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Quantum Uncertainty in Weakly Non-Ideal Astrophysical Plasma
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Galitskii and Yakimets showed that in dense or low temperature plasma, due to quantum uncertainty effect, the
particle distribution function over momenta acquires a power-like tail even under conditions of thermodynamic
equilibrium. We show that in weakly non-ideal plasmas, like the solar interior, both non-extensivity and quan-
tum uncertainty should be taken into account to derive equilibrium ion distribution functions and to estimate
nuclear reaction rates and solar neutrino fluxes. The order of magnitude of the deviation from the standard
Maxwell-Boltzmann distribution can be derived microscopically by considering the presence of random elec-
trical microfield in the stellar plasma. We show that such a nonextensive statistical effect can be very relevant
in many nuclear astrophysical problems.

1 Introduction
Recent progress in statistical mechanics indicates the Tsallis
non-extensive thermostatistics as the natural generalization of
the standard classical and quantum statistics when memory
effects and long-range forces are not negligible [1, 2]. The
treatment in the frame of the extensive description is based on
short-range interaction, on neglecting surface effects and on
fluctuations of thermodynamic quantities relatively too small
to be observed.

The solar core plasma represents a system of particles
that, for many reasons, has an equilibrium distribution devi-
ating very slightly from the Maxwell-Boltzmann (MB) dis-
tribution. In fact, the mean Coulomb energy is not much
smaller than the thermal kinetic energy; the Debye length is
of the order of the inter-ionic distance ai; it is not possible
to clearly separate collective and individual degrees of free-
dom; the presence of the scales of energies of the same size
produces deviations from the standard statistics [4].

In literature, a plasma is characterized by the value of the
plasma parameter Γ

Γ =
(Ze)2

a kT
, (1)

where a = n−1/3 is of the order of the interparticle average
distance (n is the average density). The plasma parameter is a
measure of the ratio of the mean (Coulomb) potential energy
and the mean kinetic (thermal) energy.

Depending on the value of the plasma parameter, we
can distinguish three regimes that are characterized by dif-
ferent effective interactions and require different theoretical
approaches.

• Γ ¿ 1. The plasma is described by the Debye-Hückel

mean-field theory as a dilute weakly interacting gas.
The screening Debye length

RD =

√
kT

4πe2
∑

i Z2
i ni

, (2)

is much greater than the average interparticle distance
a, hence there is a large number of particles in the De-
bye sphere (ND ≡ (4π/3)R3

D). Collective degrees
of freedom are present (plasma waves), but they are
weakly coupled to the individual degrees of freedom
(ions and electrons) and, therefore, do not affect their
distribution. Binary collisions through screened forces
produce the standard velocity distribution.

• Γ ≈ 0.1. The mean Coulomb energy potential is not
much smaller of the thermal kinetic energy and the
screening length RD ≈ a. It is not possible to clearly
separate individual and collective degrees of freedom.
The presence of at least two different scales of energies
of the same rough size produces deviations from the
standard statistics which describe the system in terms
of a single scale, kT .

• Γ > 1. This is a high-density/low-temperature plasma
where the Coulomb interaction and quantum effects
start to dominate and determine the structure of the sys-
tem.

In the region of plasma parameter Γ = Z2e2/(aikT ) ≈
0.1, to which the solar core plasma belongs, the Debye char-
acter of the screening is maintained but strong interactions
at distances of the order of n−1/3 (n is the particle density)
become the main interactions while involving multiple par-
ticles. The reaction time to build up screening after a hard
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collision is the inverse of the plasma frequency; the colli-
sion time is comparable to it. Therefore many collisions are
necessary before particles loose memory of the initial state
and the scattering process can not be considered Markovian,
non-extensive effects should be included [3]. Tsallis non-
extensive thermostatistics is actually a well-known tool suc-
cessfully applied to many different physical problems and can
account quite naturally of all the above mentioned features of
the solar core plasma by means of the entropic parameter q
[1, 4].

