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Effects of Torsion on Electromagnetic Fields
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In this work, we investigate the effects of torsion on electromagnetic fields. As a model spacetime, en-
dowed with both curvature and torsion, we choose a generalization of the cosmic string, the cosmic dislocation.
Maxwell’s equations in the spacetime of a cosmic dislocation are then solved, considering both the case of a
static, uniform, charge distribution along the string, and the case of a constant current flowing through the string.
We find that the torsion associated to the defect affects only the magnetic field whereas curvature affects both
electric and magnetic fields. Moreover, the magnetic field is found to spiral up around the defect axis.

I. INTRODUCTION

The study of electromagnetism in a curved background
has very important astrophysical implications as for exam-
ple helping the understanding of the signals received from
neutron stars and maybe also from black holes. Electromag-
netic processes near such objects certainly will have general-
relativistic effects. After the generalization of Einstein’s grav-
itational theory to include torsion, done by Hehl and cowork-
ers [1], one might ask what are the effects of torsion on elec-
tromagnetic fields. In this work we study a simple but illus-
trative case: the electromagnetic field produced by a cyllindri-
cally symmetric source coincident with a topological line de-
fect that carries both curvature and torsion.

Topological structures like domain walls, strings and
monopoles may have been produced by phase transitions in-
volving spontaneous symmetry breaking in the early uni-
verse [2]. Such defects are associated to curvature singu-
larities [3] and are solutions to Einstein’s field equations.
Although astronomical observations keep indicating that the
macroscopic geometry of the universe is Riemannian it is
possible that torsion may appear near curvature singularities
[4]. Line defects containing torsion, like dislocations, appear
within Einstein-Cartan-Sciama-Kibble gravitation theory [1]
in Riemann-Cartan spacetimeU4.

We consider the cosmic dislocation [5] spacetime whose
metric is given by

ds2 =−dt2 +dr2 +α2r2dφ2 +(dz+βdφ)2, (1)

in cylindrical coordinates. The parameterα is associated with
the angular deficit of a cosmic string spacetime. The values
of α are restricted to the interval0 < α < 1, since the linear
density of mass of a cosmic string, given byµ = (1−α)/4G,
must be positive. The parameterβ is related to the torsion
associated to the defect. For dislocations in solid state physics
β is related to the Burgers vector~b by β = b

2π .
This topological defect carries both torsion and curvature,

both appearing as conical singularities on thez-axis. The only

nonzero component of the torsion tensor in this case is given
by the two-form [6]

Tz = 2πβδ2(r)dr∧dφ, (2)

whereδ2(r) is the two-dimensional delta function. Analo-
gously, the nonvanishing components of the curvature two-
form are [6]

Rr
φ =−Rφ

r = 2π
(1−α)

α
δ2(r)dr∧dφ. (3)

This study intends to show how the changes introduced in
the geometrical structure of spacetime by a topological line
defect affect the solutions of Maxwell’s equations. We are
interested in the following two cases involving a cosmic dis-
location: (i) the defect carries a density of charge and (ii) it
carries a current. A similar problem was handled by M.F.A. da
Silva et al. [7, 8], who calculated the magnetostatic field due
to an electric current placed in the gravitational background
of a rotating cosmic string. In their work, torsion comes from
rotation, thus coupling time to the angular coordinateφ. Here,
torsion comes from the coupling betweenφ andz, as it is clear
from Eq. (1). Other cases, with spherical symmetry, have
appeared in the literature. For example,the electrostatic field
and the potential of a point charge in the Schwartzschild met-
ric obtained by Linet [9] and the magnetostatic field of a loop
current around a black hole obtained by Petterson [10]. Re-
lated to these problems is the question of the self-force on
electric and magnetic sources in the presence of topological
defects, the object of much attention in recent years [11]-[19].

