
tion function. This is defined as non-negative in Extended
Irreversible Thermodynamics, but such property does not fol-
lows immediately fromσ of Eq. (45) [or Eq. (46)]. The col-
lision integralJ on whichσ depends has an extremely com-
plicated expression, even in its alternative form given by Eq.
(32). There is only one manageable case, the quasi-linear the-
ory of relaxation near equilibrium, whenσ is definite positive,
as for example proved in [24].

However, we can show that for this informational nonequi-
librium statistical thermodynamics there follows ageneralized
H -theorem,in the sense of Jancel [156], which we call aweak
principle of increasing of informational-entropy production.
For that purpose we take into account the definition of the
IST-quasientropy, and resorting, for simplicity, to a classical
mechanical description, we can write

S(t)−S(to) =−
Z

dΓ [ρε (Γ | t) lnρ(Γ | t,0)−ρε (Γ | to) lnρ(Γ | to,0)] (66)

whereΓ is a point in classical phase space.
But, because of the initial condition of Eq. (21) we have

that lnρ(Γ | to,0) = lnρε (Γ | to) and, further, since Gibbs en-
tropy, namely

SG (t) =−
Z

dΓ ρε (Γ | t) lnρε (Γ | t) (67)

is conserved, that is, it is constant in time [thenSG (t) = SG (to)
and we recall thatSG (to) = S̄(to,0)], it follows that

S(t)−S(to) =−
Z

dΓ ρε (Γ | t) [lnρ(Γ | t,0)− lnρε (Γ | t)] =

=−
Z

dΓ ρε (Γ | t) [Pε (t)−1] lnρε (Γ | t) , (68)

wherePε is the projection operator of Eq. (38) and then

S(t)−S(to) = S(t)−SG (t) . (69)

Recalling that the coarse-graining condition of Eq. (38) en-
sures, besides the definition of the Lagrange multipliersFj
which according to Eq. (44) are differential coefficients of the
entropy and the simultaneous normalization ofρε andρ, we
can write Eq. (66) in the form

∆S(t) = S(t)−S(to) = S(t)−SG (t) =

=−
Z

dΓ ρε (Γ | t) [lnρ(Γ | t,0)− lnρε (Γ | t)]+

+
Z

dΓ [ρε (Γ | t)−ρ(Γ | t,0)] , (70)

since the last integral is null. This quantity∆S cancels for
ρε = ρ [i.e. for null ρ′ε of Eq. (22)], and its change when
introducing the variationρε → ρε +δρε is

δ∆S(t) =
Z

dΓ δρε (Γ | t) ln [ρε (Γ | t) / ρ(Γ | t,0)] =

=
Z

dΓ δρε (Γ | t) ln

[
1+

ρ′ε (Γ | t)
ρ(Γ | t,0)

]
, (71)

where we used the separation ofρε given by Eq.(22).
The variation in Eq. (71) vanishes forρε = ρ, when, as

shown, also vanishes∆S(t), so it follows that∆S(t) is a min-
imum for ρε = ρ, when it is zero, and positive otherwise,
namely

∆S(t)≥ 0 , (72)

which defines for the NESOM the equivalent of Jancel’s gen-
eralizedH -theorem [156]. It should be noticed that the in-
equality of Eq. (72) can be interpreted as the fact that, as the
system evolves in time from the initial condition of prepara-
tion under the governing action of the nonlinear generalized
transport equations (29), the informational entropy cannot de-
crease, or, because of Eq. (72), the IST-informational-entropy
is always larger than Gibbs statistical entropy. These results
reproduce for the MaxEnt-NESOM described in section2,
those obtained by del Rio and Garcia-Colin [149] in an al-
ternative way.

Using the definition for the informational entropy produc-
tion function we can rewrite Eq. (72) as

tZ

to

dt′
Z

d3r σ
(
r , t ′

)≥ 0 . (73)



704 Áurea R. Vasconcellos, J. Galvão Ramos, and Roberto Luzzi

Equation (73) does not prove thatσ(r , t) is a monotoni-
cally increasing function of time, as required by phenomeno-
logical irreversible thermodynamic theories. We have only
proved the weak condition that as the system evolvesσ is pre-
dominantly definite positive. We also insist on the fact that
this result is a consequence of the presence of the contribution
ρ′ε to ρε, which is then, as stated previously, the part that ac-
counts for – in the description of the macroscopic state of the
system – the processes which generate dissipation. Further-
more, the informational entropy with the evolution property
of Eq. (72) is the coarse-grained entropy of Eq. (37), the
coarse-graining being performed by the action of the projec-
tion operatorPε of Eq. (38): This projection operation ex-
tracts from the Gibbs entropy the contribution associated to
the constraints [cf. Eq. (11)] imposed on the system, by pro-
jecting it onto the subspace spanned by the basic dynamical
quantities, what is graphically illustrated in Fig.1 (see also
[47]). Hence, the informational entropy thus defined depends
on the choice of the basic set of macroscopic variables, whose
completeness in a purely thermodynamic sense cannot be in-
dubitably asserted. We restate that in each particular problem
under consideration the information lost as a result of the par-
ticular truncation of the set of basic variables must be carefully
evaluated [157]. Retaking the question of the signal ofσ̄(~r, t),
we conjecture that it is always non-negative, since it can not be
intuitively understood how information can be gained in some
time intervals along the irreversible evolution of the system.
However, this is expected to be valid as long as we are using
an, in a sense, complete description of the system meaning
that the closure condition is fully satisfied (in the case of the
nonequilibrium grand-canonical ensemble when taking densi-
ties and fluxes of all orders). Once a truncation procedure is
introduced, that is, the closure condition is violated, then the
local density of informational entropy production is no longer
monotonously increasing in time; this has been illustrated by
Criado-Sancho and Llebot [158] in the realm of Extended Ir-
reversible Thermodynamics. The reason is, as pointed out by
Balian et al.[47] that the truncation procedure introduces some
kind of additional (spurious) information at the step when the
said truncation is imposed.

Two other properties of the IST-informational-entropy
function are that, first, it is a maximum compatible with the
constraints of Eq. (11) when they are given at the specific
timet, that is,ρ maximizesS(t) when subjected to normaliza-
tion and such constraints, and second one recovers the proper
values in equilibrium. This particular property of vinculated
maximization, which ensures thatS(t) is a convex function in

the space of thermodynamic states, is the one that concomi-
tantly ensures that in the framework of Informational Statisti-
cal Thermodynamics are contained generalized forms of Pri-
gogine’s theorem of minimum entropy production in the linear
regime around equilibrium, and Glansdorff-Prigogine’s ther-
modynamic principles of evolution and (in)stability in nonlin-
ear conditions. Let us see these points next.