Recently, in Ref.s [5, 6] the Green’s function technique
has been used to examine tunneling reaction probability and
the rôle of the many-body effects (or quantum uncertainty
effect, following Galitskii and Yakimets [7]) on the rates of
nuclear reactions in the laboratory fusion plasma and in the
weakly non-ideal sun core. The implications of such effects
in the evaluation of the solar neutrino fluxes are discussed in
Ref. [6] (for an updated reading on the solar neutrino prob-
lem one can refer to Ref.s [8-10] and to the recent Ref. [11]
where neutrino decay solution is reexamined in the light of
the SuperKamiokande data).

In this paper we find a microscopic interpretation of the
non-extensive parameter q in the solar core (in other words,
the entity of deviation of the Maxwellian distribution of the
ionic equilibrium distribution we use in this work) in terms of
the plasma parameter and the ion correlation parameter. Af-
ter that, we study both the non-extensive (q) and the quantum
uncertainty (Q) effects [6, 7], in the calculation of the solar
reaction rates and in the solar neutrino fluxes. The two effects
should be simultaneously active if the collision frequency is
comparable with the plasma frequency; this requirement is
fulfilled in the solar core. Finally, we discuss many astro-
physical open problems that can be solved assuming that the
systems be described by generalized nonextensive statistical
distributions.

2 Electrical microfields and power law
distribution in the solar core

In this section we want to investigate about a microscopic
justification of a metastable power-law stationary distribution
inside a stellar core. At this scope, let us start by observ-
ing that the time-spatial fluctuations in the particles positions
produce specific fluctuations of the microscopic electric field
(with energy density of the order of 10−16 MeV/fm3) in a
given point of the plasma. The rates are changed respect to
the standard ones because of the presence of microfield distri-
butions (with energy density of the order of 10−16 MeV/fm3)
which modifies, under particular conditions, the ion distribu-
tion tail. The influence of microfields on the rates of nuclear
tunneling reactions has been widely studied since the early
work of Holtsmark [12] and later, for instance, in the Ref.s
[13-16].

In the solar core, the effects of random electric mi-
crofields are of crucial importance. These microfields have in
general long-time and long-range correlations, can generate
anomalous diffusion and may be decomposed in three main
components: 1) A slow varying component due to plasma

oscillations. The particles see this component as an almost
constant external mean field over several collisions. 2) A
fast random component related to the diffusive cross section
(σd ≈ 1/v); this component does not affect the distribution
that remains Maxwellian. 3) The third component is related
to a short-range two-body strong Coulomb effective interac-
tion. As we will see later, this is the component that alters the
distribution.

Let us derive the ion distribution function to be used to
calculate tunneling reactions rates in solar plasma, when an
electric microfield distribution is present. The equilibrium
distribution we are deriving differs from the MB distribution,
if particular conditions are fulfilled. In fact, the presence of
the electric microfield average energy density, 〈E2〉, modifies
the stationary solution of the Fokker-Planck equation and the
ion equilibrium distribution can be written as [17, 18]

f(v) = C exp

{
−

∫ v

0

mvdv

kT + 2
3

e2〈E2〉
xmν2

}
, (3)

where ν is the total collision frequency, x the elastic energy-
transfer coefficient between two particles of the plasma, x =
2m1m2/(m1 + m2)2, m the reduced mass, T the tempera-
ture, C the normalization constant.
Defining a critical field Ec = ν

