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A one dimensional non-equilibrium stochastic model is proposed where each site of the lattice is occupied
by a particle, which may be of type A or B. The time evolution of the model occurs through three processes:
autocatalytic generation of A and B particles and spontaneous conversion A → B. The two-parameter phase
diagram of the model is obtained in one- and two-site mean field approximations, as well as through numerical
simulations and exact solution of finite systems extrapolated to the thermodynamic limit. A continuous line
of transitions between an active and an absorbing phase is found. This critical line starts at a point where the
model is equivalent to the contact process and ends at a point which corresponds to the voter model, where two
absorbing states coexist. Thus, the critical line ends at a point where the transition is discontinuous. Estimates of
critical exponents are obtained through the simulations and finite-size-scaling extrapolations, and the crossover
between universality classes as the voter model transition is approached is studied.

I. INTRODUCTION

The phase transitions exhibited by stochastic models with
absorbing states have attracted much attention in recent years,
particularly in order to identify and understand the aspects
which determine the universality classes in those models.
Most of these models have not been solved exactly, but a va-
riety of approximations allow quite conclusive results regard-
ing their critical properties. Stochastic models are, of course,
well fitted for simulations, but closed form approximations
and other analytical approaches have also been useful in in-
vestigating their behavior [1].

One of the simplest and most studied model of this type
is the contact process (CP), which was conceived as a simple
model for the spreading of an epidemic and proven to display
a continuous transition between the absorbing and an active
state, even in one dimension [2]. Actually, it was found that
the CP is equivalent to other models such as Schlögl’s lattice
model for autocatalytic chemical reactions [3] and Reggeon
Field Theory (RFT) [4]. The CP belongs to the direct percola-
tion (DP) universality class, together with others models such
as the Ziff-Gulari-Barshad model of catalysis [5] and branch-
ing and annihilating walks with an odd offspring [6]. The DP
conjecture states that all phase transitions between an active
and an absorbing state in models with a scalar order parame-
ter, short range interactions and no conservation laws belong
to this class [7]. This conjecture was verified in all cases stud-
ied so far [8].

Here we study a generalization of the CP, with an additional
parameter, so that the CP transition point becomes a critical
line. This model is similar to the model proposed by Hin-
richsen [9] in the particular case where his parameter q is set
equal to one. Since the symmetry properties of this general-
ized model are the same of the CP, it is expected that this crit-
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ical line should belong to the DP universality class. However,
at one point of this line the model is equivalent to the zero tem-
perature Glauber model [10], also called the voter model [11],
which displays a spin inversion (or particle-hole) symmetry
and therefore belongs to another universality class (the com-
pact directed percolation (CDP) class). Thus the critical line
in the phase diagram of the generalized model starts at the CP
model and ends at the voter model, a crossover between the
two universality classes being observed.

In section II we define the model and show its equivalence
to the CP and the voter model in the appropriate limits. The
phase diagram of the model is obtained in one- and two-site
approximations in section III. In section IV, results of simula-
tions are shown which lead to numerical estimates of the crit-
ical line and of dynamic critical exponents. Other estimates
of the critical line and static critical exponents are obtained
through the exact diagonalization of the time evolution oper-
ator of the model for finite lattices, extrapolated to the ther-
modynamic limit using finite size scaling in section V. Final
comments and the conclusion may be found in section VI.

II. DEFINITION OF THE MODEL

Each one of the N sites of a one-dimensional lattice with
periodic boundary conditions are occupied by particles A
or B. No holes are allowed. Thus, the state of the system
at a given time t is described by the occupation variables
η = (η1,η2, ...,ηN), where ηi = 0 or 1 if site i is occupied
by particles B or A, respectively.

The time evolution of the system is defined by the following
Markovian rules:

1. A site i of the lattice is chosen randomly.

2. If the site is occupied by a particle B, it becomes oc-
cupied with a particle A with a transition rate equal to
pana/2, where na is the number of A particles in first
neighbor sites of i.
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pa/2

  chosen site

FIG. 1: Autocatalytic creation of a particle A at site i. Full circles
represent A particles and empty circles denote B particles.

3. If site i is occupied by a particle A, it may become a
particle B through two processes

• Spontaneously, with a transition rate pc

  chosen site

pc

FIG. 2: Example of spontaneous creation of particle B.

• Through an autocatalytic reaction, with a rate
pbnb/2, where nb is the number of B particles in
the first neighbors of site i.

  chosen site

pb/2

FIG. 3: Example of autocatalytic creation of a particle B.