D. Evolution and (in)stability criteria

In this subsection we summarize three additional properties
of the informational-entropy production, namely the criterion
of evolution and the (in)stability criterion - generalizations of
those of Glansdorff-Prigogine in nonlinear classical Nonequi-
librium Thermodynamics [94], and a criterion for minimum
production of informational entropy also a generalization of
the one due to Prigogine [91]. Details of the demonstrations
are given elsewhere [46].

The time derivative ofσ(t) of Eq. (45) can be split into two
terms, namely

dσ(t)
dt

=
dFσ(t)

dt
+

dQσ(t)
dt

, (74)

where

dFσ(t)
dt

=
n

∑
j=1

Z
d3r

∂Fj (r , t)
∂t

∂Q j (r , t)
∂t

, (75)

and

dQσ(t)
dt

=
n

∑
j=1

Z
d3r F j (r , t)

∂2Q j (r , t)
∂t2 , (76)

that is, the change in time of the informational-entropy pro-
duction due to that of the variablesF and that of the variables
Q, respectively. Recalling that theQ j stand for the thermody-
namic variables in Informational Statistical Thermodynamics
[cf. Eq. (11)], while theFj stand for the Lagrange multipli-
ers introduced by the method [cf. Eq. (14)], which are the
differential coefficients of the informational entropy [cf. Eq.
(44)], Eqs. (75) and (76) are related to what, in the limiting
case of classical (linear or Onsagerian) Thermodynamics, are
the contributions due to the change in time of the thermody-
namic fluxes and forces respectively, as will be better clarified
in continuation. First we notice that using Eq. (44) we can
write that

∂Fj (r , t)
∂t

=
∂
∂t

δS(t)
δQ j (r , t)

=
n

∑
j=1

Z
d3r1

δ2S(t)
δQ j (r , t)δQk (r1, t)

∂Qk (r1, t)
∂t

, (77)

and then

dFσ(t)
dt

=
n

∑
j,k=1

Z
d3r

Z
d3r1

δ2S(t)
δQ j (r , t)δQk (r1, t)

∂Q j (r , t)
∂t

∂Qk (r1, t)
∂t

, (78)
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which is non-positive because of the convexity ofS, that is

dFσ(t)
dt

≤ 0 . (79)

Inequality (79) can be considered as ageneralized
Glansdorff-Prigogine thermodynamic criterion for evolution,
which in our approach is a consequence of the use of MaxEnt
in the construction of IST within the framework of the NESEF
of section2.

Also, an alternative criterion can be derived in terms of the
generating functionalφ(t), as given by Zubarev [24]. Defin-
ing

ϕ(t) =
dφ(t)

dt
=−

n

∑
j=1

Z
d3r Q j (r , t)

∂Fj (r , t)
∂t

, (80)

it follows that
dϕ(t)

dt
=

dFϕ(t)
dt

+
dQϕ(t)

dt
, (81)

where

dFϕ(t)
dt

=−
n

∑
j=1

Z
d3r Q j (r , t)

∂2Fj (r , t)
∂t2 , (82)

and

dQϕ(t)
dt

=−
n

∑
j=1

Z
d3r

∂Q j (r , t)
∂t

∂Fj (r , t)
∂t

. (83)

But dQϕ(t) / dt is then−dF σ̄(t) / dt, and because of Eq.
(79)

dQϕ(t)
dt

≥ 0 (84)

during the irreversible evolution of the system, hence it fol-
lows an alternative criterion given in terms of the variation in
time of the rate of change of the logarithm of the nonequilib-
rium partition-like function.

Consider next an isolated system composed of a given open
system in interaction with the rest acting as sources and reser-
voirs. These sources and reservoirs are assumed to be ideal,
that is, its statistical distribution, denoted byρSR, is taken as
constantly stationary, in order words as unaltered by the in-
teraction with the much smaller open system. The nonequi-
librium statistical operator,ρS(t), for the whole system to be
used in the equation of evolution is then written as

ρS(t) = ρε (t)× ρSR , (85)

whereρε (t) is the statistical operator of the open system con-
structed in the MaxEnt-NESEF.

If the open system is in a steady state [to be denoted here-
after by an upper index(ss)], then the production of global in-
formational entropy is null, that is,σss= σss

(i)+σss
(e) = 0, where

the two contributions are the internal and external produc-
tion of informational entropy, as given by Eqs. (59) and (60).
Hence,σss

(i) = −σss
(e), meaning that the increase of the global

internal entropy production is compensated by the pumping of
entropy to the external world.

Let us consider now a small deviation from the steady state
which is assumed to benear equilibrium,and we write

Fj (r , t) = F(eq)
j +∆Fj (r , t) , (86)

where∆F ¿ F(eq), and index(eq) indicates the value of the
corresponding quantity in theequilibrium state.The internal
production of informational entropy,σ(i) = P(t) of Eqs. (59)
and (56), in the condition of departure from equilibrium de-
fined by Eq. (86), satisfies in thisimmediate neighborhood of
the steady state near equilibrium,which we call thestrictly
linear regime(SLR), that

σSLR
(i) (t) = PSLR(t) =

=
n

∑
j,k=1

Z
d3r

Z
d3r1 ∆Fj (r , t) LSLR

jk (r , r1) ∆Fk (r1, t)+

+
n

∑
j=1

Z
d3r Grad ∆Fj (r , t) ⊗ Ĩ j (r , t) , (87)

whereLSLR is the symmetric matrix of Onsager-like kinetic
coefficients, around the equilibrium state, given by

LSLR
jk (r , r1)=

0Z

−∞

dτ eετ
[
Tr

{ •
P̂′j (r1)

•
P̂′k (r ,τ) ρeq

}
−

−∑
m,n

Tr

{
P̂j (r)

•
P̂′m (r1)C−1

mn (r , r1) P̂n (r)
•
P̂′k (r1)ρeq

}]
,

(88)
where

Cmn(r , r1) =
1Z

0

du Tr
{

P̂m(r)ρu
eqP̂n (r1)ρ−u+1

eq

}
, (89)

and

•
P̂′=

1
i}

[
P̂, Ĥ ′] ,

with Ĥ ′ the part of the Hamiltonian containing the interac-
tions, and use was made of the fact that

∑
j

Z
d3r

Z
d3r1 LSLR

jk (r , r1)F(eq)
j

= ∑
k

Z
d3r

Z
d3r1 LSLR

jk (r , r1)F(eq)
k = 0 , (90)

i.e., there is no production of informational entropy in equilib-
rium. Moreover, in the neighborhood of the equilibrium state
the internal production of entropy is nonnegative, that is (see
for example [24])