√
3xmkT/2e2, we can see

from Eq.(3) that if E ¿ Ec the distribution is Maxwellian
whatever be the value of the frequency ν; if E À Ec and
ν is not a constant but depends on v, the distribution is a
Druyvesteyn like distribution [17]. In the solar core being
E not too larger than Ec, the distribution of Eq.(3) differs
slightly from the Maxwellian but such small deviation is quite
important in the evaluation of the nuclear rates.
The condition that ν be a function of velocity v is verified by
the fact that the elastic collision cross section is σ = σd +σ0,
where σd ∝ 1/v is the elastic diffusion cross section and σ0

is the enforced Coulomb cross section. The total frequency
ν = 〈σvn〉 satisfies the relation ν2 = ν2

d + ν2
0 without inter-

ference terms.
The expression of σ0 is due to Ichimaru [19] which developed
a strict enforcement of the Wigner-Seitz ion sphere model
yielding the elastic cross section σ0 = 2π(αa)2 where a is
the inter-particle distance, α is a one dimensional parameter
related to the probability that the nearest neighbor be at a dis-
tance R and therefore related to the pair-correlation function
g(R, t).

The explicit expression of the equilibrium distribution (3)
for the solar interior can be written as a function of the kinetic
energy εp

f(εp) = N exp
[
−ϕ

εp

kT
− δ

( εp

kT

)2
]

, (4)

where N is the normalization constant and

ϕ =
ϕ̂

1 + ϕ̂
, ϕ̂ =

9
2

x
n2(kT )2

Z2e2〈E2〉 〈σ
2
d〉 , (5)

δ =
(

3〈σ2
d〉

σ2
0

+
1

δ̂

)−1

, δ̂ = ϕ̂
σ2

0

3〈σ2
d〉

. (6)
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In solar interior ϕ ≈ 1 (ϕ̂ À 1), therefore the equilibrium
distribution function containing random microfields with col-
lision frequency depending on the velocity, is given by the
Maxwellian distribution times the factor exp[−δ(εp/kT )2].
It represents, if we recall δ as δ = (1 − q)/2, the approxi-
mation of the Tsallis distribution when q ≈ 1 [1]. It is re-
markable that such distribution has been postulated ad hoc
by Clayton more than twenty years ago in the solution of the
solar neutrino problem [20].

By means of Eq.s(4)-(6) we have established a strict con-
nection between the entity of the deviation from the MB in
the solar interior, the δ (q) parameter, and the elastic diffusion
and Coulomb cross sections. Expliciting such cross sections
in terms of the Ichimaru parameter α and the plasma parame-
ter Γ, after straightforward calculations, we obtain that, in the
small correction limit relevant to the solar core (ϕ ≈ 1), the
δ parameter can be written as

|δ| ≈ σ2
0

3〈σ2
d〉

= 12 α4 Γ2 ¿ 1 . (7)

Eq.(7) is a crucial result of this paper because it establishes
that the presence of electric microfields implies a deviation
from the MB distribution, the entity depending on the value
of the plasma parameter and the collision frequency by means
of the α parameter. As we will see, very small deviations
from the Maxwellian tail can produce strong deviations of
the reaction rates from their standard values.

Let us remark that we do not discuss the electron screen-
ing effect [21]. We can realize that at the temperature, ele-
mental densities and plasma parameter of the sun core, the
rates of the reactions could be modified of only few per cent
and even less by the screening factor f0. Its value can be
taken equal to unity because its effect on the rates is negli-
gible if compared to the depletions (or enhancements) of the
rates due to other effects (electromagnetic fluctuations in a
plasma) responsible of the equilibrium distribution function
we are considering and evaluating in this work.

3 The uncertainty quantum effect

In a weakly non-ideal plasma, like the solar core, the high
value of the collision frequency ν =< nvσ > leads to an-
other interesting effect: the distribution function over mo-
menta can acquire a power-like tail, while the distribution
over energy remains Maxwellian. This quantum tail has an
influence on the nuclear rates, but how to calculate it is not
clear in the sense that the averaging can be made over mo-
mentum or over energy.

One can assume the following procedure within a semi
classical approach: in the reaction cross section σ(E) substi-
tute the energy with εp = p2/2m and average over momen-
tum distribution rather than energy distribution. This pro-
cedure is supported by a rigorous treatment based on Green
functions technique, recently developed by Savchenko [5]. In
a medium the momentum or kinetic energy distribution has
relevance to the probability of the barrier penetration rather
than energy distribution.

