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On the basis of generalized classical kinetic equations, reproducing the stationary distribution of the Tsallis
nonextensive thermostatistics, we formulate two generalized Schrödinger equations which satisfy the basic as-
sumptions of the quantum mechanics under an appropriate generalization of the operator properties. Moreover,
we study the generalization of the previously introduced dynamic equations in a relativistic regime and we
apply our results to the study of the rapidity distribution in the relativistic heavy-ion collisions.

1 Introduction
Let us review some basic assumptions of the nonextensive
thermostatistics that will be useful in view of the generalized
classical and quantum dynamics we will describe.

Starting point of the Tsallis’ generalization of the
Boltzmann-Gibbs statistical mechanics is the introduction of
a q-deformed entropy functional defined, in a phase space
system, as [1]

Sq = −kB

∫
dΩ pq lnq p , (1)

where kB is the Boltzmann constant, p = p(x, v) is the phase
space probability distribution, dΩ stands for the correspond-
ing phase space volume element and lnq x = (x1−q−1)/(1−
q) is, for x > 0, the q-deformed logarithmic function. For
the real parameter q → 1, Eq.(1) reduces to the standard
Boltzmann-Gibbs entropy functional.

In the equilibrium canonical ensemble, under the con-
straints imposed by the probability normalization

∫
dΩ p = 1 , (2)

and the normalized q-mean expectation value of the energy
[2]

〈E〉q =
∫

dΩ pqH(x, v)∫
dΩ pq

, (3)

the maximum entropy principle gives the probability distrib-
ution [2, 3]

p(x, v) =
f(x, v)

Zq
, (4)

where

f(x, v) = [1− (1− q)β(H(x, v)− 〈H〉q)]1/(1−q) (5)

and
Zq =

∫
dΩ f(x, v) . (6)

Let us note that, depending from the extremization proce-
dure, in Ref.[2] the above factor β is only proportional to the
Lagrange multiplier, because of the probability distribution is
self-referential, while, in Ref.[3], β is actually the Lagrange
multiplier associated to the energy constraint.

By using the definitions in Eqs. (4) and (6) into the rela-
tion Z1−q

q =
∫

dΩ pq [3], the following identity holds [4]
∫

dΩ f(x, v) ≡
∫

dΩ fq(x, v) , (7)

and the normalized q-mean expectation value for a physical
observable A(x, v) can be expressed as

〈A〉q =
∫

dΩ fq A(x, v)∫
dΩ fq

≡ 1
Zq

∫
dΩ fq A(x, v) . (8)

Therefore, the probability distribution and the q-mean value
of an observable have the same normalization factor Zq , as in
the extensive statistical mechanics. Such a non-trivial prop-
erty does not depend on the equilibrium frame but it comes
from the normalization condition and holds at any time (if we
require that the transport equation conserves the probability
normalization or the number of particles). This observation
will play a crucial role in the following discussion.

2 From Fokker-Planck equation to
nonextensive Schrödinger equation

The linear Fokker-Planck equation in the velocity space can
be written as

∂

∂t
[f(t, v)] = − ∂

∂v

[
J(v)[f(t, v)]−D

∂

∂v
[f(t, v)]

]
. (9)
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Of course, the stationary solution of the above equation
depends from the explicit expression of the drift J and the
diffusion coefficient D. It is easy to see that if J and D de-
pend on the deformation parameter q by means the following
relation

∂Dq

∂v
− βmv

1− (1− q)βE
Dq + Jq = 0 , (10)

where E = mv2/2, the stationary solution is the power-law
Tsallis distribution function [1, 5]

fq(v) = [1− (1− q)βE]1/(1−q) . (11)

On the basis of the above observations and following the
stochastic quantization procedure, the “nonextensive” linear
Schrödinger equation can be written as

i~
∂ψ

∂t
= Ĥq ψ , (12)

where Ĥq is the q-deformed Hamiltonian

Ĥq =
Ĥ

1− (1− q) i
~Ĥt

, (13)

Ĥ is the Hamiltonian operator and we have assumed that
it contains no explicit time dependence. The right side
of Eq.(12) must be seen as a power series of the operator
(1−q)iĤt/~ for q ≈ 1. Equation (12) does not admit factor-
ized solutions but can be integrated to find the wave function
at any time tb from the state at any other time ta as follows

ψ(tb) = Ûq(tb, ta)ψ(ta) , (14)

where ta < tb and we have introduced the generalized q-
deformed time evolution operator

Ûq(tb, ta) =
[1− (1− q) i

~Ĥtb]1/(1−q)

[1− (1− q) i
~Ĥta]1/(1−q)

≡
expq

(
− i
~Ĥtb

)

expq

(
− i
~Ĥta

) . (15)

In the second equivalence we have used the definition of the
Tsallis q-deformed exponential

ex
q = [1 + (1− q)x]1/(1−q) , (16)

which satisfies the properties: eq(lnq x) = x and eq(x) ·
eq(y) = eq[x + y + (1− q)xy].