σSLR
(i) (t) = PSLR(t)≥ 0 . (91)

Taking into account that for a system subject to time-
independent external constraints, so as to produce a steady
state, it is verified thatdPΣ / dt = 0, we obtain that
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dFσSLR
(i) (t)

dt
=

n

∑
j,k=1

Z
d3r

Z
d3r1

∂∆Fj (r , t)
∂t

LSLR
jk (r , r1) ∆Fk (r1, t)+

+
n

∑
j=1

Z
d3r Grad

∂∆Fj (r , t)
∂t

⊗ Ĩ j (r , t) , (92)

and

dQσSLR
(i) (t)

dt
=

n

∑
j,k=1

Z
d3r

Z
d3r1 ∆Fj (r , t) LSLR

jk (r , r1)
∂∆Fk (r1, t)

∂t
+

+
n

∑
j=1

Z
d3r Grad ∆Fj (r , t)⊗ ∂Ĩ j (r , t)

∂t
. (93)

whereĨ j are the fluxes [cf. Eqs. (48) and (50)]. But, according
to Onsager’s relations in the linear domain around equilibrium
(see for example [24]), it follows that

Ĩ j (r , t) =
n

∑
j=1

Z
d3r1 ΛSLR

jk (r , r1) Grad ∆Fk (r1, t) ,

(94)
where the matrix of kinetic coefficients is symmetric, i.e.
ΛSLR

jk (r , r1) = ΛSLR
k j (r , r1) . Using Eq. (94) and recalling that

the matrix of coefficientsLSLR
jk is also symmetric [46], we can

verify that the expressions in Eqs. (92) and (93) are identical
and, therefore,

dσSLR
(i) (t)

dt
=

(
dF

dt
+

dQ

dt

)
σSLR

(i) (t) = 2
dFσSLR

(i) (t)

dt
. (95)

The results of Eqs. (59), (60), (90) and (95) are of relevance
in proving a generalization in IST of Prigogine’s theorem of
minimum internal production of entropy. In fact, in the SLR
regime, taking the time derivative of Eq. (54), it follows from
Eq. (95) that

dPSLR

dt
=

dσSLR
(i)

dt
= 2

dFσSLR
(i)

dt
= 2

dFσSLR

dt
≤ 0 , (96)

as a consequence that in the steady state the fluxesĨ j in Eq.
(56) are time independent on the boundaries, i.e.dPΣ / dt = 0.
Hence, the inequality in Eq. (96) is a consequence for this

particular case of the theorem of Eq. (79). Therefore, on ac-
count of Eqs. (91) and (96), according to Lyapunov’s theorem
there follows the generalization in IST of Prigogine’s theo-
rem. This theorem proves that in the linear regime near equi-
librium, that is in the strictly linear regime,σSLR

(i) is a nonequi-
librium state function with an associated variational principle,
and thatsteady states near equilibrium are attractors charac-
terized by producing the least dissipation (least loss of infor-
mation in our theory) under the given constraints.We stress
that this result is a consequence of the fact that the matrix
of kinetic coefficientsL jk is symmetric in the strictly linear

regimeand this result implies thatdFσQLTR
(i) near equilibrium

is one half the exact differential of the entropy production.
Outside the strictly linear regime the antisymmetric part of
the matrix of kinetic coefficients may be present and, there-
fore, there is no variational principle that could ensure the
stability of the steady state.The latter may become unstable
once a certain distance from equilibrium is attained, giving
rise to the emergence of a selforganized dissipative structure
[98, 99, 159, 160].

Consequently, outside the strictly linear domain, essentially
for systems far-away-from equilibrium, other stability crite-
rion needs be determined. We look for it first noting that,
because of the convexity of the MaxEnt-NESEF entropy as
is demonstrated in [46] for states around any arbitrary steady
state, let it be near or far away from equilibrium, the following
result holds, namely

1
2

δ2S(t) =
1
2

n

∑
j,k=1

Z
d3r

Z
d3r1 C−1

jk (r , r1)
(ss) ∆Q j (r , t) ∆Qk (r1, t)≤ 0 , (97)

where

C−1
jk (r , r1)

(ss) =
[

δ2S(t)
δQ j (r , t)δQk (r1, t)

](ss)

. (98)

Time derivation of Eq. (97) leads to the expression

∆Fσ(t)≡ d
dt

1
2

δ2S(t) =
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=
n

∑
j,k=1

Z
d3r

Z
d3r1 C−1

jk (r , r1)
(ss) ∆Qk (r , t)

∂∆Q j (r1, t)
∂t

=

=
n

∑
j=1

Z
d3r ∆Fj (r , t)

∂∆Q j (r , t)
∂t

=

= σ(t)−
n

∑
j=1

Z
d3r F (ss)

j (r , t)
∂∆Q j (r , t)

∂t
, (99)

a quantity called theexcess entropy production.In deriving
the previous to the last term in Eq. (99) we used the calcula-
tion of C in the steady state which is thus time independent,
and it was used the fact thatC is a symmetric matrix (what is
a manifestation of the existence of Maxwell-type relations in
IST, as will be shown later on).

Consequently, taking into account Eqs. (97) and (99), Lya-
punov stability theorem (see for example [99]) allows us to
establish a generalizedGlansdorff-Prigogine-like (in)stability
criterion in the realm of the Informational Statistical Ther-
modynamics: For given constraints, if∆Fσ is positive, the
reference steady state is stable for all fluctuations compatible
with the equation of evolution (which are provided in MaxEnt-
NESEF by the nonlinear transport theory briefly summarized
in Sec. 2). Stability of the equilibrium and steady states in
the linear regime around equilibrium are recovered as partic-
ular limiting and restricted cases of the general theory. There-
fore, given a dynamical open system in a certain steady state,
it can be driven away from it by changing one or more con-
trol parameters on which its macrostate depends. At some
critical value of one or more of these control parameters (for
example the intensities of external fields) the sign of the ex-
cess entropy production function may change from positive
to negative, meaning that the steady state looses its stabil-
ity and a new macrostate becomes stabilized characterizing
some kind of, in general, patterned structure, the so-called
Prigogine’s dissipative structure.The character of the emerg-
ing structure is connected with the type of fluctuation arising
in the system that instead of regressing, as should be the case
in the linear (or Onsagerian) regime, increases to create the
new macrostate. The instability corresponds to a branching
point of solutions of the non-linear equations of evolution, and
to maintain such non-equilibrium structures a continuous ex-
change of energy and/or matter with external reservoirs is nec-
essary, i.e. entropy must be pumped out of the open system.
We again stress that this kind of self-organized ordered behav-
ior is ruled out in the strictly linear regime as a result of the
previously demonstrated generalized Prigogine’s minimum
entropy production theorem. Thus, nonlinearity is required
for these structural transitions to occur at a sufficiently far dis-
tance from equilibrium. The new nonequilibrium branch of

solution (the dissipative structure) may present one of the fol-
lowing three characteristics: (a) time organization, (b) space
organization, (c) functional organization [99, 160]. Finally,
we stress the fact that in the nonlinear domain the criteria for
evolution and stability are decoupled - differently to the lin-
ear domain - and this fact allows for the occurrence of new
types of behavior when the dynamical system is driven far
away from equilibrium: order may arise out of thermal chaos
[161, 162] and the system displays complex behavior. As
noted before, we restate that IST, built within the framework
of MaxEnt-NESEF, can provide solid microscopic and macro-
scopic basis to deal with selforganization, or the sometimes
called Thermodynamics of Complex Systems [163, 164].