We define the time step in such a way that the parameters pa,
pb, and pc, which are non-negative, obey the normalization
pa + pb + pc = 1, so that only two of them are independent.
For convenience, we will discuss the behavior of the model in
the (pa, pc) plane without loss of generality.

The probability P(η, t) to find the system in state η at time
t obeys the master equation

∂P(η, t)
∂t

= ∑
m
{wi(ηi)P(ηi, t),−wi(η)P(η, t)} (1)

where ηi corresponds to the following configuration

ηi ≡ (η1, ...,1−ηi, ...,ηN) (2)

and wi(η) is the transition rate of the model, given by

wi(η) =
λ
2
(1− γηi)∑

δ
ηi+δ +ηi, (3)

where λ = pa/(1− pa), γ = (1− pc)/pa, and the sum is over
first neighbors of site i.

The equation for the time evolution of the mean number of
A particles at site i, 〈ηi〉, may be obtained from equations (1)
and (3), being given by

d〈ηi〉
dt

=
λ
2 ∑

δ
〈ηi+δ[1− (2− γ)ηi]〉−〈ηi〉 (4)

and a homogeneous solution, that is, ρ ≡ 〈ηi〉 and φ ≡
〈ηiηi+δ〉 ∀i, is given by equation

dρ
dt

= λ[ρ− (2− γ)φ]−ρ. (5)

In principle, we are not able to solve equation (5) because
the function φ(t) is not known. We may write a differential
equation for φ(t), but in this equation three variable terms such
as 〈ηiη jηk〉 will appear, so that a infinite hierarchy of equa-
tions will be obtained. A systematic approximate solution is
given below. Although it does not provide precise results, it
still furnishes a qualitative picture of the behavior of the sys-
tem.

This model, similarly to what happens in other out of equi-
librium systems, displays absorbing states, which are such
that once they are reached, they will never be left. The evo-
lution rules of the model define the state where all sites are
occupied by B particles (ρ = 0) as absorbing. Besides this
stationary state, others may exist such that ρ = limt→∞ ρ(t) is
nonzero. Such states are called active.

It may be useful to remark that this model may be mapped
to a spin system if we describe sites occupied by A and B
particles by an Ising spin variables σi = 1 and σi = −1, re-
spectively. In these variables, the transition rate will be given
by

w↑↓i (σ) =
α
2

[
1+βσi− 1

2
(εσi +ξ)∑

δ
σi+δ

]
, (6)

where α = (pa + pb +2pc)/2,β = (pa− pb−2pc)/(pa+ pb +
2pc),ε = (pa + pb)/(pa + pb +2pc), and ξ = (pa− pb)/(pa +
pb +2pc).

Finally, this model corresponds to two known models in
particular limits. If we make pb = 0 or γ = 1 the well known
contact process is recovered [2],

w(CP)
i (η) =

λ
2
(1−ηi)∑

δ
ηi+δ +ηi. (7)

If now we take pa = pb and pc = 0 in the spin formulation
of the model, the zero temperature linear Glauber model is
recovered, also known as the voter model,

w(LGM)
i (σ) =

α
2

[
1− 1

2
σi ∑

δ
σi+δ

]
. (8)

III. MEAN FIELD SOLUTION

An approximate solution of equation (5) is obtained if we
write φ as a function of ρ. This approximation does not ac-
count for correlations and is known as the one site mean field
approximation, assuming 〈ηiη j〉 = 〈ηi〉〈η j〉, that is φ = ρ2.
Within this approximation, equation (5) may be written as

dρ
dt

= (λ−1)ρ− (2− γ)λρ2, (9)
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and the stationary solution in terms of the parameters pa and
pc is

ρ =
{

0 if pa ≤ 1/2
2pa−1

2pa+pc−1 otherwise. (10)

Therefore, in the one-site approximation the absorbing state
is separated from the active state by a continuous transition
line located at pa = 1/2 and the behavior of ρ as a function of
pa for some values of pc is shown in Fig. (4). As expected,
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pc = 0.2

FIG. 4: Density in the steady state as a function of pa for some fixed
values of pc.

as pc is increased, the density of A sites decreases, since anni-
hilation of A particles is favored. It may be shown that close
to the transition line the order parameter behaves as ρ ∼ ∆β,
∆ = (pa− 1/2) > 0, with β = 1 and, at the critical line, the
density decays as ρ ∼ t−ϕ, with ϕ = 1. These exponents are
identical to the mean field results for the contact process.