We restrict ourselves to the study of the generation of elec-
tric and magnetic fields by static sources. To facilitate the
calculations, we consider the approximation [10] where the
electromagnetic field is taken as a weak perturbation on the
spacetime metric. Thus the influence of the metric on the
electromagnetic field is much stronger than the influence of
the electromagnetic field on the metric. In this approxima-
tion, the task of solving Einstein-Maxwell equations reduces
to solving Maxwell equations in covariant form.
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This work is organized as follows. In Section II, we derive
Maxwell equations in the cosmic dislocation spacetime. In
Section III we solve them for the electrostatic field generated
by a line of charge. We find that there is no effect of torsion
on the electric field. On the other hand curvature amplifies
it. In Section IV we calculate the magnetostatic field of a line
current in the spacetime of the cosmic dislocation, finding an
interesting effect: the peculiarities of the metric give rise to a
z-component of the field. Finally, in Section V we we present
our concluding remarks. We observe that in this paper we use
geometrical units.

II. MAXWELL EQUATIONS IN THE COSMIC
DISLOCATION SPACETIME

We start by writting Maxwell equations using differential
forms:

dF = 0 (4)

and

?d?F = J, (5)

where

F =
1
2

Fµνdxµ∧dxν = B+E∧dt (6)

is the Faraday two-form andJ is the current density one-form
given by

J =−ρdt +Jrdr +Jφdφ+Jzdz. (7)

In Eq. (6) the magnetic field is represented by the two-formB
and the electric field by the one-formE.

The Faraday two-form in terms of its components is there-
fore

F = Fφzdφ∧dz+Fzrdz∧dr +Frφdr ∧dφ
+Frt dr ∧dr +Fφtdφ∧dt +Fztdz∧dt. (8)

Eqs. (6) and (8) imply that

B = Fφzdφ∧dz+Fzrdz∧dr +Frφdr ∧dφ (9)

and

E∧dt = Frt dr ∧dt +Fφtdφ∧dt +Fztdz∧dt, (10)

which leads to

Er = Frt Eφ = Fφt Ez = Fzt, (11)

where

E≡ Erdr +Eφdφ+Ezdz. (12)

We observe that the electric field vector components
(Er ,Eφ,Ez) are related to the one-formE components
(Er ,Eφ,Ez) by the metric in the usual way contravariant and

covariant vector components are related. In the same way, the
magnetic field vector components(Br ,Bφ,Bz) are related to a
magnetic field one-formB1 components(Br ,Bφ,Bz). Never-
theless, the two-formB is related toB1 by the Hodge? oper-
ation :

?B = B1∧dt. (13)

Applying the Hodge? operator on Eq. (9) we obtain

?B =
(

α2r2 +β2

αr
Fzr +

β
αr

Frφ

)
dφ∧dt

+
(

1
αr

Frφ +
β
αr

Fzr

)
dz∧dt +

Fφz

αr
dr ∧dt. (14)

Therefore, we identify the components of the magnetic field
one-formB1

Br =
1

αr
Fφz

Bφ =
α2r2 +β2

αr
Fzr +

β
αr

Frφ (15)

Bz =
1

αr
Frφ +

β
αr

Fzr.

Now, applying the Hodge? operator on Eq. (10) we obtain

?(E∧dt) = − αrFrt dφ∧dz

−
(

1
αr

Fφt − β
αr

Fzt

)
dz∧dr (16)

−
(

α2r2 +β2

αr
Fzt− β

αr
Fφt

)
dr ∧dφ.

Finally, using Eqs. (6), (11), (14), (15) and (16), we obtain

?d?F = { 1
αr

∂Bz

∂φ
− 1

αr

∂Bφ

∂z
− ∂Er

∂t
}dr

+ { β
αr

∂Bφ

∂r
− β

αr
∂Br

∂φ
+

α2r2 +β2

αr
∂Br

∂z

− α2r2 +β2

αr
∂Bz

∂r
− ∂Eφ

∂t
}dφ

+ { 1
αr

∂Bφ

∂r
− 1

αr
∂Br

∂φ
+

β
αr

∂Br

∂z
− β

αr
∂Bz

∂r
− ∂Ez

∂t
}dz

− {1
r

∂
∂r

(rEr)+
∂

∂φ
(

1
α2r2 Eφ− β

α2r2 Ez)