E. Generalized Clausius relation in IST

The informational entropy in IST also satisfies a kind of
generalized Clausius relation. In fact, consider the modifi-
cation of the informational entropy as a consequence of the
modification of external constraints imposed on the system.
Let us callλl (l = 1,2, ...s) a set of parameters that charac-
terize such constraints (e.g., the volume, external fields, etc.).
Introducing infinitesimal modifications of them, saydλl , the
corresponding variation in the informational entropy is given
by

dS(t) =
Z

d3r
n

∑
j=1

Fj (r , t) dQ j (r , t) , (100)

wheredQ j are the nonexact differentials

dQ j (r , t) = dQj (r , t)−〈dP̂j (r) | t〉 , (101)

with 〈dP̂j (r) | t〉= Tr
{

dP̂j ρ̄(t,0)
}

. In these expressions the

nonexact differentials are the difference between the exact dif-
ferentials

dQj (r , t) = d Tr
{

P̂j (r)ρ(t,0)
}

=
s

∑
l=1

∂Q j (r , t)
∂λl

dλl ,

(102)
and

〈dP̂j (r) | t〉= Tr

{
s

∑
l=1

∂P̂j (r)
∂λl

dλl ρ(t,0)

}
, (103)

the latter being the average value of the change in the corre-
sponding dynamical quantity due to the modification of the
control parameters. This follows from the fact that

dS(t) =
s

∑
l=1

∂φ(t)
∂λl

+
n

∑
j=1

s

∑
l=1

Z
d3r

[
∂Fj (r , t)

∂λl
Q j (r , t)+Fj (r , t)

∂Q j (r , t)
∂λl

dλl

]
, (104)
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and that

∂φ(t)
∂λl

=
∂

∂λl
Tr

{
exp

[
−

n

∑
j=1

Z
d3r F j (r , t) P̂j (r)

]}
=

=−
n

∑
j=1

Z
d3r

[
Q j (r , t)

∂Fj (r , t)
∂λl

+Fj (r , t)Tr

{
∂P̂j (r)

∂λl
ρ(t,0)

}]
. (105)

Consequently, using Eqs. (104) and (105), we obtain Eq.
(100). It is worth noticing that if we take the system in equi-
librium at temperatureT, described by the canonical distribu-
tion, and perform an infinitesimal change in volume, saydV,
then

dS=
1
T

[d〈H〉−〈dH〉] = dU
T
− 1

T
〈∂H

∂V
dV〉=

=
dU
T
− 1

T
∂U
∂V

dV =
dU
T

+
p
T

dV (106)

and then follows the form of the first law given by

dU = TdS− pdV . (107)

Equation (100) tells us that the MaxEnt-NESEF Lagrange
multipliers are integrating factors for the nonexact differen-
tialsdQ j .

Let us take as the energy density one of the variablesQ j , say
Q1 (r , t) = ε(r , t), and in analogy with equilibrium we define
the intensive non-equilibrium thermodynamic variable we call
quasitemperature, or better to say its reciprocal

Θ−1 (r , t) = δS(t) / δε(r , t) . (108)

After introducing the additional redefinitions of the La-
grange multipliers in the form

Fj (r , t) = Θ−1 (r , t) F j (r , t) , (109)

using Eq. (40) allows us to introduce a kind of generalized
space-dependent Clausius expression for a system in arbitrary
nonequilibrium conditions, namely

s(r , t)−s(r , to)=
tZ

to

dt′
∂s(r , t ′)

∂t ′
=

tZ

to

dt′ Θ−1(
r , t ′

)
d
•
q

(
r , t ′

)
,

(110)
where we have introduced the nonexact differential for a gen-
eralized heat functionq(r , t) given by

dq
(
r , t ′

)
= dt′ d

•
q

(
r , t ′

)
= dε

(
r , t ′

)
+

n

∑
j=2

F j
(
r ,′ t

)
dQ j

(
r , t ′

)
.

(111)
In Eq. (110) is to be understood that the integration in time

extends , in the time interval that goes fromto to t, along the

trajectory of evolution of the system, governed by the kinetic
equations (48).

Moreover, using the redefinitions given in Eqs. (109), we
may noticed that the generalized space and time dependent
Gibbs relation of Eq. (47) becomes

Θ(r , t) ds(r , t) = dε(r , t)+
n

∑
j=2

F j (r , t) dQj (r , t) ,

(112)
where on the left side it has been put into evidence the qua-
sitemperatureΘ (we stress that in Eq. (101)dQ indicates the
nonexact differential resulting from modifications in the con-
straints, while in Eq. (112) is present the differentialdQ on
the variables on which the function̄S depends). This is the
case of a single nonequilibrium system; we have already call
the attention to the fact that, in the general case, there exist
different quasitemperatures for different subsets of degrees of
freedom of a given sample in nonequilibrium conditions. The
case of the photoinjected highly excited plasma in semicon-
ductors is an excellent example: Coulomb interaction between
carriers produces their internal thermalization (in nonequilib-
rium conditions) resulting in a unique quasitemperature which
is attained in the ten-fold femtosecond time scale, while the
optical phonons are driven away from equilibrium as a result
of the interaction with the nonequilibrium carriers and acquire
different quasitemperatures in each mode. Only in the ten-fold
picosecond time scale there follows mutual thermalization of
carriers and all the phonon modes, when all acquire a unique
quasitemperature, and in the long run carriers’ and optical-
phonons’ systems attain final equilibrium with the heat reser-
voir with which they are in contact; then the quasitemperature
goes over the temperature of equilibrium with the reservoir
[77, 165].

