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In many different ways, Deformed Special Relativity (DSR) has been argued to provide an effective limit of
quantum gravity in almost-flat regime. Unfortunately, DSR is up to now plagued by many conceptual problems
(in particular how it describes macroscopic objects) which forbids a definitive physical interpretation and clear
predictions. Here we propose a consistent framework to interpret DSR. We extend the principle of relativity:
the same way that Special Relativity showed us that the definition of a reference frame requires to specify
its speed, we show that DSR implies that we must also take into account its mass. We further advocate a 5-
dimensional point of view on DSR physics and the extension of the kinematical symmetry from the Poincaré
group to the Poincaré-de Sitter group (ISO(4, 1)). This leads us to introduce the concept of a pentamomentum
and to take into account the renormalization of the DSR deformation parameter κ. This allows the resolution
of the “soccer ball problem” (definition of many-particle-states) and provides a physical interpretation of the
non-commutativity and non-associativity of the addition the relativistic quadrimomentum.

1 Introduction
Quantum Gravity is on the edge of becoming a physical the-
ory. Indeed experiments like GLAST, AUGER, and so on
should measure effects due to a Quantum Gravity regime. It
is important to describe them in a theoretical framework, and
to make predictions. Deformed Special Relativity (DSR) is
a good candidate to describe these effects[4]. It is mathe-
matically well defined, but its physics is much less under-
stood. Many interpretational problems are plaguing the the-
ory making hard to do clear predictions. In this article we
recall what are these problems and we present a new scheme
which provides a general solution. First we define the DSR
regime as a third regime to be compared with the Galilean
and the relativistic ones. We recall quickly the features and
the problems of DSR, before introducing the new framework.
It mainly consists in an extension of the Relativity principle.
This comes together with a change of symmetry and thus of
the physical objects: particles are now described by a five
components momentum and their scattering by the addition
of this new pentamomentum. Before concluding, we present
the phenomenology of the new regime. More details on this
general scheme can be found in [1].

2 The DSR regime
DSR can be considered as a hybrid between Special Rela-
tivity (SR) and General Relativity (GR), in which one has
imported some gravitational effects, like the notion of the
Schwarzschild mass, in the context of SR, i.e. while keep-
ing a flat space-time.

Let us consider a physical object O, where v, L, M are
its speed, its characteristic length, its mass (or energy, since

there are equivalent in SR) with respect to the reference frame
of the observer. General Relativity implies a non-trivial re-
lation between mass and scale coming from the notion of
black hole: the Schwarzschild mass provides a maximal mass
Mmax(L) ≡ c2L

G associated to the scale L. We want to im-
plement this maximum bound in a flat space-time, without
breaking the Poincaré symmetry, but by deforming it. This
can be interpreted as a (UV) cut-off in momentum space and
thus providing a regulator in the context of Quantum Field
Theory.

We introduced the DSR regime as describing physics
when M . Mmax(L). It is defined in contrast with the
Galilean regime, v ¿ c and M ¿ Mmax, and the rela-
tivistic regime, v ∼ c and M ¿ Mmax. Note nevertheless
that although the DSR regime is defined with no reference to
the speed of the objects, DSR effects are enhanced when ap-
proaching c. Indeed, when M → Mmax, we expect gravita-
tional effects to become highly relevant and modify the speed
of light. DSR attempts to describe such phenomena from the
point of view of an observer ignoring curvature and mapping
all physics on his usual flat space-time.

Let us emphasize that the DSR regime is naturally
reached when going down to the Planck scale. Indeed, quan-
tum effects induce mass fluctuations δM(L) = ~

cL depend-
ing on the scale of the object (Compton mass). The Planck
scale is defined when δM w Mmax, which is obviously
reached when L is the Planck length LP and therefore M be-
ing the Planck mass MP . Thus, at the Planck scale, quantum
fluctuations of mass/energy are naturally of the same order
of magnitude as the mass bound. This is similar to the well-
known argument stating that a high precision position mea-
surement at the Planck scale would directly create a black
hole, thus limiting the resolution of measurements of any ex-
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periment.
The original motivation for DSR is to postulate a univer-

sal maximal mass/energy being the Planck mass, which could
be measured by every observer in any reference frame. The
traditional view on DSR is that this universal mass scale be-
comes a universal mass bound. Our point of view is that it
does indeed make sense to postulate the universality of the
Planck mass -as a signature of the quantum gravity regime-
but it doesn’t make sense to postulate it is a bound on en-
ergy/mass. Indeed, macroscopic objects have rest energies
much larger than the Planck mass. They would hardly make
sense in a theory bounded by MP . This paradox is usually
referred in the DSR literature as the soccer ball problem.
What appears in our simple presentation is that a DSR theory
should naturally include a description of the renormalization
of scales and explain how the bound on energy/mass is renor-
malized with the scale L. Assuming that general relativity
is exactly valid down to the Planck scale, we expect that the
mass bound get resized linearly with the length scale L as
expressed above.