A somewhat better approximation is obtained if the set of
equations for ρ and φ is simultaneously solved. As remarked
above, an equation for φ = 〈ηiη j〉 shows mean values of prod-
ucts of three η variables. Therefore, in order to get a closed set
of two equations, these mean values should be approximated
as functions of φ and ρ. In doing so, we are neglecting higher
order correlations and this is known as the two-site mean field
approximation.

The following notation is helpful to obtain the second dif-
ferential equation of the two-site approximation. We call
ρ = P(•), where P(•) is the probability that a site is occu-
pied by an A particle and the probability to find a B particle
is P(◦) = 1−P(•). We also define the three probabilities of
the configurations of two neighboring sites, and using the re-
lations

P(◦) = P(•◦)+P(◦◦), (11)
P(•) = P(•◦)+P(••), (12)

together with the evolution rules stated above, the following

equation for P(•◦) is found

dP(◦•)
dt

=
1
2
{pa[P(◦◦•)−P(•◦•)]

+ pb[P(◦••)−P(◦•◦)]}
+ pcP(••)− 1

2
(1+ pc)P(◦•). (13)

As already mentioned the probabilities of three site clusters
appear in the equation. These will be written in terms of two-
site probabilities through the so called pair approximation

P(n1n2n3)≈ P(n1n2)P(n2n3)
P(n2)

. (14)

Within this approximation, a closed system of two equa-
tions is found

dρ
dt

= (pa− pb)u− pcρ (15)

du
dt

=
1
2

[
pa

ru−u2

1−ρ
+ pb

su−u2

ρ

]

+ pcs− 1
2
(1+ pc)u, (16)

where u≡P(•◦),r≡P(◦◦) = 1−ρ−u and s≡P(••) = ρ−u.
The first equation above corresponds to equation (5), whereas
the second is obtained from equation (13) using the pair ap-
proximation (14).

The stationary solutions for the densities are

ρ =





0 if pa < pc
a

4p2
a−4pa+pa pc+1−pc

4p2
a−4pa+2pa pc+1−pc

otherwise,
(17)

where pc
a = 1

8 (4− pc +
√

8pc + p2
c). In this approximation

the critical value of pa is a function of pc. The critical ex-
ponents, as expected, have still their mean-field values, only
non-universal parameters are different in the two-site approx-
imation as compared to the one-site calculation above. Figure
(5) shows ρ as a function of pa for some values of pc in the
two-site approximation.

It may be remarked that in the limit pc → 0 both approxima-
tions show a discontinuous transition between two absorbing
states, which happens at pa = 1/2. In this limit the model cor-
responds to a spin model where a given spin is reversed with a
probability proportional to the number of spins in first neigh-
bor sites which are in the opposite direction. This might be
called a biased voter model when pa is different from pb.

IV. SIMULATIONS

Although, as seen above, the model exhibits an active state
in part of the parameter space in the approximate solutions,
numerical simulations are useful providing some confidence
that this state is not an artifact of the approximation. To our
knowledge, for non-equilibrium models an argument similar
to the Peierls construction for equilibrium models is still not
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FIG. 5: Density as a function of pa for some values of pc, results of
the two-site approximation.

available, and therefore no systematic proof of the existence of
the active state may be given, although this was accomplished
using probabilistic arguments by Harris in his original work
on the contact process [2].

The simulation is done for discrete time, and may be de-
scribed by the following steps:

1. Initially, the system of N sites with periodic boundary
conditions is in a state with just one A particle.

2. A list of all sites occupied by A particles is stored, and
at each time step one of them is chosen randomly.

3. Once the site is chosen, a random number p uniformly
distributed in the interval [0,1] is generated, if p < pa
a B particle is replaced by an A particle in one of the
first neighbors, if possible. Otherwise, the A particle at
the chosen site will be turned into a B particle either
through the spontaneous or through the autocatalytic
process.

4. To define the process switching A to B, another random
number q is generated. If q < pc/(pb + pc) the change
is spontaneous, otherwise it will happen with a proba-
bility proportional to the number of B particles in first
neighbors of the chosen site.

5. The time interval associated with the steps above is ∆t =
1/NA, where NA is the number of the sites occupied by
A particles before the step. The process is repeated until
either a maximum time tmax is attained or the absorbing
state NA = 0 is reached.