Tunneling particles undergo simultaneous collisions with
other particles of the plasma maintained in thermodynami-
cal equilibrium. In free gas approximation, momentum p and
energy E of a colliding particle are independent variables not
connected by the usual dispersion relation δ(E − p2/2m).
However, for weakly non-ideal interacting particles, the fol-
lowing relation, obtained in the Born approximation colli-
sions, should be more appropriate:

δγ(E, p) =
1
π

γ(E, p)
(E − εp −∆(E, p))2 + γ(E, p)2

, (8)

where γ ≈ hν and ∆ ≈ −ΓkT/2.
Following a rigorous treatment we should use the non-

extensive approach to the Green’s function formalism, as dis-
cussed by Rajagopal, Mendel and Lenzi [22], and explicitly
introduce a generalized spectral function, in the framework of
the Tsallis statistics and then deduce the momentum distribu-
tion as an energy integral over Green functions. In fact, non-
linearity of the tunneling problem makes the rate very sensi-
ble to the behavior of Green function at high momenta. In
the framework of extensive statistics, reaction rates are faster
by many orders of magnitude compared to their values cal-
culated with the spectral function δ(εp − p2/2m), if instead
the δγ of Eq.(8) is used [5, 6]. In quasi-particle approxima-
tion real and imaginary parts of the self-energy have a very
important rôle.

In this paper, for the sake of simplicity and for a clear un-
derstanding of the physical meanings, we use a less technical
approach, whose validity in the solar core and other similar
plasmas is well verified when q ≈ 1. We follow the approach
of Galitskii and Yakimets [7], generalized by Savchenko and
collaborators [5, 6] and calculate the distribution function
over momenta as an integration of Tsallis energy distribu-
tion and the undeformed spectral density (8). Performing this
calculation, we obtain [18]

f(p) = fc(p) + C
hν kT

ε2p
exp

[
−1− q

2

( εp

kT

)2
]

, (9)

where fc(p) is the Tsallis distribution for q ≈ 1 and C is
a normalization constant. This last expression can be eas-
ily used for numerical calculations. We note that the second
term in the r.h.s. of Eq.(9) represents the correction to the
high momentum tail due to the quantum many-body effects.

4 Signals in astrophysical problems
Let us illustrate few problems where we can find signals of
the presence of deviations from the MB distribution. Their
solutions can be achieved by means of modified (or gener-
alized) rates calculated by means of deformed distributions.
Among the others, we quote A) Solar neutrino fluxes; B)
Temperature dependence of modified CNO nuclear reaction
rates and resonant fusion reactions. C) Jupiter energy pro-
duction; D) Atomic radiative processes in electron nuclear
plasmas; E) Abundance of Lithium.

For brevity we will discuss here the first two points only.
A detailed discussion of the other problems can be found in
Ref.s [18, 23].
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4.1 Nuclear reaction rates with non-extensive
and uncertainty quantum corrections

We know that a solution which coincides with a non-
extensive distribution can be obtained only if the electric mi-
crofield E is greater than a certain critical value Ec, and if the
frequency of collision depends on v. This condition is veri-
fied if the Coulomb collisional cross section, which describes
the strong part of the collision, is a constant: σ0 = 2π(αa)2
and is due to the random contribution of the electric mi-
crofield. The above assumptions do not modify the treatment
of Galitskii and Yakimets (they consider the Coulomb inter-
action, but the random part of it is not taken into account),
rather are responsible of some changements in the final rates.

The non-extensive distribution function, given by Eq.(4),
modifies the reaction rate Rq and can be written as

Rq = RM e−δγij , (10)

where RM are the Maxwellian rates, δ = (1 − q)/2, γij =
(εij

0 /kT )2, εij
0 = 5.64(ZiZj AiAj/(Ai + Aj)Tc/T )1/3, is

the most effective energy and Tc = 1.36 keV is the tempera-
ture at the center of the Sun.