+
1

α2r2

∂
∂z

[(α2r2 +β2)Ez−βEφ]}dt. (17)

Care should be taken in interpreting the contravariant com-
ponents of the fields since the metric (1) is associated to a non-
orthonormal basis(~et ,~er ,~eφ,~ez), wheregµν =~eµ ·~eν. There-
fore we need to relate the components of the electric and mag-
netic field one-forms to the respective vectors in a normalized
basis, such that in the no defect limit we recover the fields
generated by a line source in flat spacetime.The new basis
(~et̂ ,~er̂ ,~eφ̂,~eẑ) is simply obtained by

~eµ̂ =
~eµ√
gµµ

. (18)
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The components of a generic 1-formA ≡ Ardr + Aφdφ +
Azdz are related to the components of the equivalent vector
~A= Ar̂~er̂ +Aφ̂~eφ̂ +Aẑ~eẑ, expressed in the normalized (but non-
orthogornal) basis, by:

Ar = Ar̂ (19)

Aφ =
√

α2r2 +β2Aφ̂ +βAẑ (20)

Az =
β√

α2r2 +β2
Aφ̂ +Aẑ. (21)

After some algebraic manipulations we finally obtain Eq.
(5) in terms of the components of the electric, magnetic and
current density vectors

1
r

∂
∂r

(rE r̂)+
1√

α2r2 +β2

∂Eφ̂

∂φ
+

∂Eẑ

∂z
= ρ, (22)

1
αr

(
β√

α2r2 +β2

∂
∂φ
−

√
α2r2 +β2 ∂

∂z

)
Bφ̂

+
1

αr

(
∂

∂φ
−β

∂
∂z

)
Bẑ = Jr̂ +

∂Er̂

∂t
, (23)

√
(α2r2 +β2)

αr

[
∂Br̂

∂z
− ∂

∂r

(
Bẑ+

β√
α2r2 +β2

Bφ̂

)]

= Jφ̂ +
∂Eφ̂

∂t
, (24)

1
αr

[
∂
∂r

(√
α2r2 +β2Bφ̂ +βBẑ

)
− ∂Br̂

∂φ

]
= Jẑ+

∂Eẑ

∂t
. (25)

Notice that Eq. (22) corresponds to Gauss law and that Eqs.
(23 - 25) correspond to Ampère-Maxwell law.

In a similar way, Eq. (4) leads to

1
r

∂
∂r

(rBr̂)+
1√

α2r2 +β2

∂Bφ̂

∂φ
+

∂Bẑ

∂z
= 0, (26)

1
αr

(
β√

α2r2 +β2

∂
∂φ
−

√
α2r2 +β2 ∂

∂z

)
Eφ̂

+
1

αr

(
∂

∂φ
−β

∂
∂z

)
Eẑ+

∂Br̂

∂t
= 0, (27)

√
α2r2 +β2

αr

[
∂Er̂

∂z
− ∂

∂r

(
Eẑ+

β√
α2r2 +β2

Eφ̂

)]

+
∂Bφ̂

∂t
= 0, (28)

1
αr

[
∂
∂r

(√
α2r2 +β2Eφ̂ +βEẑ

)
− ∂Er̂

∂φ

]
+

∂Bẑ

∂t
= 0. (29)

Now, Eq. (26) describes the absence of magnetic monopoles
and Eqs. (27 - 29) correspond to Faraday law.

III. ELECTRIC FIELD OF THE LINE CHARGE

In this section we briefly discuss the case of a uniform line
of charge coincident with the cosmic dislocation. In this case,
the charge density is described by

ρ(r) =
λ

2πα
δ(r)

r
, (30)

whereλ is the linear charge density. The presence ofα in this
expression is due to the change in the volume element caused
by the string metric.