6. Several runs are done and mean values are calculated as
a function of time.

The mean number of A particles, 〈NA〉, as a function of
time for simulations with N = 10000 sites, tmax = 100000 and
10000 repetitions is displayed in Fig. (6). The number of sites
is sufficiently high to ensure that in the simulations the cluster

of A particles is much smaller than the system, thus avoiding
finite-size effects in the time interval considered. In a region

1 10 100 1000
t

1

10

100

〈N
A
〉

pa = 0.7 e pc = 0.1
pa = 0.675 e pc = 0.1
pa = 0.6875 e pc = 0.1

FIG. 6: Results of simulations

of the (pa, pc) plane an active state is found for long times in
the simulations. Three curves are shown in Fig. (6). The con-
vex one corresponds to an active stationary state, while the
concave curve signals that the system will reach the absorb-
ing state. These two curves are separated by the third, where
a power law 〈NA〉 ∼ tθ is seen, corresponding to the critical
condition. We adopt, for all critical exponents, the notation
proposed in the review article by Hinrichsen [8].

Repeating simulations in the region (pa + pc ≤ 1), the crit-
ical line may be estimated. The results of these calculations
are shown in Fig. (7).
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FIG. 7: Phase diagram of the model, showing estimates for the tran-
sition line between absorbing and active states in the one (MF1) and
two (MF2) sites mean field approximations and simulations (S). In
the line pa + pc = 1 the model corresponds to the contact process
(CP) and the unbiased voter model (LGM) is recovered at the point
(pa = 1/2, pc = 0)

The estimate for the critical line provided by the simula-
tions display a concavity which agrees with the results of the
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the two-site approximation and, as expected, is situated above
the mean field results, which usually overestimate the active
region in the parameter space. The value of λ = pa/(1− pa) at
the critical line attains the limiting value λc = 3.2945±0.0116
as pb → 0, in good agreement with the estimated critical value
for the one-dimensional contact process λc = 3.29785(2) [12],
as may be appreciated in Fig. (8).

0 0,1 0,2 0,3 0,4 0,5
p

b

1

1,5
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2,5

3

3,5

λ c

FIG. 8: Critical values of λ = pa/(1− pa) as functions of pb. The
dashed curve is a fit of a fifth degree polynomial to the points ob-
tained in the simulations.

The simulational result for 〈NA〉 as a function of time in
the limit of the voter model (pa = 1/2, pc = 0) is displayed
in Fig. (9). One notices that the initial number of particles is
almost conserved, showing a narrow dispersion. This aspect

1 10 100 1000
t

0

1

10

〈N
A
〉

One particle
Two particles

FIG. 9: Simulational results for the mean number of A particles as a
function of time for the voter model.

may also be appreciated in the histograms shown in Fig. (10),
for (pa = 1/2, pc = 0) and (pa = 0.49, pc = 0.001), with ini-
tially one A particle. For the voter model a small dispersion is
shown around the maximum value 〈NA〉= 1, while in the other
case the maximum is shifted to the absorbing state 〈NA〉= 0
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FIG. 10: Histograms of the mean number of A particles. The upper
figure corresponds to the voter model (pa = 1/2, pc = 0) and the
other figure is for a point of the parameter space close to the voter
model (pa = 0.49, pc = 0.001) where the absorbing state 〈NA〉= 0 is
stable.

The simulations allow us to follow the dynamic evolution of
mean values that describe the model, such as the mean num-
ber of A particles 〈NA(t)〉, the probability of survival Ps(t)
that at the time t at least one particle A is present in the sys-
tem and the mean square radius R2(t) = 〈∑i i2ηi(t)〉/〈NA(t)〉.
These variables satisfy the following scaling forms at the crit-
ical point [4]:

〈NA〉(t) ∼ tθ,

Ps(t) ∼ t−δ,

R2(t) ∼ t2/z. (18)

Through scaling and hyperscaling relations, these critical ex-
ponents define all other exponents of the model, and thus their
values identify the universality class.
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FIG. 11: Dynamical critical exponents as functions of the rate pc.
The dashed lines indicate the values of these exponents for the CP.