If we consider only the quantum effect Q, the correction
rij to the Maxwellian rate (RQ = RMrij) can be written as
[5]

rij =
319/2

8π3/2

∑

b

hν

kT

(
mcoll

mr

)7/2
eτij

τ8
ij

, (11)

mcoll =
mrmb

mr + mb
, mr =

mimj

mi + mj
, (12)

τij = 3 (
π

2
)2/3

(
100Z2

i Z2
j

AiAj

Ai + Aj
T−1

keV

)1/3

,(13)

where mb is the mass of the background particles colliding
with tunneling particles.

Including the Tsallis non-extensive effects, the total rate
(i.e. including both the q and Q effects) is

R = Rq + RQe−δγ∗ij = RM (e−δγij + rije
−δγ∗ij ) , (14)

where γ∗ = (εQ/kT )2 and εQ is the effective energy of
the quantum correction. Considering the appropriate expres-
sion of the collision frequency ν in terms of σ0 and σd, we
can verify that approximately holds the numerical relation:
εQ ≈ 3ε0. Although the values rij calculated in Ref.[6] are
of order 108÷ 109, the factor e−δγ∗ has a large exponent and
can strongly suppress the enhancement given by rij . In fact,
the quantum uncertainty corrections calculated on the basis
of Tsallis distribution rije

−δγ∗ are of the same order of e−δγ

and even less (if δ ≈ 10−2 ÷ 10−3, as we can deduce from
Eq.(7)). Solar conditions admit small non-extensive statistics
effects in the equilibrium distribution, showing very small de-
viations in the Maxwellian tail. By using a numerical code
based on a complete evolutionary stellar model, it has been
verified that the consequence of this statement are compati-
ble to the experimental results on neutrino fluxes [24].

Let us now define the following quantities:

A =
Φ(Be7)/ΦM (Be7)

Φ(B)/ΦM (B)
, B =

Φ(B)
ΦM (B)

,

C =
Φ(Be7)

ΦM (Be7)
,

and ke7 = zkM
17 , ke,7 = y k17, where kij and kM

ij are respec-
tively the modified and Maxwellian rates; the value of the
constant z = 227 can be found, for instance, in Ref.[25].
We can take the usual time-dependent equations of the rates
with the solar luminosity constraint (as reported for instance
in Ref.[6]) to derive the steady state solutions for the elemen-
tal densities. Using the expressions of the rates of Eq.(14)
with quantum uncertainty and non-extensive corrections, the
following set of equations can be derived:

A =
C

B
=

eδ17γ∗17

r17
e−δ17γ17 ¿ r17e

−δ17γ∗17 ,
y

z

1
A

= 1 ,

nBe7

nM
Be7

=
n3

nM
3

(e−δ34γ34 + r34e
−δ34γ∗34)×

1
[1 + (e−δ17γ17 + e−δ17γ∗17)/(2z)]

.

A reasonable evaluation of α gives: α = 0.55, with Γ ∼ 0.1
we obtain q = 0.990 (δ = 0.005) for all components (see
the Conclusions for a comment on the uncertainty of these
values).

If we assume n3/nM
3 ' 3 · 10−3 (let us remark that

density is not changed alone, but all the tunneling rates are
changed consistently solving the set of the mentioned equa-
tions) we obtain

Φ(Be7)
ΦM (Be7)

=
1
50

,
Φ(B)

ΦM (B)
≈ 1

2
,

Gallium = 81 SNU , Chlorine = 2.8 SNU ,

Φ(pp) and luminosity are practically unchanged respect to
the SSM values.

The CNO rates that are strongly enhanced by the quan-
tum uncertainty effect are remarkably reduced by the factor
e−δγ∗ . We have introduced the assumption that n3 is of the
order of about 10−3 reduced respect SSM and consistent with
the set of time-dependent equations of the rates. This value is
within the constraints actually imposed by helioseismology
because in the region r/Rsun < 0.2 the value of n3 can be
submitted to a large variability [26].