The q-deformed time evolution satisfies the fundamental
composition law. In fact, if two time translations are per-
formed successively, the corresponding operators Ûq are re-
lated by

Ûq(tb, ta) = Ûq(tb, tc) Ûq(tc, ta) , (17)

for any tc ∈ (ta, tb). It is important to observe that the oper-
ator Ûq is not a unitary operator in the common sense, how-
ever if we observe that the q-deformed exponential, defined
in Eq.(16), satisfies the following properties

ex
q e−x

2−q = 1 , (18)

eix
q (eix

2−q)
∗ = 1 ⇔ (eix

2−q)
∗ = (eix

q )−1 , (19)

it appears natural to define the q-adjoint of an operator Ôq as

〈a|Ô†
q|b〉 = 〈b|Ô2−q|a〉∗ . (20)

On the basis of the above prescription, the q-deformed time
evolution operator can be view as a q-unitary operator

Û†
q (tb, ta) = [Ûq(tb, ta)]−1 , (21)

and

[Ûq(tb, ta)]−1 = Ûq(ta, tb) . (22)

Moreover, on the basis of the definition (20) we can see that
the q-deformed Hamiltonian Ĥq is a q-hermitian operator, in
the sense that

Ĥ†
q ≡ Ĥ∗

2−q = Ĥq . (23)

The q-Schrödinger equation for Ûq can be written as

i~
∂Ûq(t, ta)

∂t
= ĤqÛq(t, ta) , (24)

i~
∂Ûq(t, ta)−1

∂t
= −Ûq(t, ta)−1Ĥq . (25)

Furthermore, the q-deformed Schrödinger equation (12) con-
serves the probability. In fact, if we define the probability
density of a single particle in a finite volume as

ρq = ψ†q ψq ≡ ψ∗2−q ψq , (26)

it is easy to show that

∂

∂t

∫
d3x ρq = 0 . (27)

Finally, we want to stress that the structure of the
Heisemberg’s correspondence principle is invariant in the q-
deformed quantum mechanics. In fact, if we define, as usual,
the Heisenberg operator ÔqH (t) as

ÔqH (t) = Ûq(t, ta)−1 Ôq(t) Ûq(t, ta) , (28)

and Ôq(t) is an arbitrary observable in the Schrödinger pic-
ture, it is easy to show that

dÔqH

dt
=

i

~
[ĤqH

, ÔqH
] +

∂ÔqH

∂t
. (29)
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3 From non-linear Fokker-Planck
equation to non-linear and nonex-
tensive Schrödinger equation

A class of anomalous diffusions are currently described
through the non-linear Fokker-Planck equation (NLFPE)

∂

∂t
[f(t, x)]µ = − ∂

∂x

[
J(x)[f(t, x)]µ −D

∂

∂x
[f(t, x)]ν

]
,

(30)
where D and J are the diffusion and drift coefficients, respec-
tively. Tsallis and Bukman [12] have shown that, for linear
drift, the time dependence solution of the above equation is a
Tsallis-like distribution with q = 1 + µ− ν. The norm of the
distribution is conserved for all times only if µ = 1, therefore
we will limit the discussion to the case ν = 2− q.

The main characteristic of anomalous diffusion is that the
mean squared displacement is not proportional to time t but
rather to some power of t. If the scaling is faster than t, we
say that the system is superdiffusive; if it slower than t, we
say that the system is subdiffusive. Often these processes are
strictly connected to memory effects and described by non-
linear evolution equations.

In this section we want to show that it is possible to intro-
duce a different generalization of the Schrödinger equation
on the basis of the above NLFPE.