The symmetries of the problem suggest thatEr̂ =
Er̂(r), Eφ̂ = Eφ̂(r) andEẑ = Eẑ(r). Eqs. (27-29) imply readily
that

Eφ̂(r) = Eẑ(r) = 0 (31)

and Eq. (22) gives

Er̂(r) =
λ

2πα
1
r
. (32)

This result might be explained by a simple argument based
on the electric field lines, as follows. The process of creat-
ing the defect involves cutting out a wedge of space, which
leaves less volume for the field lines to spread through. This
increases the density of field lines therefore corresponding to
an amplification of the electric field amplitude. This should
be compared to the amplification found in the magnetostatic
field of a current-carrying cosmic string [7]).

IV. MAGNETIC FIELD OF THE LINE CURRENT

Now we treat the case where a current flows along the de-
fect. The important equations now are (23 - 25). Here the
symmetry suggests that the nonvanishing components of the
magnetic field areBφ̂ = Bφ̂(r) andBẑ = Bẑ(r). With this, in
the regionr > 0, Eqs. (24) and (25) turn into

d
dr

(
Bẑ+

β√
α2r2 +β2

Bφ̂

)
= 0 (33)

d
dr

(√
α2r2 +β2Bφ̂ +βBẑ

)
= 0. (34)

We have thus a coupled set of equations of very simple so-
lution:

Bφ̂(r) = k1

√
α2r2 +β2

α2r2 (35)

and

Bẑ(r) = k2− β
2πα2r2 , (36)

wherek1 andk2 are integration constants. In order to deter-
mine these constants we withdraw the defect by settingα = 1
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FIG. 1: φ-component of the magnetic field:¤ in flat spacetime (α =
1 andβ = 0), ◦ in the cosmic string spacetime (α = 0.5 andβ = 0),
¦ in the cosmic dislocation spacetime (α = 0.5 andβ = 1)

andβ = 0. Thus, we recover the magnetic field of a line cur-
rent in flat spacetime:

Bφ̂
α=1,β=0(r) =

I
2πr

, (37)

Bẑ
α=1,β=0(r) = 0, (38)

whereI is the electric current. Hence, we havek1 = I
2π and

k2 = 0. Substituting this into Eqs. (35) and (36), we finally
get

Bφ̂(r) =
I

2π

√
α2r2 +β2

α2r2 , (39)

Bẑ(r) =− I
2π

β
α2r2 . (40)

The coupling between the angular and thez coordinates
brings about an unexpected component of the magnetic field,
which vanishes properly in the no torsion limitβ→ 0. In Fig.
1 it is shown theφ-component of the magnetic field in a few
illustrative cases. In what follows we take a closer look at the
magnetic field lines in this torsioned space.

In order to find the integral curves (magnetic field lines) of
our vector (magnetic) field we need to solve the parametric

system below:

ṙ(t) = Br(r,φ,z)

φ̇(t) = Bφ(r,φ,z) (41)

ż(t) = Bz(r,φ,z),

wheret is a parameter. SinceBr = 0, Bφ = Bφ̂√gφφ andBz =
Bẑ (see Eq. (18)) and with Eqs. (39) and (40) we have

ṙ(t) = 0

φ̇(t) =
I

2π
1

α2r2 (42)

ż(t) = − I
2π

β
α2r2 ,

whose solution is

r(t) = r0

φ(t) =
I

2πα2r2
0

t +φ0 (43)

z(t) = − Iβ
2πα2r2

0

t +z0,

wherer0,φ0,z0 are integration constants.
It is clear that the above set of equations describes a helix.

V. CONCLUDING REMARKS

In this work we investigated the influence of the torsion
and curvature of a topological defect on electromagnetic fields
generated by a line source coinciding with the defect. Torsion
affects the magnetic field whereas curvature affects both elec-
tric and magnetic fields, but in different ways. Also, torsion
forces the magnetic field lines to spiral up along the defect
axis.
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