Integrating in space Eq. (111), and taking into account the
results that led to theH -theorem of subsectionIV.C , we can
write

S(t)−S(to) = S(t)−SG (t)

=
tZ

to

dt′
Z

d3r Θ−1(
r , t ′

)
d
•
q

(
r , t ′

)≥ 0 . (113)

This Eq. (113) suggests an interpretation of it, in anal-
ogy with equilibrium, as resulting from a kind of pseudo-
Carnot principle for arbitrary nonequilibrium systems, in the
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sense of taking the contribution of the integrand as a local
reversible exchange of a heat-like quantity between the sys-
tem and a pseudo-reservoir at local and instantaneous temper-
atureΘ(r , t). Some considerations on Carnot’s principle and
its connection with MaxEnt, as a general principle of reason-
ing, has been advanced by Jaynes [166]. He described the
evolution of Carnot’s principle, via Kelvin’s perception that it
defines a universal temperature scale, Clausius’ discovery that
it implied the existence of the entropy function, Gibbs’ per-
ception of its logical status, and Boltzmann’s interpretation of
entropy in terms of phase volume, into the general formalism
of statistical mechanics. The equivalent in IST of Boltzmann’s
results is provided in subsectionIV.G.

F. Fluctuations and Maxwell-like relations

As already shown, the average value of any dynamical
quantityPj (Γ) of the basic set in MaxEnt-NESEF (the clas-

sical mechanical level of description is used for simplicity) is
given by

Q j (t) =
Z

dΓ Pj (Γ) ρ(Γ | t,0) =−δφ(t) / δFj (t) ,

(114)
that is, by minus the functional derivative of the generating
functional φ with respect to the associated Lagrange multi-
plier Fj (t) [and we recall that this function can be related to a
kind of non-equilibrium partition function through the expres-
sionφ(t) = ln Z̄(t)]. Moreover, from a straight calculation it
follows that

δ2φ(t) / δFj (t)δFk (t) =−δQ j (t) / δFk (t) =−δQk (t) / δFj (t) =

=
Z

dΓ ∆Pj (Γ)∆Pk (Γ) ρ(Γ | t,0) = C jk (t) , (115)

where

∆Pj (Γ) = Pj (Γ)−
Z

dΓ Pj (Γ) ρ(Γ | t,0) = Pj (Γ)−Q j (t) , (116)

and Eq. (115) defines thematrix of correlationŝC (t) . The di-
agonal elements of̂C are the mean square deviations, or fluc-
tuations, of quantitiesPj (Γ) , namely

C j j (t) =
Z

dΓ [∆Pj (Γ)]2 ρ(Γ | t,0) =

=
Z

dΓ [Pj (Γ)−Q j (t)]
2 ρ(Γ | t,0)≡ ∆2Q j (t) , (117)

and the matrix is symmetrical, that is,

C jk (t) = δ2φ(t) / δFj (t)δFk (t) =

= δ2φ(t) / δFk (t)δFj (t) = Ck j (t) , (118)

what is a manifestation in IST of the knownMaxwell relations
in equilibrium.

Let us next scale the informational entropy and Lagrange
multipliers in terms of Boltzmann constant,kB, that is, we
introduce

S (t) = kB S(t) ; F j (t) = kB Fj (t) , (119)

and then, because of Eq. (44),

F j (t) = δS (t) / δQ j (t) . (120)

Moreover, we find that

δ2S (t) / δQ j (t)δQk (t) = δF j (t) / δQk (t) =

δFk (t) / δQ j (t) =−kB C (−1)
jk (t) , (121)

that is, the second order functional derivatives of the IST-
informational-entropy are the components of minus the in-
verse of the matrix of correlationsC (−1), with elements to be
denoted byC (−1)

jk (t). Moreover, the fluctuation of the IST-
informational-entropy is given by

∆2S (t) = ∑
jk

δS (t)
δQ j (t)

δS (t)
δQk (t)

C jk (t) =

= ∑
jk

C jk (t)F j (t)Fk (t) , (122)
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and that of the intensive variablesF j are

∆2F j (t) = ∑
kl

∂F j (t)
δQk (t)

∂F j (t)
δQl (t)

C jk (t) =

= k2
B ∑

kl

C (−1)
jk (t) C (−1)

jl (t) Ckl (t) = k2
B C (−1)

j j (t) ,

(123)
therefore

∆2Q j (t) ∆2F j (t) = k2
B C j j (t) C (−1)

j j (t) = k2
BG j j (t) ,

(124)
where

G j j (t) = C j j (t)C (−1)
j j (t) (125)

and then

[
∆2Q j (t)

]1/2[
∆2F j (t)

]1/2
= k2

BG1/2
j j (t) . (126)

The quantitiesC (−1)
jk are the matrix elements of the inverse

of the matrix of correlations, and if the variables are uncorre-
latedG j j (t) = 1. Equation (126) has the likeness of an uncer-
tainty principle connecting the variablesQ j andF j (t), which
are thermodynamically conjugated in the sense of Eqs. (42)
and (44), with Boltzmann constant being the atomistic para-
meter playing a role resembling that of the quantum of action
in mechanics. This leads to the possibility to relate the results
of IST with the idea of complementarity between the micro-
scopic and macroscopic descriptions of many-body systems
advanced by Rosenfeld and Prigogine [50, 137–139]; this is
discussed elsewhere [167].

Care must be exercised in referring to fluctuations of the
intensive variablesFj . In the statistical description fluctua-
tions are associated to the specific variablesQ j , but theF ’s
are Lagrange multipliers fixed by the average values of the
P’s, and so∆2F is not a proper fluctuation ofF but a sec-
ond order deviation interpreted as being a result of the fluctu-
ations of the variablesQ on which it depends, in a generaliza-
tion of the usual results in statistical mechanics in equilibrium
[168]. These brief considerations point to the desirability to
develop a complete theory of fluctuations in the context of
MaxEnt-NESEF; one relevant application of it would be the
study of the kinetics of transition between dissipative struc-
tures in complex systems, of which is presently available a
phenomenological approach [99].