Following, as before, the stochastic quantization and, for
simplicity, restricting the discussion to the free case, we ob-
tain the non-linear Schrödinger equation

i~
∂ψ

∂t
= − ~

2

2m

∂2

∂x2
ψν . (31)

The above equation appears interesting because, differently
from Eq.(12), admits a factorized solution ψ = φ(t)ϕ(x),
where φ(t) obeys to the equation

i~
dφ(t)

dt
= Eφ(t)ν , (32)

and the time independent wave function ϕ(x) can be obtained
from the ν-deformed eigenvalue equation

∂2ϕ(x)ν

∂x2
+ k2ϕ(x) = 0 , (33)

where k =
√

2mE/~2. It is easy to see that the solution of
the above equations can be written as

φ(t) =
[
1− (1− ν)i

E

~
t

]1/(1−ν)

, (34)

ϕ(x) =

[
1 +

ν − 1√
2ν(ν + 1)

ikx

]1/(1−ν)

. (35)

Analogously to the previous section, we can introduce the
q-deformed time evolution operator by means of the follow-
ing expression

ψ(tb) = Ûq(tb, ta) ψ(ta) , (36)

where

Ûq(tb, ta) = expq

(
− i

~
H

tb − ta
ψ(ta)1−ν

)

=
[
expq

(
− i

~
H

ta − tb
ψ(tb)1−ν

) ]−1

. (37)

It is also interesting to note that by using the property
(18) of the q-exponential, Ûq(tb, ta) can be written in a more
symmetric form as follows

Ûq(tb, ta) =

[
1− (1− ν) i

~Ĥ
tb−ta

ψ(ta)1−ν

1− (1− ν) i
~Ĥ

ta−tb

ψ(tb)1−ν

]1/2(1−ν)

. (38)

From the above expressions we can see that the time evo-
lution operator Ûq(tb, ta) depends explicitly from the initial
a and the final state b and not only from the time differ-
ence tb − ta. Such a behavior is motivated by the non-linear
Fokker-Planck equation (30) that implies anomalous diffu-
sion and it is related to memory effects [12]. For this reason
the composition law is not satisfied, anomalous diffusion and
memory effects imply that Ûq can not be seen as a represen-
tation of the abelian group.

Finally, we observe the properties (21) and (22) still hold
in the non-linear generalization if we assume, as before, the
adjoint operator rule of Eq.(20).

4 Nonextensive relativistic dynamics

In the previous sections we have introduced generalized clas-
sical and quantum evolution equation in the framework of
Tsallis nonextensive conditions. Because of the growing in-
terest to high energy physics applications of nonextensive
thermostatistics [6], in this Section we want to study the for-
mulation of the relativistic nonextensive kinetic equations.
Let us start defining the basic macroscopic variables in the
language of relativistic kinetic theory. Because we are go-
ing to describe a non-uniform system in the phase space, we
introduce the particle four-flow as [7, 8]

Nµ(x) =
1
Zq

∫
d3p

p0
pµ f(x, p) , (39)

and the energy-momentum flow as

Tµν(x) =
1
Zq

∫
d3p

p0
pµpν fq(x, p) , (40)

where we have set ~ = c = 1, x ≡ xµ = (t,x), p ≡
pµ = (p0,p) and p0 =

√
p2 + m2 is the relativistic energy.

The four-vector Nµ = (n, j) contains the probability density
n = n(x) (which is normalized to unity) and the probability
flow j = j(x). The energy-momentum tensor contains the
normalized q-mean expectation value of the energy density,
as well as the energy flow, the momentum and the momen-
tum flow per particle.
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In order to derive a relativistic Boltzmann equation for a
dilute system in nonextensive statistical mechanics, we con-
sider the finite volume elements ∆3x and ∆3p in the phase
space. These volume elements are large enough to contain
a very large number of particles but also small enough com-
pared to the macroscopic dimension of the system. In the
Lorentz frame, the particle fraction ∆N(x, p) in the volume
∆3x∆3p can be written as

∆N(x, p) =
N

Zq

∫

∆3x

∫

∆3p

dΩ fq(x, p) , (41)

where N is the total number of particles of the system. With
respect to the observer’s frame of reference, the above ex-
pression becomes

∆N(x, p) =
N

Zq

∫

∆3σ

∫

∆3p

d3σµ
d3p

p0
pµfq(x, p) , (42)

where d3σµ is a time-like three-surface element of a plane
space-like surface σ [9]. Requiring that the net flow through
surface ∆3σ of element ∆4x vanishes in absence of colli-
sions, we have: pµ∂µfq(x, p) = 0. While considering colli-
sions between particles, the Boltzmann equation becomes

pµ∂µfq(x, p) = Cq(x, p) . (43)

Cq(x, p) is the q-deformed collision term that, under the hy-
pothesis that only binary collisions occur in the gas, can be
expressed as

