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In this work we show that the Layzer theory for atomic calculations, not only provides a theoretical framework
but also a powerful computational approach if correct rules for the calculation of the screening parameters are
given. Using the virial as a model for potential energy and splitting of two-body operators as sum of one-
body operators, a neat definition of screening is given, satisfying diverse physically indispensable properties.
Many different experimental and theoretical results are reproduced with high accuracy, with no fitting procedure
involving energy levels or numerical potentials. A C ++ code and an executable file are available upon request.

I. INTRODUCTION

The use of screened hydrogenic models (SHM) for mod-
eling plasmas and surface ion collision experiments has been
well documented in recent works [1], [2]. Different methods
are available for systematic numerical calculations of atomic
parameters, based on the self-consistent Hartree-Fock proce-
dure [3] [4]. However, it is important to have an efficient an-
alytical approach, suitable for the calculation of energies of a
large number of excited states. The purpose of this article is
to give explicit formulas for the average energies of arbitrary
complex configurations, specially of medium to highly ion-
ized atoms. However, also good results for neutral and almost
neutral atoms are obtained.

The starting point is the Layzer’s formulation of the Z-
dependent theory of the many-electron atom truncated to sec-
ond order [4][5] [6]. Many authors pointed out in the past that
the screening approximation is not very useful; however, that
statement is not right provided that correct rules are given for
calculating the screening. Moreover, relativistic corrections
to the energy can be easily made and configuration interaction
effects can be properly considered. It is important to point
out that several published screening rules produce negative
ionization potentials (IP) for neutral or few ionized systems
[2] [7]. Other authors obtain the screening parameters either
in order to reproduce the IP’s calculated by Hartree-Fock [9]
[10] or by adjusting analytical potentials with numerical re-
sults [11].

In this work, no empirical adjustments are made nor neg-
ative IP’s emerge from our calculations. For the screening
parameters, we use the approach due to Kregar [12] general-
ized by one of us [13], based on the splitting of the two-body
potential energy operators into the sum of effective one-body
operators. Total binding energies, ionization potentials and
energies of complex excited configurations are in good or very
good agreement with both, theoretical and experimental val-
ues.

In the following, we use the atomic units, where the elec-
tron charge and mass and the Dirac constant are equal to one
(e = me = ~ = 1) and the energies are measured in Hartrees:
1 Ht ≡ 27.21 eV . A numerical code written in C ++ and an
executable file are available upon request.

II. A BRIEF SUMMARY OF THE THEORY

A. The Z−1 expansion

Layzer’s formulation of the Z-dependent theory of the
many-electron atom is the starting point of our work [4], [5]
[6]. The approximate non-relativistic Hamiltonian in atomic
units given by

H(N,Z) =−1
2

N

∑
i=1

(
∇2

i +
2Z
ri

)
+ ∑

i> j

1
ri j

. (1)

Introducing the new variable ρ = Zr, it can be shown that
the total non-relativistic energy can be written as the expan-
sion [4]

E(N,Z) = Z2E0 +ZE1−E2 +Z−1E3... (2)

where, exactly

E0 = 〈ψ0 |H0|ψ0〉=−1
2

N

∑
i=1

1
n2

i
(3)

and

E1 = 〈ψ0 |H1|ψ0〉 . (4)

E1 is given by the sum of the average Coulomb energy for
electron pairs {i j} (see below, Equation 10), and therefore
in terms of the Slater’s integrals Fk and Gk, evaluated with
hydrogenic wavefunctions with Z = 1 [3][14]. For non-
equivalent orbitals:

{i j}= F0(i j)−∑
k

gkGk(i j) (5)

whereas for the equivalent ones:

{ii}= F0(ii)− ∑
k>0

fkFk(ii); (6)
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the coefficients gk and fk can be found in the above cited ref-
erences.

If we restrict the expansion (2) up to E2, the energy can be
written as

E =−∑
n,l

wnl(Z−σnl)2

2n2 (7)

where wnl is the number of electrons in the n, l shell and σnl is
the corresponding screening parameter. Comparing Equations
(2) and (7), we find that the σnl’s satisfy

E1 = ∑
n,l

wnl

n2 σnl (8)

and

E2 = ∑
n,l

wnl

2n2 σ2
nl . (9)

Then, to second-order approximation in the non-relativistic
context, the average energy of a configuration is given by

Eav = −Z2

2

{
w1s +

w2s +w2p

4
+

w3s +w3p +w3d

9
+ ...

}
(10)

+Z

{
1
2 ∑

i
wi(wi−1){ii}+∑

i, j
wiw j {i j}

}
−E2

where wi is a short notation for wnili , the number of electrons
in the ni, li shell.

Comparing Equation 8 with Equation 10, we see that E1
can be calculated by two ways: in terms of the Slater integrals
Fk and Gk or in terms of the σ’s. Indeed, if we are capable
of select a good method for σ′s calculations, the two values
must be nearly equal. One of the merits of this work is the
algorithm used for this calculus.