G. A Boltzmann-like relation: S (t) = kB lnW (t)

According to the results of the previous subsection, quite
similarly to the case of equilibrium it follows that the quotient
between the root mean square of a given quantity and its av-
erage value is of the order of the reciprocal of the square root
of the number of particles, that is

[
∆2Q j (t)

]1/2
/ Q j (t)∼ N−1/2 . (127)

Consequently, again quite in analogy with the case of equilib-
rium, the number of states contributing for the quantityPj to
have the given average value, is overwhelmingly enormous.
Therefore, we can write that

φ(t) = ln
Z

dΓ exp

{
−

n

∑
j=1

Fj (t) P̂j (Γ)

}
'

' ln


exp

{
−

n

∑
j=1

Fj (t) Q j (t)

} Z

M (t)

dΓ


 , (128)

where the integration is over the manifoldM (t) in phase
space composed of the phase pointsΓ ∈M (t) such that

M (t) : Q j (t)≤ P̂j (Γ)≤Q j (t)+∆Q j (t) , (129)

where∆Q j is of the order ofC 1/2
j j (t) . Hence

S (t) = kBφ(t)+
n

∑
j=1
F j (t)Q j (t)'−

n

∑
j=1
F j (t)Q j (t)+

+kB ln
Z

M (t)

dΓ+
n

∑
j=1
F j (t)Q j (t) , (130)

after using Eq. (119), and then

S (t) = kB lnW
{

Q j (t)
}

, (131)

where

W
{

Q j (t)
}

=
{

extension o fM (t)
}

(132)

with extension meaning the measure of the hypervolume in
phase space occupied byM (t) and changing in time as it pro-
ceeds the evolution of the nonequilibrium macroscopic state
of the system. We recall that this is an approximate result,
with an error of the order of the reciprocal of the square root
of the number of degrees of freedom of the system, and there-
fore exact only in the thermodynamic limit.

Equation (131) represents the equivalent in IST of Boltz-
mann expression for the thermodynamic entropy in terms of
the logarithm of the number of complexions compatible with
the macroscopic constraints imposed on the system. It should
be noticed that in IST they are given by the so-called informa-
tional set, the one used as constraints in the variational process
in MaxEnt, that is, the

{
Q j (t)

}
, which are the average values

of the set of mechanical variables
{

P̂j (t)
}

. Moreover, they
are univocally related to the Lagrange multipliers (or set of in-
tensive nonequilibrium thermodynamical variables) that also
completely describe the macroscopic state of the system in
IST, namely the set

{
kBFj (t) = F j (t)

}
.

The expression of Eq. (131) in the quantum level of de-
scription follows similarly, when we derive that

W
{

Q j (t)
}

= ∑
ñ∈M (t)

1 = number o f states inM (t) ,

(133)
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whereñ is the set of quantum numbers which characterize the
quantum mechanical state of the system, andM contains the
set of states| ñ 〉, such that

M (t) : Q j (t)≤ 〈 ñ | P̂j | ñ 〉 ≤Q j (t)+∆Q j (t) , (134)

where we have used the usual notations of bracs and kets and
matrix elements between those states.

In terms of these results we can look again at theH -
theorem of subsection4.3and write

S (t)−S (to) = kB ln
[
ext

{
M (t)

}−ext
{

M (to)
}]≥ 0 ,

(135)
whereext means extension of the manifoldM in the classi-
cal approach and number of states in the quantum approach
fixed by the informational constraints. Evidently, Eq. (135)
tells us that the extension ofM increases in time, what can be
interpreted in the following way: Consider the system in an
initially highly excited nonequilibrium state (to fix ideas let
us think in terms of the photoinjected plasma in semiconduc-
tors; see section7 in Chapter3 of the book of Ref. [13]), from
which it evolves towards final equilibrium, an evolution gov-
erned by the kinetic equations of subsection2. With elapsing
time, as pointed out by Bogoliubov, subsets of correlations die
down (in the case of photoinjected plasma implies the situa-
tion of increasing processes of internal thermalization, nulli-
fication (decay) of fluxes, etc.) and a decreasing number of
variables are necessary to describe the macroscopic state of
the system. In IST this corresponds to a diminishing infor-
mational space, meaning of course a diminishing information,
and, therefore, a situation less constrained with the consequent
increase of the extension ofM and increase in informational
entropy.

Citing Jaynes, it is this property of the entropy – measur-
ing our degree of information about the microstate, which is
conveyed by data on the macroscopic thermodynamic vari-
ables – that made information theory such a powerful tool in
showing us how to generalize Gibbs’ equilibrium ensembles
to nonequilibrium ones. The generalization could never have
been found by those who thought that entropy was, like en-
ergy, a physical property of the microstate [166]. Also fol-
lowing Jaynes,W (t) measures thedegree of control of the
experimenter over the microstate,when the only parameters
the experimenter can manipulate are the usual macroscopic
ones. At timet, when a measurement is performed, the state is
characterized by the set

{
Q j (t)

}
, and the corresponding phase

volume isW (t), containing all conceivable ways in which the
final macrostate can be realized. But, since the experiment is
to be reproducible, the region with volumeW (t) should con-
tain at least the phase points originating in the region of vol-
umeW (to), and thenW (t) ≥W (to) . Because phase volume
is conserved in the micro-dynamical evolution, it is a funda-
mental requirement on any reproducible process that the phase
volumeW (t) compatible with the final state cannot be less
than the phase volumeW (to) which describes our ability to
reproduce the initial state [152].

V. CONCLUDING REMARKS

We have considered in SectionII the construction of a Non-
equilibrium Statistical Ensemble Formalism Gibbs’ style. On
this we stress the point that to derive the behavior of the
macroscopic state of the system from partial knowledge has
been already present in the original work of Gibbs. This is
at the roots of the well established, fully accepted, and ex-
ceedingly successful statistical mechanics in equilibrium: the
statistical distribution which should depend on all constants
of motion is built, in any of the canonical ensembles, in terms
of the available information we do have, namely, the prepa-
ration of the sample in the given experimental conditions in
equilibrium with a given (and quite reduced) set of reservoirs.
Werner Heisenberg wrote [169], “Gibbs was the first to in-
troduce a physical concept which can only be applied to an
object when our knowledge of the object is incomplete”.

Returning to the question of the Bayesian approach in
statistical mechanics, Sklar [4] has summarized that Jaynes
firstly suggested that equilibrium statistical mechanics can be
viewed as a special case of the general program of system-
atic inductive reasoning, and that, from this point of view, the
probability distributions introduced into statistical mechanics
have their bases not so much in an empirical investigation of
occurrences in the world, but, instead in a general procedure
for determining appropriatea priori subjective probabilities
in a systematic way. Also, Jaynes’ prescription was to choose
the probability distribution which maximizes the statistical
entropy (now thought in the information-theoretic vein) rela-
tive to the known macroscopic constraints, using the standard
measure over the phase space to characterize the space of pos-
sibilities. This probability assignment is a generalization of
the probabilities determined by thePrinciple of Indifference
in Logic specifying one’s rational choiceof a priori proba-
bilities. In equilibrium this is connected with ergodic theory,
as known from classical textbooks. Of course it is implied to
accept the justification of identifying averages with measured
quantities using the time in the interval of duration of the ex-
periment. This cannot be extended to nonequilibrium condi-
tions involving ultrafast relaxation processes. Therefore, there
remains the explanatory question: Why do our probabilistic
assumptions work so well in giving us equilibrium values?
[4].