Cq(x, p) =
1
2

∫
d3p1

p0
1

d3p′

p′0
d3p′1
p′01

{
hq[f ′, f ′1]W (p′, p′1|p, p1)

−hq[f, f1]W (p, p1|p′, p′1)
}

. (44)

In the above equation, we have set W (p, p1|p′, p′1) as the
transition rate between two particle state with initial four-
momentum p and p′ and a final state with four-momenta p1

and p′1; hq[f, f1] is the correlation function related to two
particles in the same space-time position but with different
four-momenta p and p1, respectively. The factorization of
hq in two single probability distributions (uncorrelated par-
ticles at the same spatial point) is the celebrated hypothe-
sis of molecular chaos (Boltzmann’s Stosszahlansatz). Thus,
the function hq defines implicitly a generalized nonextensive
molecular chaos hypothesis.

By assuming the conservation of the energy-momentum
in the collisions (i.e. pµ + p′µ = pµ

1 + p′µ1 ) and requiring that
the correlation function hq is symmetric and always positive
(hq[f, f1] = hq[f1, f ], hq[f, f1] > 0), it is easy to show that
collision term satisfies the following property

F [ψ] =
∫

d3p

p0
ψ(x, p)Cq(x, p) = 0 , (45)

if
ψ(x, p) = a(x) + bµ(x)pµ , (46)

where a(x) and b(x) are arbitrary functions.

By choosing ψ = const. and using the Boltzmann equa-
tion (43), then Eq.(45) implies

∂

∂t

∫
dΩfq(x, p) = 0 , (47)

and this is nothing else that the conservation of the probabil-
ity normalization Zq. Otherwise, by setting ψ = bµpµ, we
have from Eq.(45)

∂νTµν(x) = 0 , (48)

which implies the energy and the momentum conservation.
Let us remark that to have conservation of the probability

normalization, energy and momentum, it is crucial that not
only the collision term Cq be explicitly deformed by means
of the function hq , but also the streaming term pµ∂µfq . This
matter of fact is a direct consequence of the nonextensive
statistical prescription of the normalized q-mean expectation
value and is not taken into account in the non-relativistic for-
mulation of Ref.[10].

The relativistic local H-theorem states that the entropy
production σq(x) = ∂µSµ

q (x) at any space-time point is
never negative.

Assuming the validity of Tsallis entropy (1), it ap-
pears natural to introduce the nonextensive four-flow entropy
Sµ

q (x) as follows

Sµ
q (x) = −k

B

∫
d3p

p0
pµfq(x, p)[lnq f(x, p)− 1] . (49)

On the basis of the above equation the entropy production can
be written as

σq(x) = −kB

∫
d3p

p0
lnq f pµ∂µfq ≡ −kBF [lnq f ] , (50)

where the second identity follows from the Boltzmann equa-
tion (43) and the definition of F [ψ] in Eq.(45). After simple
manipulations, Eq.(50) can be rewritten as

σq(x) =
kB

8

∫
d3p1

p0
1

d3p1

p0
1

d3p′

p′0
d3p1

′

p′01

(
lnq f ′ + lnq f ′1 −

lnq f + lnq f1

)
×

{
hq[f ′, f ′1]W (p′, p′1|p, p1)−

hq[f, f1]W (p, p1|p′, p′1)
}

. (51)

By assuming the detailed-balance property, we have that
the entropy production is always an increasing function, if
q > 0 and if the function hq satisfies the general condition

hq[f, f1] = hq[lnq f + lnq f1] , (52)

in addition to be symmetric and always positive.
Because the nonextensive formalism reduces to the stan-

dard Boltzmann kinetic formulation for q → 1, it appears
natural to postulate the q-generalized Boltzmann molecular
chaos hypothesis as

hq[f, f1] = eq(lnq f + lnq f1) , (53)
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where eq(x) is the Tsallis q-exponential function introduced
in Eq.(16). Let us note that a similar expression for the func-
tion hq was previously introduced in Ref.s [10] and a rigor-
ous justification of the validity of the ansatz (53) can be found
only by means of a microscopic analysis of the dynamics of
correlations in nonextensive statistics.

5 Rapidity distribution in relativistic
heavy-ion collisions

In this Section we want to show as nonextensive statistical ef-
fects can be very relevant also in the phenomenological inter-
pretation of the high-energy nuclear collisions data. In fact,
the quark-gluon plasma close to the critical temperature is a
strongly interacting system [6]. For such a system, the color-
Coulomb coupling parameter of the QGP can be defined, in
analogy to the classical plasma, as

Γ ≈ C
g2

r0 T
> 1 , (54)

where C = 4/3 or 3 is the Casimir invariant for the quarks or
gluons, respectively, αs = g2/(4π) = 0.2÷ 0.5 and r0 is the
mean particle distance r0 ' n1/3 ' 0.5 fm.

