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Quantum Probabilities versus Event Frequencies
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Quantum probability is very different from classical probability. Part of this difference is manifested in the
generic inability of stochastic processes to describe the results of multi-time measurements of quantum me-
chanical systems and the fact that the complex-valued temporal correlation functions of quantum theory have
no interpretation in terms of multi-time measurements. By analysing experiments involving measurements at
more than one moments of time, we conclude that this inequivalence must be manifested either as a failure of
the quantum logic or as the inability to define probabilities in multi-time measurements because the relative
frequencies do not converge. These alternatives can be empirically distinguished as they correspond to different
behaviours of the statistical data in multi-time measurements.

1 Introduction
Quantum mechanics is a probabilistic theory; its physical pre-
dictions are phrased in terms of probabilities. As such any ex-
periment testing the quantum mechanical predictions needs to
make some assumptions about the relation of probabilities–in
the abstract mathematical formalism of quantum mechanics–
to events that are actually being measured. For that purpose
one invariably employs the relation of probabilities to event
frequencies, namely we consider that the number provided
by the rules of quantum theory as the probability p(C) of an
event C, the number of times C is realised after n trials, di-
vided by n, when the limit n →∞ is taken. Clearly, the limit
n →∞ is not something that can be physically achieved, and
one assumes a relatively rapid convergence of the relative fre-
quencies.

More concretely, the relation of probabilities to event fre-
quencies may be formalised as follows. We assume an en-
semble of a large number of identically prepared systems.
In each system we measure some physical properties say A,
which take value in a set Ω. We then perform the measure-
ments one by one – thus constructing a sequence An of points
of Ω, where n is an integer that labels the experiments. We
next sample the measurement outcomes into subsets U of Ω.

We next define ν(U, n) as the number of times that the
result of the measurement is found in U in the first n ex-
periments. It is evident that ν(U, n) satisfies the following
properties

ν(U, n) ≥ ν(U,m), if n > m (1)
ν(U ∪ V, n) = ν(U, n) + ν(V, n), if U ∩ V = ∅ (2)

ν(Ω, n) = n (3)
ν(∅, n) = 0 (4)

One then may define the probability that an event in U
has been realised as

p(U) = lim
n→∞

ν(U, n)
n

, (5)

provided the limit exists.
The definition above of probabilities is compatible with

the mean value of the observable A as

〈A〉 = lim
n→∞

1
n

n∑

i=1

Ai, (6)

and similarly for higher moments of the observable A.
The relation of probabilities to event frequencies is not

a feature of quantum probabilities alone. It is a basic as-
sumption about the relation of the probabilistic modelling of
a physical system to the concrete experimental date one ob-
tains from the study of such systems. It is valid, whether the
probability theory that provides the model of the system is
classical or quantum.

The relation of probabilities to event frequencies is not
valid only for measurements of a single variable at one mo-
ment of time. The sample space Ω may correspond to mea-
surements of a single system at two consecutive moments of
time–for example measuring the position of a particle at time
t1 and at time t2. In that case Ω = Ωt1 × Ωt2 , where Ωti

is the sample space for the single-time measurements at time
ti. The outcome of a single measurement is a Cartesian pair
of values (At1 , At2)n, where n again labels the experimen-
tal run. From this sequence, one may construct the sequence
ν(U1, t1;U2, t2; n) the particle’s position was found within
U1 at time t1 and within U2 at time t2 in n runs of the exper-
iment, we obtain the corresponding probability by Eq. (5).
Alternatively, one may define the two-time correlation func-
tion as

〈At1At2〉 = lim
n→∞

1
n2

n∑

i=1

[(At1)i − 〈At1〉][(At2)i − 〈At2〉] (7)

In classical probability theory the multi-time probabilities
can be obtained from a stochastic process–through the defin-
ition of a probability measure dµ in the space of all histories
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A(·) of the variable A. The two-time correlation function is
then expressed as

〈At1At2〉 =
∫

dµ[A(·)]A(t1)A(t2) (8)

But an equation like (8) is in general not possible in quan-
tum theory. The statistical properties of quantum measure-
ments at more than one moments of time cannot be modelled
by a stochastic process. This is essentially a generalisation
of Bell’ s theorem: a stochastic process may at most provide
is the mean values of a single observable at all moments of
time. This is the case, for instance, for Nelson’s stochastic
mechanics [1]. The higher order correlation functions pre-
dicted by quantum theory cannot be described by a stochastic
process.