The Bayesian approach attempts an answer which, appar-
ently, works quite well in equilibrium, and then it is tempting
to extend it to nonequilibrium conditions. Jaynes rationale
for it is, again, that the choice of probabilities, being deter-
mined by a Principle of Indifference, should represent max-
imum uncertainty relative to our knowledge as exhausted by
our knowledged of the macroscopic constraints with which we
start [11]. This has been described in previous sections.

At this point, it can be raised the question that in the study
of certain physico-chemical systems we may face difficulties
when handling situations involving fractal-like structures, cor-
relations (spatial and temporal) with some type of scaling,
turbulent or chaotic motion, finite size (nanometer scale) sys-
tems with eventually a low number of degrees of freedom,
etc. These difficulties consist, as a rule, in that the researcher



712 Áurea R. Vasconcellos, J. Galvão Ramos, and Roberto Luzzi

is unable to satisfy Fisher’s Criterion of Sufficiency [170] in
the conventional, well established, physically and logically
sound Boltzmann-Gibbs statistics, meaning an impairment to
include the relevant and proper characterization of the system.
To mend these difficulties, and to be able to make predictions
(providing an understanding, even partial, of the physics of the
system but of interest in, for example, analyzing the techno-
logical characteristics of a device), consists into resorting to
statistics other than the Boltzmann-Gibbs one which are not
at all extensions of the latter but, as said, introduce a patching
method. To mend these difficulties, and to be able to make
prediction (an understanding, even partial, of the physics of
the system but of interest in, for example, analyzing the tech-
nological characteristics of a device), consists into resorting
to statistics other than the Boltzmann-Gibbs one (which are
not at all extensions of it but, as said, introduce a patching
approach).

Several approaches do exist and we can mention General-
ized Statistical Mechanics (see for example P. T. Landsberg,
in Ref. [171]), Superstatistics (see for example E. G. D. Co-
hen, C. Beck in Refs. [172, 173]), Nonextensive Statistics (see
for example the Conference Proceedings in Ref. [174]), and
some particular cases are statistical mechanics based on Renyi
Statistics (see for example I. Procaccia in Ref. [175] and T.
Arimitzu in Refs. [176, 177]), Kappa (sometimes called De-
formational) statistics (see for example G. Kaniadakis in Ref.
[178]). A systematization of the subject, accompanied of a
description of a large number of different possibilities, are de-
scribed in what we have dubbed asUnconventional Statistical
Mechanics, whose general theory, discussion and applications
are presented in Refs. [179–181].

Another point of contention is the long standing question
aboutmacroscopic irreversibility in nature. As discussed in
section2, it is introduced in the formalism via the general-
ization of Kirkwood’s time-smoothing procedure, after a spe-
cific initial condition [cf. Eq. (21)] – implying in a kind
of generalizedStosszahlanzatz– has been defined. This is
a working proposal that goes in the direction which was es-
sentially suggested by Boltzmann, as quoted in Ref. [182]:
“Since in the differential equations of mechanics themselves
there is absolutely nothing analogous to the second law of
thermodynamics, the latter can be mechanically represented
only by means of assumptions regarding initial conditions”.
Or, in other words [182], that the laws of physics are always
of the form: given some initial conditions, here is the result
after some time. But they never tell us how the worldis or
evolves.In order to account for that, one always needs to as-
sume something, first on the initial conditions and, second, on
the distinction of the description being macroscopic and the
system never isolated (damping of correlations). In this vein
Hawkings [135] has manifested that “It is normally assumed
that a system in a pure quantum state evolves in a unitary way
through a succession of [such] states. But if there is loss of in-
formation through the appearance and disappearance of black
holes, there can’t be a unitary evolution. Instead, the [...] fi-
nal state [...] will be what is called amixed quantum state.
This can be regarded as an ensemble of different pure quan-
tum states, each with its own probability”.

Needless to say that this question of Eddington’s time-
arrow problem has produced a very extensive literature, and
lively controversies. We do not attempt here to add any con-
siderations to this difficult and, as said, controversial subject.
We simply list in the references [50, 54, 55, 135, 135, 136,
161, 183–195] some works on the matter which we have se-
lected. As commented by Sklar [4], Nicolai S. Krylov (the
Russian scientist unfortunately prematurely deceased) was
developing an extremely insightful and careful foundational
study of nonequilibrium statistical mechanics [29]. Krylov
held the opinion that he could show that in a certain sense,
neither classical nor quantum mechanics provide an adequate
foundation for statistical mechanics. Krylov’s most impor-
tant critical contribution is precisely his emphasis on the im-
portance of initial ensembles. Also, that we may be utterly
unable to demonstrate that the correct statistical description
of the evolution of the system will have an appropriate fi-
nite relaxation time, much less the appropriate exact evolu-
tion of our statistical correlates of macroscopic parameters,
unless our statistical approach includes an appropriate con-
straint on the initial ensemble with which we choose to rep-
resent the initial nonequilibrium condition of the system in
question. Moreover, it is thought that the interaction with the
system from the outside at the single moment of preparation,
rather than the interventionists ongoing interaction, is what
grounds the asymmetric evolution of many-body systems. It
is the ineluctable interfering perturbation of the system by the
mechanism that sets it up in the first place that guarantees
that the appropriate statistical description of the system will
be a collection of initial states sufficiently large, sufficiently
simple in shape, and with a uniform probability distribution
over it. Clearly, a question immediately arises, namely: Ex-
actly how does this initial interference lead to an initial en-
semble of just the kind we need? [4] We have seen in section
2 how MaxEnt-NESEF, mainly in Zubarev’s approach, tries
to heuristically address the question. Also something akin to
these ideas seems to be in the earlier work of the Russian-
Belgian Nobel Prize Ilya Prigogine [50, 150, 161], and also
in the considerations in Refs. [4, 190–192, 196, 197]. Cer-
tain kind of equivalence - at least partial - seems to exists be-
tween Prigogine’s approach and MaxEnt-NESEF, as pointed
out by Dougherty [141, 142], and we side with Dougherty’s
view. More recently, Prigogine and his School have extended
those ideas incorporating concepts, at the quantum level, re-
lated to dynamical instability and chaos (see for example Refs.
[198, 199]). In this direction, some attempts try to incorpo-
rate time-symmetry breaking, extending quantum mechanics
to a general space state, a “rigged” (or “structured”) Hilbert
space or Gelfand space, with characteristics (superstructure)
mirroring the internal structure of collective and cooperative
macroscopic systems [200–202]. This formulation of dynam-
ics constitutes an effort towards including the second law of
thermodynamics, as displayed explicitly by aH -function of
the Boltzmann type, which decreases monotonically and takes
its minimum value when unstable systems have decayed or
when the system reaches equilibrium [203, 204].