B. The calculation and desirable properties of the screening
parameters

The concept of screening (and screened orbitals) is of old
data and it is impossible to give a short account in this pa-
per. In the past, screening parameters were obtained using
spectroscopic data, numerical calculations and theoretical ap-
proaches. A short review can be found in the paper from one
of the authors [6].

Screening parameters must have several indispensable
properties: i) it must be derived theoretically in a neat form, ii)
it must be dependent on Z and N, accounting for the contrac-
tion of the orbitals, iii) the sum given by Equation 8 must be
very nearly to the value 1

2 ∑i wi(wi− 1){ii}+ ∑i, j wiw j {i j} ;
this property is verified and it is exact for Z → ∞, when
σ → σ0 (see below, Eq. 11), iv) the corresponding values
of E2 must follow a law of the type E2 ∼ a + b/Z in order
to reproduce the non-relativistic calculations using the Cowan
´s code (see below, section Results), v) it must satisfy the Z
expansion

σ(Z) = σ0 +σ1Z−1 + ... (11)

We use the point of view introduced by Kregar generalized
by one of us, based on the virial as potential energy and the

splitting of the two-body potential energy operators into the
sum of effective one-body operators (see below Equation 12)
[12][13]. Briefly, in the zero approximation, disregarding for
a moment the exchange and sub-shell corrections, as can be
viewed in Equations 5 and 6, the average Coulomb energy of
electron pairs is (the i−th electron is equally or more strongly
bound that the j− th one)

〈
i j

∣∣∣∣
1
ri j

∣∣∣∣ i j
〉

= F0(i j) =
〈

i
∣∣∣∣
gi j

ri

∣∣∣∣ i
〉

+
〈

j
∣∣∣∣

f ji

r j

∣∣∣∣ j
〉

so that the operator 1/ri j can be written as

1/ri j = gi j/ri + f ji/r j; (12)

where gi j and f ji are the external and internal screening para-
meters, respectively. When i = j, fii = gii ≡ kii. For a given
value of r, inner screening is associated with electrons at r′≤ r,
outer screening is due to a shell of charge located at r′ > r,
adding a constant to the potential V (r). As it was shown in
the References [12] and [13], the two parameters can be ex-
pressed in simple form in terms of y = Zin j/Z jni; Zi and Z j
are the screened charge seen by each electron. A neat demon-
stration of this result can be found in reference [13].

To add the exchange and sub-shell corrections implies the
changes

gi j → gi j (1− εi j) , f ji → f ji (1− εi j)

and can be accounted for as the ratio between the second term
of the r.h.s. of Equations 5 and 6 and F0.

Then, taking into account the exchange interaction and sub-
shell effects, effective charges are given by

Zi = Z−
[
∑
j<i

qiq j f ji + ∑
j>i

qiq jgi j +(qi−1)kii

]
(13)
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TABLE 1: Center of gravity binding energies (in Ht) including relativistic corrections for ground configurations.

Element This Work Theory ([15]) Experiment This work
Theory

This work
Experiment

He 2,85 2,86 2,90 0,99 0,99
Be 14,59 14,57 14,67 1,00 0,99
Ne 128,44 128,65 129,05 0,99 1,00
Mg 200,06 199,89 200,31 1,00 1,00
Ar 528,78 528,53 529,12 1,00 1,00
Ca 680,24 679,51 680.14 1,00 1,00
Zn 1793,04 1793,84 NA∗ 0,99 −
Kr 2787,80 2787,50 NA 1,00 −
Sr 3177,06 3176,46 NA 1,00 −
Cd 5580,65 5589,78 NA 0,99 −
Xe 7423,77 7441,68 NA 0,99 −

∗NA: not available data.

where qi, q j are the occupation number of the respective sub-
shells. As (see details in [13]), in terms of y = Zin j/Z jni

gi j =
[

1
1+ y

]3+2l j

∑
k

ak

[
y

1+ y

]k

,

f ji =
[

y
1+ y

]3+2li

∑
k

bk

[
1

1+ y

]k

, (14)

a short and simple iterative procedure must be used for their
determination. The iteration can be reduced to one or two
steps if, as zero approximation, Slater-like rules are used as
starting point for Zi (see below, section 3). Explicit expres-
sions for the coefficients ak and bk can be found in reference
[13].

Both the Layzer and the Kregar formulations ensures exact
energy levels for H-like ions in the non-relativistic regime;
for He-like ions, σ0 = 5/16, as deduced for the variational
principle.