But this inequivalence between quantum theory and clas-
sical stochastic processes does not end here. The problem
is that the quantum mechanical correlation functions are, in
general, complex valued, rather than real-valued. This means
that they cannot have an interpretation in terms of event fre-
quencies as in Eq. (7), which always leads to real-valued cor-
relation functions. The question then arises about the phys-
ical interpretation of the quantum correlation functions, but
also the inverse. Suppose we perform a two-time measure-
ment on a quantum system, obtain a sequence (At1 , At2)n of
measurement outcomes and construct the two-point correla-
tion function (7) from the experimental data. How is such a
correlation function theoretically predicted from the standard
quantum mechanical formalism? It equals the quantum me-
chanical correlation function, only if the latter is real-valued.
This is only possible, if the self-adjoint operator correspond-
ing to the observable A commutes with the Hamiltonian.

2 Probabilities in two-time measure-
ments

To address the issues raised above, we consider a two-time
quantum measurement of position. We assume a particle
source, which can be controlled so finely as to emit a sin-
gle particle at a time. Two thin sheets of penetrable material
are placed one after the other in front of the particle source,
both parallel to the x-y plane. Particles leave tracks as they
cross through the sheets, and one may then determine their
x and y coordinates. We assume that the particles are pre-
pared in a state sharply concentrated in momentum around a
specific value pz in the direction normal to the detectors. For
example, the z-degrees of freedom may be represented by the
wave function

ψ(z) =
1

(2πσz)1/4
e
− z2

4σ2
z
+ipzz

, (9)

such that the spread ∆pz = 1/σz << pz . If δpz is the
momentum-transfer as the particle crosses the first detector
the relative error in the determination of the time-of-arrival is

δt
t2−t1

= δpz+∆pz

pz
, which can be made sufficiently small for

large values of pz . Consequently, the recordings of each sheet
correspond to measurements at specific moments of time t1

and t2 –predetermined by the source’s energy and the place-
ment of the sheets.

As we described earlier each time the source emits a
particle we record the readings (x1, t1;x2, t2)n; n labels
the experimental runs and the y coordinate is suppressed
for brevity. We thus construct a sequence of measure-
ment outcomes. From this one may define the sequence
νn(U1, t2; U2, t2) for each pair of regions U1 of the sheet at t1
and U2 of the sheet at t2: νn(U1, t2; U2, t2) is defined as the
number of times within the first n measurements that x1 ∈ U1

and x2 ∈ U2. From the sequence νn one may obtain the prob-
ability p(U1, t1;Un, tn) as the limit νn(U1, t1;Un, tn)/n as
n →∞.

The rules of quantum theory allow us to express this prob-
ability in terms of the projection operators P̂i that correspond
to the interval Ui of the particle’s position.

p(Ui, t1; Uj , t2) = Tr(Q̂jP̂iρ(t1)P̂i), (10)

where we denoted for simplicity

Q̂j = eiĤ(t2−t1)P̂je
−iĤ(t2−t1). (11)

Ĥ the Hamiltonian of the particle and ρ(t1) the initial density
matrix evolved until time t1.

Suppose, however, we consider the probability that the
particle first crossed through either U1 or U2 and then through
Uj . The projection operator corresponding to U1 ∪ U2 is
P̂1 + P̂2, hence the corresponding probability is

p(U1 ∪ U2, t1;Uj , t2) =

Tr(Q̂j(P̂1 + P̂2)ρ̂(t1)(P̂1 + P̂2))
= p(U1, t1; Uj , t2) + p(U2, t1; Uj , t2)
+2Re d(U1, U2, t1; Uj , t2) , (12)

where

d(U1, U2, t1;Uj , t2) = Tr(Q̂jP̂1ρ̂(t1)P̂2) (13)

is known as the decoherence functional in the consistent his-
tories approach [2, 3, 4, 5].