Near the phase transition, the interaction range is much
larger than Debye screening length (small number of par-
tons in Debey sphere). In fact, λD = 1/µ ≤ 0.2 fm,
if we use the non-perturbative estimate µ = 6T . The
Coulomb radius for a thermal parton with energy 3T is given
by < r >= Cg2/3T = 1 ÷ 6 fm. Therefore one obtain
< r > /λD = 5 ÷ 30. In other words, memory effects
and long–range color interactions give rise to the presence
of non–Markovian processes in the kinetic equation affecting
the thermalization process toward equilibrium as well as the
standard equilibrium distribution.

We are going to study the evolution of the rapidity distri-
bution from a macroscopic point of view by using the non-
linear relativistic Fokker-Planck equation (30) in the space
of the rapidity distribution y. We show that the observed
broad rapidity shape could be a signal of non-equilibrium
properties of the system. Let us note that a similar ap-
proach, within a linear Fokker-Planck equation, has been
previously studied in Ref.[11] by using a linear drift in the
space of the rapidity and a free parameter diffusion coeffi-
cient. With this choice, the author found a strongly viola-
tion of the fluctuation-dissipation theorem. We will see that
generalizing the Brownian motion to the relativistic kinetic
variables, the standard Einstein relation is satisfied and Tsal-
lis non-extensive statistics emerges in a natural way from the
non-linearity of the Fokker-Planck equation.

Basic assumption of our analysis is that the rapidity distri-
bution y is not appreciably influenced by transverse dynamics
which is considered in thermal equilibrium. Such hypothesis
is well confirmed by the experimental data and adopted in
many theoretical works [13, 14, 15]. A crucial rôle in the so-
lution of the above NLFPE plays the choice of the diffusion
and the drift coefficients. Such a choice influences the time
evolution of the system and its equilibrium distribution.

Since the temperature at freeze-out exceeds 100 MeV,
quantum statistical effects are negligible and the Boltzmann
approximation is usually adopted, therefore the single parti-
cle equilibrium distribution is written as

E
d3N

d3p
∝ E exp(−E/T )

≡ m⊥ cosh(y) exp(−m⊥ cosh(y)/T ) , (55)

where y is the rapidity, m⊥ =
√

m2 + p2
⊥ is the transverse

mass, T is the temperature. Imposing the validity of the Ein-
stein relation for Brownian particle, we can generalize to the
relativistic case the standard expressions of diffusion and drift
coefficients as follows [16]

D = γ T , J(y) = γ m⊥ sinh(y) ≡ γ p‖ , (56)

where p‖ is the longitudinal momentum and τ is a com-
mon constant. It is easy to see that the above coefficients
give us the Boltzmann stationary distribution (5) in the lin-
ear Fokker-Planck equation (q = ν = 1). This result can-
not be obtained if one assumes a linear drift coefficient as
in Ref.[11]. The stationary solution of the NLFPE (30) with
ν = 2 − q is a Tsallis-like distribution with the relativistic
energy E = m⊥ cosh(y). In the light of the above results,
we generalize the results of Tsallis-Bukman by searching as
a solution of the NLFPE (30) the following time dependent
Tsallis-like distribution

fq(y, m⊥, t) =
{

1− (1− q)β(t) m⊥ cosh[y − ym(t)]
}1/(1−q)

.(57)

The unknown functions β(t) = 1/T (t) and ym(t) have been
derived by means of numerical integration of Eq.(30) with
initial δ-function condition depending on the value of the ex-
perimental projectile rapidities. The rapidity distribution at
fixed time is then obtained by numerical integration over the
transverse mass m⊥ (or transverse momentum) as follows

dN

dy
(y, t) = c

∫ ∞

m

m2
⊥ cosh(y) fq(y,m⊥, t) dm⊥ , (58)

where c is the normalization constant fixed by the total num-
ber of the particles. Rapidity spectra calculated from (58)
will ultimately depend on two parameters: the “interaction”
time τ = γt and the non-extensive parameter q. Therefore,
no more free parameters are used in this analysis respect to
previous theoretical studies [14, 15].
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Figure 1. Shape of the rapidity distribution at different integration
time τint for the undeformed case (q = 1).