From the simulations, the dynamic critical exponents de-
fined above were estimated as functions of the rate pc, as is
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shown in Fig. (11). For most of the values for pc, particu-
larly those close to the CP (pc ≈ 0.2327), the estimated expo-
nents are close to the values known for the CP (θ = 0.313686,
δ = 0.159464, and 2/z = 1.265226 [13]). The relative er-
rors are displayed in Fig. (12). Also, the hyperscaling rela-
tion 2d/z = 4δ + 2θ is satisfied numerically with some im-
precision, as may be seen in Fig. (13). Some systematic er-
ror seems to be present in the estimates for the mean square
radius, which propagates to the hyperscaling relation verifi-
cation. As pc → 0, however, when the voter model is ap-
proached, a departure of all estimates from the CP values is
apparent.
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FIG. 12: Relative errors of the estimates of dynamical critical expo-
nents compared to the CP values.
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FIG. 13: Verification of the hyperscaling relation for the dynamical
critical exponents.

For models with a discontinuous transition with a spin in-
version symmetry, such as the voter model, the dynamic crit-
ical exponents are given by θs = 0,δs = 1/2 e 2/zs = 1 and
the hyperscaling relation is given by δs + θs = d/zs, corre-
sponding to the compact directed percolation (CDP) univer-
sality class [8]. An analysis of the exponents in the limit
pc → 0 may be performed fitting a cubic curve to the esti-
mates, as is shown in Fig. (14) for the exponent δ. The values
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FIG. 14: Limit for pc = 0 of the dynamical exponent δ.

obtained through this procedure are δ = 0.44, θ = 0.07, and
2/z = 1.01, which are not far from the known values given
above. The variation of the estimates for critical exponents
with the parameters of the model close to pc = 0 is probably
an apparent effect, due to large fluctuations observed in the
simulations in this region, and the whole critical line, with ex-
ception of the terminal voter model point, is in the same uni-
versality class of the CP, as suggested by the DP conjecture.
This situation is quite similar to what is observed in the be-
havior of the Domany-Kinzel probabilistic cellular automaton
(DKPCA) [14], which in a line of its phase diagram corre-
sponds to the CP with discrete time and parallel update, and
also exhibits a crossover from the DP to the compact direct
percolation (CDP) universality class [15]. It is believed, al-
though to our knowledge not proven, that changing the update
process in a stochastic model may affect non-universal quan-
tities only. The point pa = 1/2, pc = 0 may be recognized as
a multicritical point, and in its neighborhood any stationary
density variable should exhibit the scaling form

g(pa−1/2, pc)∼ (pa−1/2)eg F
(

pc

[pa−1/2]φ

)
. (19)

The critical exponent associated with the density variable g,
eg, should correspond to the CDP universality class, and the
scaling function F(z) is singular at a value z0 of its argument,
which corresponds to the critical line. Thus, the critical line is
asymptotically given by pc = z0(pa−1/2)φ and the amplitude
z0 and the crossover exponent φ may be estimated through a fit
to the simulational results. Due to the large fluctuations men-
tioned above, these estimates are not very precise. The values
we obtained are z0 = 0.47±0.08 and φ = 1.80±0.03. In the
two site approximation, we found φ = 2 both for the model
described here and for the DKPCA. Although extensive sim-
ulational results for the DKPCA are reported in the literature
[16], apparently no estimate for the crossover exponent was
obtained from them.
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V. NUMERICAL DIAGONALIZATION

Another approach to study 1+1 dimensional stochastic sys-
tems is the exact solution of models with increasing numbers
of sites N followed by extrapolations to the thermodynamic
limit [8]. This is accomplished writing the master equation
(1) as

∂
∂t
|P(t)〉= Ŝ |P(t)〉, (20)

where Ŝ is the time evolution operator of the model. In the
representation in which it is diagonal, vanishing eigenvalues
µ0 = 0 correspond to stationary states of the system. For finite
systems with absorbing states, only these states are stationary,
and no active stationary state is found.

To study the transition between an active and a stationary
state, we may consider the behavior of the eigenvalue with the
second smallest absolute value Γ≡ µ1 of the operator Ŝ . This
eigenvalue is related to the quasi-stationary [17] state and will
eventually become degenerate with µ0 in the thermodynamic
limit, originating the phase transition. Figure (15) shows the
behavior of the gap Γ for some values of the size N. For a
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FIG. 15: Gap Γ as a function of pa for system sizes N = 3,4,5,6
with pc = 0.2.

fixed value of pc. the finite size scaling behavior of the gap Γ
is given by [8]

Γ = N−z f (|pa− pc
a|N1/ν⊥), (21)

where pc
a is the critical value of pa for a fixed value of pc.