On the other hand the elementary properties of the fre-
quencies state that ν([U1 ∪ U2]× Uj , n) = ν(U1 × Uj , n) +
ν(U2 × Uj , n), so that in the limit n →∞

p(U1 ∪ U2, t1; Uj , t2) =
p(U1, t1; , Uj , t2) + p(U2, t1;Uj , t2) (14)

In other words, the quantum mechanical probabili-
ties are not additive (unless the consistency condition
Red(U1, U2, t1; Uj , t2) = 0 is satisfied), while the measured
frequencies of events are additive. There seems to be a con-
flict between the natural predictions of the quantum mechan-
ical formalism and the usual relation of probabilities to event
frequencies that is employed in the interpretation of experi-
mental data. To resolve this conflict we must construct prob-
abilities for the two-time measurements without abandoning
the standard rules of quantum theory. The problem is that we
do not know a priori if the probabilities p(U1, t1; U2, t2) can
actually be defined from the experimental data; namely if the
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relative frequencies converge or not. This issue has not been
settled empirically, because no precision experiment has yet
been designed with that issue in mind. The rules of quan-
tum theory may account for both eventualities. But since the
physical behaviour is different, the resulting statistical pre-
dictions will also be different.

3 First alternative: frequencies con-
verge

The first alternative involves the assumption that probabil-
ities for multi-time measurements actually exist. We must
sacrifice something if such definition is possible–for other-
wise, these probabilities could be used to construct a stochas-
tic process that reproduces all predictions of quantum theory.
It turns out that in that case one has to sacrifice the logical
structure of quantum mechanical measurements. To see this,
we must identify the erroneous assumption in the derivation
of equation (10) [6].

We start from a density matrix ρ̂ at t = 0, which is
evolved unitarily until time t1, when the particle enters the
measuring device. If we register the particle in the interval
labelled by i, the outcoming density matrix equals

P̂iρ̂(t1)P̂i

Tr(ρ̂(t1)P̂i)
. (15)

We make no commitments about the interpretation of the
measurement process. It is irrelevant whether the measur-
ing device is classical like in Copenhagen quantum theory, or
quantum mechanical and a physical process of wave packet
reduction has taken place. It also makes little difference
whether the density matrix refers to an individual system, or a
statistical ensemble, because at the end of the day our results
will be interpreted by statistical processing of the measure-
ment outcomes. What is important is that the density matrix
(15) allows us to compute the conditional probabilities that
the event j takes place at t2 provided the event i took place at
t1

Tr
(
P̂iρ̂(t1)P̂iQ̂j

)

Tr(ρ̂(t1)P̂i)
, (16)

from which the classical definition of conditional probability
leads us to expression (10) for the probability that first the
event i takes place at t1 and then the event j takes place at
time t2.

The problem lies in equation (15). If, instead of sampling
the measurement outcomes in the set, say U1, we sampled it
into U1∪U2, we would have employed the projector P̂1 + P̂2

and the out-coming density matrix would equal

(P̂1 + P̂2)ρ̂(t1)(P̂1 + P̂2)
Tr(ρ̂(t1)(P̂1 + P̂2)))

. (17)

We would then obtain the result (10), which is inconsistent
with the probabilities defined through relative frequency.

However, there is no a priori reason to use equation (15)
for the out-coming density matrix. The action of the projec-
tion P̂i depends on our choice of sampling of measurement
outcomes and not on the measurement outcome itself. What
has actually taken place is that the particle left a mark on a
specific point, and we then choose to place that point into one
or the other set. If we had a measurement at a single moment
of time, this would not have been a problem, because the den-
sity matrix (15) does not appear in any physical predictions
for single-time measurements. In a single-time measurement
the only physically relevant quantities are the probabilities
Tr(P̂iρ̂(t1)), which are additive and for this reason they do
not depend on our choice of sampling.

In the two-time measurement, however, the probabilities
turn out to be non-additive. We should therefore be very
cautious in any use of conditional probability. If we sample
events into larger sets than the ones being manifested in the
experiments, then we employ less information than what we
have actually obtained. Our use of conditional probabilities
will be, therefore, improper.