C. Relativistic corrections

From the Breit-Pauli Hamiltonian the relativistic shift oper-
ator HRS has five terms [4]:

HRS = HMC +HD1 +HD2 +HOO +HSSC

that signifies respectively: mass correction, one- and two-
body Darwin, spin-spin contact and orbit-orbit terms. Far, the
more important are the two first ones, that scale as Z4. These
energy shifts can be estimated very simple and correctly as the
sum of contributions

Erel =−α2

2 ∑
i

Z4

n3
i

(
1

li +0.5
− 0.75

ni
−δ(li,0)

)
. (15)

The remaining terms scale as α2Z3 and will be ignored in
this work. An analysis is presented in the work by Safronova
et al [2].

III. RESULTS AND COMPARISON WITH EXPERIMENTS
AND OTHER CALCULATIONS

The comparison with experiment, in order to see the
Z−dependence of experimental binding energies it is difficult,
because there are relativistic effects dependent of Z4 and Z3

[8] and higher powers of Z. Therefore, we compare in first
place our expansion with non-relativistic calculations. We
verified that the non-relativistic values from the Cowan’s code
follow a dependence of the type

E(N,Z) = Z2E0 +ZE1−E2(1+a/Z);

moreover, the Cowan values with relativistic corrections are
very similar to the results from the Dirac-Hartree-Fock values
from Huang et al. [15].

In Table 1, we show the center-of-gravity binding energies,
including relativistic corrections for ground configurations,
for atoms with closed (sub)shells. As we can see, our values
are in very good agreement both with Hartree-Fock ([3], [15])
and experimental ones (up to Z = 20, because there are not
experimental results for all elements and ionization degrees).

In Figure 1 we show the first ionization potential for the
above cited elements, jointly with experimental values. The
relation is of the order of two and better values can not be
expected. In fact, the Layzer theory is valid, in principle, for
large Z. Therefore this, the most rigorous test for our choice
of the screening evaluation, is very promissory.

In Table 2 are shown the ionization energies for the Ar
isonuclear sequence; the relative values are near one.

In Table 3, are shown the ionization energies of the Ar iso-
electronic sequence; as it is expected, the relation between our
values and the Cowan values are in excellent agreement.

In Figure 2 shows the binding energies of the internal sub-
shells for Xe; our values are compared with those from the
theory and the experiment [15]; as can be seen, the agreement
is very good.
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FIG. 1: The first ionization potentials of the elements with closed
(sub)shells. Note that in the present approach all values are posi-
tive. Better values can not be expected because the theory is valid for
higher ionization degrees.

TABLE 2: Ionization energies (in eV) for Ar isonuclear se-
quence.

Z-N+1 This work Experimental [3] This work
Experimental

1 14,72 15,76 0,93
2 27,34 27,63 0,99
3 41,20 40,74 1,01
4 56,22 59,81 0,94
5 72,34 75,02 0,96
6 89,55 91,01 0,98
7 127,75 124,32 1,03
8 147,15 143,46 1,03
9 418,49 422,45 0,99

10 480,70 478,69 1,01
11 545,47 538,96 1,01
12 612,81 618,26 0,99
13 682,70 686,11 0,99
14 755,17 755,75 0,99
15 850,34 854,78 0,99
16 918,27 918,00 1,00
17 4121,25 4120,00 1,00
18 4427,30 4426,00 1,00

TABLE 3: Ionization potentials (in eV) for the isoelectronic
sequence of Ar I.

Z This work Experimental[3] This work
Experimental

18 14,73 15,76 0,93
19 30,74 31,62 0,92
20 50,16 50,91 0,99
21 72,86 73,47 0,99
24 159,93 161,10 0,99
25 195,16 196,46 0,99
26 233,52 235,04 0,99
28 319,48 321,00 1,00
30 417,76 419,70 1,00
32 528,36 529,28 1,00
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FIG. 2: Binding energies of the internal sub-shells of Xe (Z=54).

TABLE 4: Transitions of the type Φ0Φ1− 2p−13dΦ0Φ1 for
the Xe atom compared with the values of reference[2].

N∗ This work [2] This work
[2]

10 4607,80 4647 0,992
11 4583,12 4621 0,992
12 4559,12 4595 0,992
13 4535,80 4568 0,993
14 4513,20 4542 0,994
15 4491,31 4516 0,995
16 4470,13 4490 0.996
17 4449,67 4464 0,997
18 4429,96 4438 0,998
19 4411,00 4412 1,000

∗N=10+n, being n the number of 3d electrons.

As other example of complex transitions, we show in Table
4 transitions of the type Φ0Φ1− 2p−13dΦ0Φ1 as defined in
Reference [2]: Φ0 = 1s22s22p6, Φ1 = 3dn Φ0. Both values
are within 1%, but it must be mentioned that the approach of
Safronova et al. produces very bad values (negatives!) of the
ionization energies for neutral and almost-neutral elements.