Finally, and in connection with the considerations presented
so far, we stress that in the formalism described in previous
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sections, no attempt is made to establish any direct relation
with thermodynamic entropy in, say, the classical Clausius-
Carnot style, with its increase between initial and final equi-
librium states defining irreversibility. Rather, it has been in-
troduced a statistical-informational entropy with an evolution
as given by the laws of motion of the macrovariables, as
provided by the MaxEnt-NESEF-based kinetic theory. Irre-
versible transport phenomena are described by the fluxes of
energy, mass, etc..., which can be observed, but we do not
see entropy flowing. We have already stressed in subsection
IV.C that the increase of IST-entropy amounts to aH -like
theorem, that is, a manifestation on the irreversible charac-
ter of the transport equations, in close analogy with Boltz-
mann’sH -theorem which does so for Boltzmann equation.
Moreover, as stated elsewhere (see for example Ref. [13]),
we side with Meixner’s point of view [53, 205] in that, dif-
ferently to equilibrium, does not exists a unique and precisely
defined concept of thermodynamic entropy out of equilibrium.
The one of subsectionIV.A , is the one peculiar to IST, and
depending on the nonequilibrium thermodynamic state de-
fined by Zubarev-Peletminskii selection law altogether with
the use of Bogoliubov’s principle of correlation weakening.
The IST-informational-entropy, we recall, has several prop-
erties listed in subsectionIV.B , and one is that it takes (in
the thermodynamic limit) a typical Boltzmann-like expression
[cf. Eq. (40)], implying that the macroscopic constraints im-
posed on the system (the informational bases) determine the
vast majority of microscopic configurations that are compati-
ble with them and the initial conditions. It is worth noticing
that then, according to the weak principle of increase of the
IST-informational-entropy, as the dissipative system evolves,
such number of microscopic configurations keeps increasing
up to a maximum when final full equilibrium is achieved. Fur-
ther, MaxEnt-NESEF recovers in the appropriate limit the dis-
tribution in equilibrium, and in IST one recovers the tradi-
tional Clausius-Carnot results for increase of thermodynam-
ics entropy between an initial and a final equilibrium states,
as shown in Ref. [13, 166].

Ending this considerations, it can be further noticed that
in the preceding sections we have described, in terms of
a general overview, a theory that attempts a particular an-
swer to the long-standing sought-after question about the ex-
istence of a Gibbs-style statistical ensemble formalism for
nonequilibrium systems. Such formalism, providing micro-
scopic (mechanical-statistical) bases for the study of dissi-
pative processes, heavily rests on the fundamental ideas and
concepts devised by Gibbs and Boltzmann. It consists into
the so-called MaxEnt-NESEF formalism, which appears to be
covered under the theoretical umbrella provided by Jaynes’
Predictive Statistical Mechanics. We have already called the
attention to the fact that it is grounded on a kind of scientific
inference approach, Jeffrey’s style, based on Bayesian prob-
ability and information theory in Shannon-Brillouin’s sense
[36, 37]. It has been improved and systematized mainly by
the Russian School of Statistical Physics, and the different ap-
proaches have been brought under a unified description based
on a variational procedure. It consists in the use of the prin-
ciple of maximization of the informational entropy, meaning

to rely exclusively on the available information and avoiding
to introduce any spurious one. The aim is to make predictions
on the behavior of the dynamics of the many-body system on
the basis of only that information. On this, Jeffreys, at the be-
ginning of Chapter I in the book of reference [37], states that:
“The fundamental problem of scientific progress, and the fun-
damental of everyday life, is that of learning from experience.
Knowledge obtained in this way is partly merely description
of what we have already observed, but part consists of making
inferences from past experience to predict future experience.
This may be called generalization of induction. It is the most
important part.” Jeffreys also quotes J. C. Maxwell who stated
that the true logic for this world is the Calculus of Probability
which takes account of the magnitude of the probability that
is, or ought to be, in a reasonable man’s mind.

Some authors conjecture that this may be the revolutionary
thought in modern science (see for example Refs. [36, 37,
161, 206]): It replaces the concept of inevitable effects (tra-
jectories in a mechanicist point of view of many-body (large)
systems) by that of the probable trend (in a generalized the-
ory of dynamical systems). Thus, the different branches of
science that seem to be far apart, may, within such new par-
adigm, grow and be hold together organically [207]. These
points of view are the subject of controversy, mainly on the
part of the adepts of the mechanicist-reductionist school. We
call the attention to the subject but we do not take any particu-
lar position, simply adhering to the topic here presented from
a pragmatical point of view. In that sense, we take a position
coincident with the one clearly stated by Stephen Hawkings
[208]: “I do not demand that a theory corresponds to reality.
But that does not bother me. I do not demand that a theory
correspond to reality because I do not know what reality is.
Reality is not a quality you can test with litmus paper. All I
am concerned with is that theTheory should predict the results
of measurement” [emphasis is ours].

MaxEnt-NESEF is the constructive criterion for deriving
the probability assignment for the problem of dissipative
processes in many-body systems, on the bases of the avail-
able information (provided, as Zwanzig pointed out [209], on
the knowledge of measured properties, the expectation on the
characteristics of the kinetic equations and of sound theoret-
ical considerations). The fact that a certain probability dis-
tribution maximizes the informational entropy, subject to cer-
tain constraints representing our incomplete information, is
the fundamental property which justifies the use of that distri-
bution for inference; it agrees with everything that is known,
but carefully avoids assuming anything that is not known. In
that way it enforces - or gives a logico-mathematical view-
point - to the principle of economy in logic, known as Oc-
cam’s Razor, namely “Entities are not to be multiplied except
of necessity”. Particularly, in what concerns Statistical Ther-
modynamics (see SectionIII ), MaxEnt-NESEF, in the con-
text of Jaynes’ Predictive Statistical Mechanics, allows to de-
rive laws of thermodynamics, not on the usual viewpoint of
mechanical trajectories and ergodicity of classical deductive
reasoning, but by the goal of using inference from incomplete
information rather than deduction: the MaxEnt-NESEF distri-
bution represents the best prediction we are able to make from
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the information we have [7–12].
As ending considerations, we stress that, in this review

we have given a brief descriptional presentation of MaxEnt-
NESEF, which is an approach to a nonequilibrium statisti-
cal ensemble algorithm in Gibbs’ style, seemingly as a very
powerful, concise, soundly based, and elegant formalism of
a broad scope apt to deal with systems arbitrarily away from
equilibrium, and its application to the construction of a statis-
tical thermodynamics of irreversible processes.
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[91] I. Prigogine,Étude Thermodinamique des Phénom̀enes Irre-

versibles(Desoer, Lìege, Belgium, 1947).
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