The physically correct procedure would be to incorporate
in our probabilities all information that has been obtained
from the measurements. In other words we must construct
the out-coming density matrix not on the basis of our arbi-
trary choice of sampling events, but on what we have actu-
ally observed. We should not use an arbitrary set of projec-
tors, but only the finest possible projectors compatible with
the resolution of the apparatus. If δ is the sharpest resolution
of the measuring device (say the width of the dots indicating
the particle’s position) the relevant projectors are P̂ δ

x , which
project onto the interval [x− δ

2 , x+ δ
2 ]. Using these projectors

we construct the probabilities

pδ(x1, t1;x2, t2) = (18)

Tr
(
eiĤ(t2−t1)P̂ δ

x2
e−iĤ(t2−t1)P̂ δ

x1
ρ̂(t1)P̂ δ

x1

)
,

that a dot will be found centered at the point x1 in the first
measurement and then a dot centered at the point x2 in the
second measurement.

We may then construct the probabilities for a particle to
be found within a subset Ui of R at time t1 and then within
a subset Uj at time t2. For this purpose, we split each set Ui

into mutually exclusive cells uαi of size δ, such that

∪αuαi = Ui (19)
uαi ∩ uβi = ∅, α 6= β. (20)

If we denote select points xαi ∈ uαi, for all i (xαi may
be the midpoint of uαi), we may construct the probability
pδ(Ui, t1; Uj , t2)

pδ(Ui, t1; Uj , t2) =
∑
α

∑

β

pδ(xαi, t1;xβj , t2) (21)

In the limit that the typical size of the sets Uj is much
larger than δ, we may approximate the summation by an in-
tegral,

pδ(Ui, t1|Uj , t2) =
1
δ2

∫

Ui

dx1

∫

Uj

dx2pδ(x1, t1;x2, t2), (22)
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In other words, the objects 1
δ2 pδ(Ui, t1|Uj , t2) play the role

of probability densities. The probabilities (22) are compati-
ble with the relative frequencies, because they do satisfy the
additivity criterion.

The problem is that the dependence of the probabilities
pδ(Ui, t1|Uj , t2) in Eq. (22) on the sample sets U1 and U2

is not through the projectors P̂U1 , P̂U2 . Instead, they depend
strongly on δ, which depends itself on the physical proper-
ties of the measuring device as well as the specific charac-
teristics of the initial state. This dependence is not as benign
as its counterpart in classical probability theory– the mea-
sured probabilities do not converge to some ideal value, when
the size d is taken very small. If we double our accuracy (
δ → δ/2), we do not obtain a better estimate of the probabil-
ities, but rather a very different probability assignment for all
events. To see this we estimate the difference

εδ(U1, t1|U2, t2) = pδ(U1, t1|U2, t2)− p δ
2
(U1, t1|U2, t2)

(23)
in the probabilities for two successive outcomes (Ui, Uj), for
measurement devices characterised by values δ and δ

2 for the
resolution. Employing equation (22) we may estimate [6] that
for a free particle with mass m

εδ(U1, t1; U2, t2) = c pδ(U1, t1; U2, t2) cos
(

Pδ +
b∆
δ

)
,

(24)
where c is a number of the order of unity, P is the mean mo-
mentum of the initial state, b is a function of t = t2 − t1, δ
and m. ∆ = X2 − X1 − P/mt, and X1, X2 are the center
points of the sets U1, U2 respectively. It is clear from Eq.
(24) that the difference in probabilities is of the same order
of magnitude as the probabilities themseleves for all values
of δ and there exists generically no convergence in probabil-
ities as the resolution becomes smaller. We do not get better
results when we improve the resolution, we only get different
results.