Let us consider an observer with resolution the Planck
length. He sees the space-time as made of cells of size LP :
the maximal mass κ of each object/cell is the Planck mass
MP = ~

cLP
. Now consider an observer with resolution twice

the Planck length. He will see cells of size 2LP and the max-
imal mass κ should be renormalized to 2MP . We will prove
that DSR induces such a renormalisation. More generally, an
object of length scale L in LP units will be described in DSR
with a maximal mass κ ∼ ~

cLP

L
LP

. Then it is clear that the
classical regime of DSR is when κ →∞, i.e. L À LP .

Let us compare DSR with SR: SR introduces a univer-
sal speed c which becomes a universal speed bound for all
systems, while the DSR deformation parameter κ depends on
the system. The situation is in fact a bit more subtle. On one
hand, SR can be seen as introducing a maximal (Galilean)
momentum mc (while the true relativistic momentum re-
mains unbounded) or a minimal energy mc2 (the rest energy),
which actually depend on the system (through its mass). On
the other hand, DSR can be seen as introducing a universal
length unit LP and this universal maximal resolution is inde-
pendent from the observer or the system under consideration
and needs to be distinguished from the concept of the mass
bound.

In this new DSR regime, we expect new physical features
to arise. In Special Relativity, reference frames are abstract
and don’t really correspond to physical objects: reference
frames are described through their (relative) speeds with no
reference to their mass. In GR, the mass of observers and ref-
erence frames becomes relevant due to the gravitational in-
teraction. In the (non relativistic) quantum regime, reference
frames can be quantum, i.e. constituted by many particles or
only few. It turns out that the mass of a quantum reference
frame is highly relevant when dealing with the definition of
momenta under changes of reference frame[2]. Or course,
these quantum effects disappear for macroscopic reference
frames when the mass of the reference frame is very big with
respect to the system. In the DSR regime where we take into
account both gravity and quantum effects, it is then natural
to assume that the mass of reference frames should be rele-

vant. In this sense one should modify the Relativity principle
of Special Relativity to take into account this mass. Indeed,
we will see that changes of reference frames in DSR are not
described anymore by a relative speed but by a relative mo-
mentum.

Finally, associated to the extra-information of a maximal
mass, DSR needs an extended symmetry as well. This is sim-
ilar to the shift from the Galilean regime and the relativis-
tic regime when we go from the Galilean symmetry group
ISO(3)×R to the Poincaré group ISO(3, 1). To a new sym-
metry is associated new physical objects, and we will see that
DSR is more easily expressed in terms of a pentamomentum
which takes into account the mass bound κ of the system.

3 DSR in a seedshell
In this section we review the basics of DSR and summarize
the important problems that have been plaguing the theory.
Note that the construction is very similar to the construction
of Special Relativity from a deformation of the Galilean point
of view [3]. For the most recent updates on DSR, we refer to
the lectures by Kowalski-Glikman, or Amelino-Camelia [4].

The first occurrence of a DSR theory is rather old and now
a well-known example of non-commutative geometry. In an
attempt to naturally regularize Quantum Field Theory, Snyder
introduced in 1947 a theory which incorporates a cut-off in
momentum space without breaking the Lorentz symmetry[5].
He showed that by starting with a non-trivial momenta space,
the de Sitter space, one could retain the Lorentz symmetry,
at the price of getting a non-commutative space-time. He
considers the momentum as an element of the curved space
SO(4, 1)/SO(3, 1), which can be parameterized using the
five dimensional Minkowski space coordinates πA,

−κ2 = +π2
0 − (π2

1 + π2
2 + π2

3 + π2
4) = πµπµ − π2

4 . (1)

κ is a parameter with dimension of a mass. π4 is the fifth
direction left invariant under the action of the Lorentz sub-
group. SO(4, 1) acts naturally on the coset space and the
Lorentz subgroup generated by the Jµν’s acts in the regu-
lar way on the five-dimensional Minkowski coordinates πA,
leaving the fifth direction π4 invariant:

[Mi, πj ] = iεijkπk, [Mi, π0] = [Mi, π4] = 0,
[Ni, πj ] = δijπ0, [Ni, π0] = iπi, [Ni, π4] = 0,

(2)
where we respectively noted as usual Mi = εijkJjk, Ni =
J0i the rotations and the boosts. The four remaining gener-
ators of SO(4, 1), which we call the dS boosts, describe the
translations on the de Sitter momentum space.

This deformation of the momentum space is essentially
a map from R4 to the de Sitter space. It is to be compared
with Special Relativity (SR) as arising as a deformation of
the space of speeds, the space of speeds R3 being sent onto
the hyperboloid SO(3, 1)/SO(3). There is therefore a strong
analogy between the SR case and the Snyder approach to
DSR.

Space-time is now reconstructed as the tangent space of
the de Sitter momentum space and the coordinates are defined
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as the (non-commuting) dS boost generators:

(Xi, X0) = i ~cκ (J4i,
1
cJ40),

[Xi, Xj ] = i ~2
(cκ)2 Jij .