4.2 Temperature dependence of modified
CNO nuclear reaction rates

The temperature dependence of CNO cycles nuclear rates is
strongly affected by the presence of nonextensive effects in
Sun like stars evolving towards white dwarfs (107 ÷ 108 K).
Small deviations (q = 0.991) from MB distribution strongly
increase the rates and can explain the presence of heavier el-
ements (Fe, Mg) in final composition of white dwarfs, con-
sistently with recent limit of the fraction of energy the Sun
produces via the CNO fusion cycle (neutrino constraints).
We obtain that [27] i) the luminosity yield of the pp chain
is slightly affected by the deformed statistics, with respect
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to the luminosity yield of the CNO cycle; ii) the nonexten-
sive CNO correction ranges from 37% to more than 53%; iii)
above T ≈ 2·107 K, the luminosity is mainly due to the CNO
cycle only, thus confirming that CNO cycle always plays a
crucial role in the stellar evolution, when the star grows hot-
ter toward the white dwarf stage. Our results are reported in
Fig. 1 and Fig. 2. In Fig. 1, we plot the dimensionless lumi-
nosity over temperature, for the pp chain and the CNO cycle.
In Fig. 2, we report the dimensionless equilibrium concentra-
tions of CNO nuclei over temperature.
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Figure 1. Log-linear plot of dimensionless luminosity over tem-
perature, for the pp chain and the CNO cycle. Dashed line, δ =
+0.0045, q = 0.991; dash-dotted line, δ = −0.0045, q = 1.009.
The vertical line shows the Sun’s temperature. All curves are nor-
malized with respect to the pp luminosity inside the Sun.
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Figure 2. Log-linear plot of dimensionless equilibrium concentra-
tions of CNO nuclei over temperature. Classical statistics has been
used. All curves are normalized with respect to the initial density
(14N)0 inside the Sun.

For δ < 0 (i.e. q > 1), we obtain a remarkable increase
of the CNO reaction rates with a more relevant contribution

to the star luminosity with respect to the one obtained in the
classical picture. Such a modification is consistent with the
recent solar neutrino constraints that fix the deformation para-
meter to the value |δ| < 0.0045. The modified CNO reaction
rates thus imply a faster evolution of stellar nuclear plasma
towards heavier elements (like Mg and Fe) at high tempera-
ture. Such a behavior can be very relevant to understand the
nature of matter in white dwarfs stars. In fact, a comparison
of current observed mass-radius determinations with the the-
oretical curves seems to confirm that the composition of most
white dwarfs is dominated by medium weight elements (car-
bon and oxygen). However, a small minority of white dwarfs
do have relatively small radii indicating the presence of iron
cores, which presents an intriguing puzzle from the point of
view of stellar evolution. A slight non-extensivity of the sys-
tem could explain the presence of heavy elements in the final
composition of white dwarf’s core.

4.3 Resonant reaction rates in astrophysical
plasma

Cussons, Langanke and Liolios [28] proposed, on the basis of
experimental measurements at energy E ∼ 2.4MeV, that the
resonant behavior of the stellar 12C+12C fusion cross section
could continue down to the astrophysical energy range.

The reduction of the resonant rate due to resonant screen-
ing correction amounts to 11 orders of magnitude at the reso-
nant energy of 400 keV, with important implications for hy-
drostatic burning in carbon white dwarfs.

We have analytically derived two first-order formulae that
can be used to express the non-extensive reaction rate as a
product of the classical reaction rate times a suitable correc-
tive factor for both narrow and wide resonances.

Concerning the fusion reactions between two medium-
weighted nuclei, for example the 12C + 12C reaction, our
non-extensive factor, which can be formally defined as fol-
lows [29]

fNE = 1 +
15
4

δ −
(

ER

kBT

)2

δ ,

gives rise to further correction beside the screening and the
potential resonant screening

F = fNE · fS · fRS , (15)

where fS and fRS account for the Debye-Hückel screening
and the resonant screening effect respectively.