The property above of the single-time quantum probabil-
ities has as consequence that all physical measurements may
be described in terms of YES-NO experiments [7]. A typi-
cal YES-NO experiment involves a slit on a curtain placed in
front of a particle beam and a detector behind the slit mea-
suring whether the particle crossed through the slit or not.
The slit is represented mathematically by a projection opera-
tor in the range of position. After a large number of trials (n)
we may determine the probability that the particle crossed
through the slit as the number of times the detector register a
particle divided by the n. If we repeat this experiment with
different filters that correspond to the same physical prop-
erty (the associated projectors commute), we may eventually
reconstruct the probability distribution for this quantity, be-
cause the single time probabilities are additive. Hence, the
probabilities Tr(ρ̂P̂U ) determined by the YES-NO measure-
ment of position in the set U coincide with the probabilities
determined through event frequencies in the experiment of
the sheet which records the position of the particle in every
single experimental run. These two probabilities coincide
even though they refer to different experimental set-ups, be-
cause these probabilities depend on the sample set U only
through the projector P̂U . For this reason, the projection op-

erator P̂U represents the proposition that the particle’s posi-
tion has been measured to lie in the set U , irrespective of
the experimental procedure or the details of the measuring
device. From the results of the YES-NO experiments we
can unambiguously reconstruct all probabilistic information
about a physical system. One is led, therefore, to the sug-
gestion that the projection operators refer to the properties of
quantum systems –as manifested in measurements– and that
the structure of the lattice of projection operators represents
the structure of potential quantum mechanical events. One
speaks, therefore, for the quantum logic of quantum mechan-
ical measurements.

In two-time measurements the situation is different. The
measured probabilities are not functions of the single-time
projectors. They depend instead on the properties of the mea-
suring device and the way each sample set is resolved into
minimum resolution sets. One may still perform two-time
YES-NO experiments, by directing the particles through two
successive slits and placing a detector behind the second slit
to determine whether the particle has crossed through both
slits or not. The expression (10) may be employed for the
probabilities that are constructed in this experiment. But the
filter measurements do not suffice to reconstruct the two-
times probability assignment to the physical quantity they
represent; the physical probabilities for the two-time exper-
iments are given by equation (22) and not by equation (10).
There is no a priori physical reason that the probability that
the particle will cross the slit will be the same with the prob-
ability obtained from the relative frequencies of the events
within U in the latter measurement. In single-time measure-
ments they happen to be the same, but in two-time ones they
are not.

In other words, the YES-NO experiments do not capture
all physical information about two time measurements – the
physical predictions depend strongly on the properties of the
measuring devices. Hence the proposition that the particle is
measured at time t1 within the set U1 and at time t2 within
the set U2 is not universally represented by the ordered pair
of projectors (P̂U1 , P̂U2). It is only represented by these pro-
jectors when the measuring device consists of two filters –
the first with a slit corresponding to U1 and the second with a
slit corresponding to U2. There is, therefore, no universality
in the representation of measurement outcomes by pairs of
projection operators, with the consequence that the interpre-
tation of two-time measurements in terms of quantum logic
is not possible.

We may make, in fact, a stronger statement: even for
single-time measurements the interpretation in terms of quan-
tum logic is not possible. The proof involves reductio ad ab-
surdum. We represent the single-time lattice of projection
operators on a Hilbert space H as L(H) and assume that
each measurement outcome may be uniquely represented by
an element of L(H) –the converse need not be true. Two
successive measurement outcomes should, therefore, be rep-
resented by a pair of elements of L(H), hence an element
of L(H) × L(H). We have showed that this is not the case.
Hence there exists an error in our assumptions. The state-
ment that two measurement outcomes are represented by a
pair of arguments of L(H) is a consequence of basic princi-



Brazilian Journal of Physics, vol. 35, no. 2B, June, 2005 507

ples of logical reasoning. Unless we assume that a two-time
measurement does not correspond to two single-time mea-
surements we are forced to conclude that the universal repre-
sentation of measurement outcomes by projection operators
is not valid even in single-time measurements. The reason it
seems possible to do so, is because in single-time measure-
ments the interference term d of Eq. (12) always vanishes.

From the considerations above we are led to a distinction
between the two different roles of the sample sets U and the
corresponding projectors – a distinction that is not usually
made in probability theory. A sample set U may represent a
physical event, if the device can not distinguish between the
elements of U . In that case U refers to a concrete empiri-
cal fact. It may also represent a statement about the physi-
cal system, namely that an event has been found within the
set U . The latter case, however, is not a representation of
a physical fact. It is at the discretion of the experimental-
ist to choose the set U that he will use for the sampling of
its results. The physical probabilities should, therefore, be
constructed with the first interpretation of the sample sets in
mind. These probabilities then depend then on the construc-
tion of the physical apparatus and interaction with the mea-
sured system. They may also depend on the initial state of
the measured system: ultra-fast neutrons, for instance, will
leave a different trace on a recording material than slow ones.
The crucial point is that quantum theory quantum theory dis-
tinguishes sharply between physical events and propositions
about physical events, when such events refer to more than
one moments of time.