The obtained spectra are normalized to 164 protons and
the beam rapidity is fixed to ycm = 2.9 (in the c.m. frame)
[13]. In Fig. 1, we show the shape of the rapiditity distrib-
ution at different integration time τint of the linear Fokker-
Planck equation (q = 1). In Fig. 2, we report the time evo-
lution of the rapidity distribution corresponding to the inte-
gration of the NLFPE with q = 1.25 (the value of the q-
parameter used to fit the data).
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Figure 2. The same of Fig. 1 for q = 1.25

In Fig. 3, we show the calculated rapidity spectra com-
pared with the experimental data. The full line corresponds
to the NLFPE solution (58) at τint = 0.82 and q = 1.25;
the dashed line corresponds to the solution of the linear
case (q = 1) at τint = 1.2. Imposing the validity of the
fluctuation-dissipation theorem, it is not possible to repro-
duce the experimental rapidity shape at any time. Only in
the non-linear case (q 6= 1) exists a (finite) time for which the
obtained rapidity spectra well reproduces the broad experi-
mental shape. A value of q 6= 1 implies anomalous superdif-
fussion in the rapidity space, i.e., [y(t) − yM (t)]2 scale like
tα with α > 1 [12].

A complete description of the applicability of nonexten-
sive statistical effects to high-energy heavy ion collisions lies
out the scope of this paper. However, we want to outline that
an analysis of the transverse pion momentum spectra and the

net proton rapitity distribution measured at RHIC is under in-
vestigation.

-3 -2 -1 1 2 3
yCM

20

40

60

80

dN
�������

dy

q=1, Τ=1.2

q=1.25, Τ=0.82

Figure 3. Rapidity spectra for net proton production (p− p) in cen-
tral Pb+Pb collisions at 158A GeV/c (grey circles are data reflected
about ycm = 0) [13]. Full line corresponds to our results by using a
non-linear evolution equation (q = 1.25), dashed line corresponds
to the linear case (q = 1)

6 Conclusion
There is an increasing evidence that the generalized nonex-
tensive thermodynamics can be considered as the more ap-
propriate basis of a theoretical framework to deal with several
physical phenomena where long-range interactions, long-
range memory effects and/or fractal space-time constraints
are present. A considerable variety of physical applications
involve microscopic quantum and/or relativistic effects. The
main effort of this paper is to study an appropriate generaliza-
tion of the quantum dynamics and relativistic kinetic equation
in the framework of the Tsallis nonextensive thermostatistics.
We have introduced two kinds of generalized Schrödinger
equations which satisfy the basic assumptions of the quan-
tum mechanics under appropriate operator properties which
depend on the deformation parameter q. Furthermore, we
have studied a nonextensive generalization of the relativis-
tic Boltzmann equation and of the nonlinear Fokker-Planck
equation. The above evolution equations have been applied to
the study of the nonequilibrium rapidity distribution in rela-
tivistic heavy-ion collisions obtaining a very good agreement
with the experimental results.

References
[1] C. Tsallis, J. Stat. Phys. 52, 479 (1988). See also

http://tsallis.cat.cbpf.br/biblio.htm for a regularly updated bib-
liography on the subject.

[2] C. Tsallis, R.S. Mendes, and A.R. Plastino, Physica A 261,
534 (1998).

[3] S. Martı́nez, F. Nicolás, F. Pennini, and A. Plastino, Physica A
286, 489 (2000).



522 Brazilian Journal of Physics, vol. 35, no. 2B, June, 2005

[4] S. Martı́nez, F. Pennini, and A. Plastino, Phys. Lett. A 278, 47
(2000).

[5] L. Borland, Phys. Lett. A 245, 67 (1998).

[6] W.M. Alberico, A. Lavagno, and P. Quarati, Eur. Phys. J. C 12,
499 (2000); Nucl. Phys. A 680, 94c (2001).

[7] A. Lavagno, Phys. Lett. A 301, 13 (2002).

[8] A. Drago, A. Lavagno, and P. Quarati, Physica A 344, 472
(2004).

[9] S.R. Groot, W.A. van Leeuwen, and Ch. G. van Weert, Relati-
vistic Kinetic Theory (North-Holland, Amsterdam, 1980).

[10] J.A.S. Lima, R. Silva, and A.R. Plastino, Phys. Rev. Lett. 86,
2938 (2001).

[11] G. Wolschin, Eur. Phys. J. A 5, 85 (1999); Phys. Rev. C 69,
024906 (2004).

[12] C. Tsallis, D.J. Bukman, Phys. Rev. E 54, R2197 (1996).
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