We have applied our results to a physical model describ-
ing a carbon white dwarf’s plasma, with a temperature of
T = 8 · 108 K and a mass density of ρ = 2 · 109 g/cm3

(the plasma parameter is, correspondingly, Γ ' 5.6). Fur-
thermore, we have set a deformation parameter |δ| = 10−3,
regardless of its sign, and we have kept the energy of the pos-
sible resonance, ER, as a free parameter. In Fig. 3 we plot
our estimation of the effective total factor F as a function of
the resonance energy ER.
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Figure 3. Linear plot of the effective factor F , defined in
Eq.(15), against the resonance energy ER. The dash-dotted (up-
per) line refers to super-extensivity, the dashed (lower) line to sub-
extensivity, while the solid (middle) line describes the classical
(MB) result.

All the plasma enhancements due to the presence of long-
range many-body nuclear correlations and memory effects,
that can be described within the non-extensive statistics by
means of the entropic parameter q > 1(δ < 0), are in the
direction of still more increasing the effective factor F of nu-
clear rates of hydrostatic burning and white dwarfs environ-
ment.

5 Conclusions
In a weakly non-ideal plasma, like the solar interior, ions and
electrons behave like quasi-particles and, due to the quan-
tum uncertainty, momentum and energy of colliding particles
are independent variables. This many-body effect is respon-
sible of an additional power-law tail to the Maxwellian mo-
mentum equilibrium distribution, as discussed by Galitskii
and Yakimets [7], while the energy particle distribution re-
mains Maxwellian. The central and more important quantity
that enters into the quantum correction of the distribution is
the elastic collision frequency which, in these weakly non-
ideal plasmas, has a value of the same order as the collective
plasma frequency. Being such a value of collision frequency
in systems of particles with long-range interactions related
also to memory effects with long-time tails, the equilibrium
non-extensive statistics appears to be the most suitable statis-
tics to use and it can take into account, in a very natural way,
both quantum and non-extensive effects.
Savchenko [5] has shown that the rigorous procedure of av-
eraging of tunneling probability, based on Green function
technique, gives results nearly coincident with the results ob-
tained by the simple averaging. Therefore, we can show that,
by using the modified distribution function, Eq.(4), (which
corresponds to the equilibrium Tsallis distribution when de-
viations from standard statistics are small) instead of the MB
one, the strong increase of the nuclear reaction rates caused

by quantum uncertainty effects alone is greatly (or fully) re-
duced. We can confirm the validity of the Tsallis statistics to
describe weakly non-ideal plasmas such as the solar core and
of its use to calculate solar neutrino fluxes towards a closer
agreement to the experimental measurements than standard
calculations. In fact, the calculated fluxes are in good agree-
ment with the experimental results using the reaction rates of
Eq.(14) with quantum uncertainty and non-extensive correc-
tions and a 3He density (in the core) 10−3 times the value
usually taken in SSM. This figure is consistent with heliosei-
smology constraints. Finally, we have justified the entropic
parameter q (δ) of the non-extensive statistics because we
have related this quantity to the electric microfields distrib-
ution in the plasma (or explicitly, to the plasma parameter Γ
and to α, the ion correlation function). Therefore the quantity
q cannot be considered a free parameter. However, the eval-
uation of q (or δ) is not absent of some uncertainty because
the quantity α (δ depends on the fourth power of α) is still to
be deeply analyzed and evaluated, in spite of the many efforts
spent in the past on space-time correlation functions of ions
in stellar plasma.

Deviations from momentum Maxwellian distribution are
quite small for the astrophysical systems, like the Sun, and
the main properties of the stars do not change at all for these
deviations. Nevertheless, very slight deviations can sensibly
affect the evaluation of nuclear fusion rates and could be use-
ful in solving the problem, for instance, of lithium abundance
in the universe, among many other applications.
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