4 Second alternative: frequencies do
not converge

The conclusions above follow from the assumption that prob-
abilities can be defined for multi-time measurements, namely
that the sequences of relative frequencies converge. The
second alternative has the advantage of rescuing the logical
structure of quantum measurement, at the cost of making the
probabilistic description incomplete. Its treatment of prob-
abilities is essentially the same with that of the consistent
histories approach. That is, we assume that the relative fre-
quencies νn(U1, t1; U2, t2)/n do not in general converge as
n →∞. Hence the corresponding probabilities cannot be de-
fined from the experimental data; again the resulting theory
cannot be modelled by a classical stochastic process [8].

The hypothesis that two-times probabilities are not de-
fined is not incompatible with the successful use of prob-
ability theory for single-time measurements. Probabilities
are additive for single-time measurement – just as relative
frequencies are– and there is no problem in that case to as-
sume that the sequences νn(U1, t1; U2, t2)/n converge. The
same would be true for any sufficiently coarse-grained mea-
surements, for which the interference term vanishes. One
would be, therefore, led to the interpretation of the object
|Red(U1, Uj ; U2, Uj)| as a measure of the non-convergence
of the sequence of relative frequencies. Probabilities would,
therefore, be definable only for specific samplings of the
measurement outcomes, such that the consistency condition

Re d(U1, Uj ;U2, Uj) = 0 holds. This is, in fact, similar to
the use of probabilities by the consistent histories approach –
probabilities are defined only for sufficiently coarse-grained
partitions of the two-time sample space, such that the consis-
tency condition is satisfied.

The important point is that the distinction between these
two alternatives is not a ‘mere’ interpretational issue. The
alternatives are empirically distinguishable. What is neces-
sary for this purpose is a source of a weak particle beam
that allows one to consider one particle at a time and two
sheets that will detect (but not capture) the particles placed
in a specific distance from the source. By measuring the
particle’s trace on the sheets and constructing the sequence
(xt1 , xt2)n of measurement outcomes in each experimen-
tal run–essentially the same thing we would do if the par-
ticles were described by classical probability theory– we
may perform a statistical analysis to unambiguously deter-
mine whether the relative frequencies converge. We have
showed elsewhere that the non-convergence of frequencies
corresponding to |Red(U1, Uj ; U2, Uj)| is beyond sampling
errors in the set-up of such experiments [9]. For that purpose
it is necessary that one considers a large number of runs, so
that the statistical uncertainty in the determination of conver-
gence (which goes with 1/

√
n) becomes very small. It is

therefore to be expected that one may concretely identify the
behaviour of relative frequencies in two-time measurements.

This experiment would enable one to state concretely the
reason why quantum theory cannot be described by a classi-
cal stochastic process. If frequencies are found to converge,
we would say that the failure is at the level of logic–multi-
time quantum measurements are so highly contextual that it
is impossible to have a universal description in terms of log-
ical propositions like the one assumed in quantum logic. If
frequencies do not converge, then the failure is at the level of
probabilities. Very simply quantum theory is not only a prob-
ability theory–probabilities cannot always be defined and on
should seek for a different physical explanation for the math-
ematically natural ’measures’ of Eq. (10), or equivalently
for the complex-valued correlation functions [10]. Either
way quantum measurement theory will be faced with a chal-
lenge.The first alternative implies that (multi-time) logical in-
ferences from experimental data are typically unsound, and
thus raises a demand for a consistent interpretational scheme
for recovering some form of propositional logic for quantum
events. The second alternative is less destructive, but it re-
quires a deeper understanding of the mathematical relation-
ship between the statistics of event frequencies and the stan-
dard Hilbert space formalism. More importantly, it brings
about question of the physical origin of the ’instability’ of
quantum probabilities.
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