A. Calculation of terms and energy levels

The results shown up to this point allow the calculation of
the configurations average energies [3]. This may be enough
for calculating, for example, the array oscillator strength,
which is frequently used for statistical treatments of dielec-
tronic recombination and collisional excitation, in plasma
physics and astrophysical applications. For the calculation
of the multiplet oscillator strength, the terms are needed and,
consequently, the Slater integrals, Fk (i j) and Gk (i j) , which
scale with Ze f f . Thus, Fk (i j;Z) = (Z−σnl)×Fk (i j;Z = 1) ,

Gk (i j;Z) = (Z−σnl)×Gk (i j;Z = 1) . Values of these inte-
grals for Z = 1 can be found in the book by Condon-Odabasi
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TABLE 5.Scaled Slater integral G1(4s4p) for the Zn isoelectronic sequence, in cm−1.

Z Element G1(4s4p)
∣∣
our G1(4s4p)

∣∣
HFR [3] Ratio

35 Br 5+ 69636 86463 0.80
40 Zr 10+ 101611 121566 0.83
45 Rh 15+ 131118 153698 0.85
50 Sn 20+ 159552 184778 0.86
55 Cs 25+ 187504 215526 0.87
60 Nd 30+ 215079 246241 0.87
65 Tb 35+ 242547 277162 0.87
70 Yb 40+ 269801 308436 0.87
74 W 44+ 291636 333775 0.87

TABLE 6. Iteratively determined screening parameters f ji (values above diagonal) and gi j (values below diagonal) for electron pairs for
Kr-like ions, with Z → ∞. Diagonal elements (bold characters) are kii.

1s 2s 2p 3s 3p 3d 4s 4p
1s 0.3125 0.6924 0.8776 0.8095 0.9299 0.9967 0.8636 0.9539
2s 0.0258 0.3008 0.2230 0.6055 0.6466 0.7756 0.7290 0.7630
2p 0.0149 0.3668 0.3492 0.6617 0.6821 0.8452 0.7650 0.7887
3s 0.0068 0.0528 0.0471 0.2988 0.2435 0.2164 0.5512 0.5737
3p 0.0034 0.0674 0.0635 0.3121 0.3104 0.2561 0.5861 0.5914
3d 0.0002 0.0562 0.0368 0.4213 0.4066 0.3765 0.6281 0.6391
4s 0.0026 0.0189 0.0167 0.0776 0.0746 0.0678 0.2982 0.2545
4p 0.0011 0.0238 0.0223 0.0900 0.0855 0.0784 0.2889 0.2987

[14]. In particular, and as an example, G1 (4s4p;Z = 1) =
0.02444565 Ry.

Table 5 shows the values of G1 (4s4p;Z) =
0.02444565(Z−σnl) for the configuration 4s4p of Zn− like
with Z = 30− 74. These results are compared with the
relativistic Hartree-Fock approximation (HXR). It is very
important take into account that in practice, in order to give
a better accordance with experimental spectroscopy, the
theoretical Slater integrals must be multiplied by “fudge”
factors lesser than 1 [3].

B. Slater-like rules and constant values for the gi j ’s and the
f ji ’s for Z → ∞.

As stated above (see equation 11), a desirable property for
σ is that for Z → ∞, σ→ σ0. This is verified by our approach
and implies that for Z → ∞, the values of fi j and gi j trend
themselves to constant values, which we can denominate f ∞

i j
and g∞

i j. An example is given in table 6 for the particular case
of the orbitals of Kr-like ions. These values, once known, can
be stored and reliably reused either in calculations for high
ionization stages or, as input parameter to reduce the number
of iterations needed to achieve convergency in Eq. 14. For
example, using Eq. 13, σ1s = 0.4973, σ2s = 5.0253, etc.

IV. CONCLUSIONS

In this work we showed that the Layzer expansion is not
only a theoretical framework but also a very convenient quan-

titative method when a correct approach for screening para-
meter calculations is given. We select the point of view intro-
duced by Kregar, generalized by one of us, taking into account
subshell and exchange corrections. With our approach, we
always obtain positive ionization potentials, even for neutral
atoms, the most difficult test. This fact is easily understood
because the Layzer theory is an expansion valid for large Z.
In practice, for slightly ionized atoms (as low as three times),
results are very accurate accordingly with the main scope of
this work: plasma modelling and collision experiments. It
it important to point out that in the present work no fitting
procedure is used although, if we want to extend the method
for neutral and almost neutral atoms, a correction factor (very
close to 1) for the σ′s could be used. Moreover, it should be
mentioned that, although a set of f ji and gi j constants could
be used (which we have called f ∞

i j and g∞
i j), better results are

obtained if the f ji and gi j are handled as parameters. Our ap-
proach assure this property taking into account the variation
with Z and N. However, it is true that for sufficiently ionized
atoms, the use of constants provides a very good approxima-
tion, useful for plasma modeling and ion-surface collision ex-
periments [2].
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