Defining the quantity

YN(pa, pc) =
ln[Γ(pa, pc;N +1)/Γ(pa, pc;N−1)]

ln[(N +1)/(N−1)]
, (22)

we may estimate the critical point pc
a(N) finding the inter-

section of the curves YN and YN+1 [18]. This procedure re-
sembles the phenomenological renormalization group. The
sequence pc

a(N) of estimates for a given value of pc, with
N = 4,5, . . .M, was extrapolated to the thermodynamic limit

N →∞ using the BST algorithm [19], which even for the lim-
ited number of estimates considered lead to rather precise re-
sults. Figure (16) shows the extrapolated estimates for the
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FIG. 16: The squares are the extrapolated estimates obtained from
the numerical diagonalization results, compared with the critical
lines resulting from simulations (full line) and the two-site approxi-
mation (broken line).

critical line, compared with the results provided by the simu-
lations and the two-site approximation results. The agreement
between the simulation and the present results is apparent.
The results for the critical line close to the CP point pb = 0
were extrapolated to the CP limit using a cubic function and
the resulting value was λc = 3.3081±0.0173, which is in rea-
sonable agreement with a more precise estimate in the litera-
ture λc = 3.29785(2) [12]. We also estimate the crossover ex-
ponent φ, through a fit to the critical line in the neighborhood
of the voter model limit and it is results in φ = 2.24±0.07.

Once the extrapolated estimates for the critical line were
obtained, the critical exponents z and ξ = z− 1/ν⊥ may be
estimated using the asymptotic scaling forms

Γ(pa, pc) ∼ L−z

∂
∂pa

Γ(pa, pc) ∼ L−ξ, (23)

for a fixed value of pc and pa = pc
a, on the critical line. An

estimate of the exponents is obtained for each size of the sys-
tem, and the estimates are extrapolated to the thermodynamic
limit. Our results for these two static exponents are shown in
Fig. (17).

Again a departure of the estimates from the CP values may
be observed as pc becomes smaller. The CDP values for these
exponents are zs = 2 and ξs = 1. Unlike to what was observed
in the simulations no systematic trend to these values was ob-
served in the estimates from exact diagonalization as pc → 0.
We noticed, even considering values of N up to 15, that as pc
becomes smaller the convergence properties are poorer, and
larger sizes may be necessary to obtain better estimates in this
region. The estimates which were obtained from the simula-
tional data seem to be more reliable that the ones which follow
from the numerical diagonalization results.
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FIG. 17: Static exponents estimated through the exact diagonaliza-
tion for finite systems. The values for the CP are shown in dashed
lines.

VI. CONCLUSION

We discussed the transition between an absorbing (ρ = 0)
and an active (ρ > 0) steady states in a stochastic model of
interacting particles. This model displays a line of continuous
transition between these states starting at a point which cor-
responds to the contact process and ends at a point where the
model is equivalent to the voter model, showing a discontin-
uous transition between two absorbing states. The phase dia-
gram thus obtained is similar to what is found in a problem of
equilibrium polymerization in a grand-canonical ensemble on
an anisotropic square lattice [20], where the polymer is mod-
eled as a self-avoiding walk and the activity of a horizontal
link is equal to x and a vertical link is associated with an ac-
tivity y. A continuous transition is observed in general in the
(x,y) plane, between a non-polymerized (ρ = 0) and a poly-
merized (ρ > 0), where ρ corresponds to the fraction of lattice
sites visited by the walk. However, at x = 0 or y = 0 the walk is

one-dimensional, and a discontinuous transition is found be-
tween the non-polymerized and the fully polymerized (ρ = 1)
phases [21].

The localization of the critical line in the parameter space of
the model was found in the one- and two-site approximations,
as well as through simulations and numerical diagonalization
of the time evolution operator. The evidences obtained from
estimates of critical exponents suggest that the whole critical
line belongs to the DP universality class, and a crossover to
the CDP universality class is observed at the terminal voter
model point. From the estimates for the location of the criti-
cal line close to the voter model point the crossover exponent
φ = 1.80± 0.03 was obtained. Although the estimated value
for φ is smaller than the mean-field result φ = 2, the latter
is inside the confidence interval of the estimate, so that it is
not possible to decide if the crossover exponent has a non-
classical value. Due to the difficulties we had with the simu-
lations and the numerical diagonalization in the multicritical
region, we suspect that another approach is necessary to clear
this point. We are presently addressing this point through a
series expansion approach. Another extension of this work
would be the study of the crossover between the universality
class in the Domany-Kinzel cellular automaton, which corre-
sponds to the CP with parallel update in a subspace of its pa-
rameter space and also has a point of its phase diagram which
corresponds to the voter model.
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