(3)

The usual relativistic 4-momentum is defined as a choice of
coordinate system on de Sitter. Snyder’s choice is pµ = cκπµ

π4

and leads to deformed commutators between position and
momentum:

[Xi, pj ] = i~
(
δij + 1

(cκ)2 pipj

)
. (4)

The topic of implementing a maximum quantity with
a mass/energy/momentum dimension in a Lorentz invariant
setting was then left aside for many years until the phe-
nomenology of both Quantum Gravity and String theory
prompted a new interest in the subject, first from the quantum
group point of view [6] and then from a more phenomenolog-
ical point of view [7].

From the algebraic point of view, the challenge was to
introduce a maximal (energy) quantity consistently with the
Poincaré symmetry. Keeping the generic structure of the
Poincaré Lie algebra and allowing the deformation of the ac-
tion of boosts on translations (momenta) while keeping the
Lorentz subalgebra untouched, it is possible to show that the
set of possible deformations of Poincaré is given by the set
of solutions of a differential equation. The different solutions
provide different sorts of deformations; some bound the en-
ergy, others only the 3d momentum, or the rest mass (like
Snyder’s). Later on, Kowalski-Glikman noticed then that in
fact all these algebraic deformations can be geometrically un-
derstood as different choices of coordinate system on the de
Sitter space[8] or equivalently as different choices of section
for the homogeneous space SO(4, 1)/SO(3, 1). This impor-
tant remark made the link between the quantum group ap-
proach and Snyder’s original approach. It is important to keep
in mind that , by construction, the bounds that are introduced
according to the chosen DSR are covariant, i.e. preserved un-
der the Lorentz transformations. There is no breaking of the
Lorentz symmetry.

In this algebraic framework, space-time is then usually re-
constructed by duality from the momentum space through the
Heisenberg double. More generally, to recover space-time in
a DSR theory is nevertheless still an issue as there are dif-
ferent (more or less operational) inequivalent ways to think
about the space-time in a non-commutative geometry setting.
This is only one among a few deep interpretational problems
in DSR, to which we propose solutions:

• Multitude of deformations: The first question which
comes up when looking at the definition of DSR is
whether all the different deformations are physically
equivalent or not: is there one whichis preferred for
physics or does Nature make no difference between
them? This is essential as each deformation singles out
a particular new dispersion relation and new conserva-
tion laws.

From the algebraic point of view it seems that only
one deformation should be physical, and experiments
should pick up the only true one. On the other hand,

from the geometric point of view, one would be in-
clined to say that all coordinate systems are equivalent
and thus all the deformations should be equivalent.

While these two viewpoints clash, we propose to use
the Relativity principle to understand the precise math-
ematical role of the deformations and check their phys-
ical consistency.

• Non-commutativity (spectator problem) and non-
associativity?
To add momenta, i.e. to build many body systems, one
usually considers the coproduct associated to the alge-
bra of symmetries. For example in the two particles
case, the scattering for the undeformed Poincaré is de-
scribed by the trivial coproduct:

∆P = 1⊗ P + P ⊗ 1,

which gives the usual addition p(1) + p(2) when ap-
plied on a two particles states |1, 2〉. For most of
the DSR deformations, the associated coproduct is not
(co)commutative. The non-commutativity naturally in-
duces non-local effects such as the energy of the rest of
the universe becoming relevant to the scattering of two
particles; this is the “spectator problem”.

Furthermore, most versions of the coproduct are not
even (co)associative and thus don’t correspond to
quantum group like deformations. As an example one
can cite the proposal by Magueijo-Smolin[9] who pro-
pose a commutative but non-associative coproduct as
an attempt to solve the soccer ball problem (see below).

It is true that non-commutativity and non-associativity
of the law addition of momenta makes very hard
the physical interpretation of physical many-particle
states. Our proposal is to interpret this coproduct of
the deformed Poincaré group as defining composition
of momenta for reference frames. The addition of mo-
menta for many-particle states will be later defined
with the DSR pentamomentum πA. This is to be com-
pared with the situation in SR: the co-product on the
hyperboloid defines the law of composition of speeds
for reference frames, while the addition of momenta
for scattering is the simple commutative and associa-
tive addition of the relativistic quadri-momentum.

• The soccer ball problem: The goal to DSR is to in-
troduce a bound in a way which is still compatible
the symmetry. The traditional view is to assume that
the energy bound κ is constant and universal, and to
set it to the Planck energy EP . More precisely, as-
suming that the co-product of the deformed algebra
gives the scattering rule and describes how to build
the many-particle states, then we always have the same
mass/energy bound for all (many-particle) states. In
particular, even macroscopic objects, with rest mass
much larger than the Planck mass, should respect the
same energy bound κ and satisfy the corresponding de-
formed dispersion relation. This is obviously wrong.
Amelino-Camelia coined this problem the soccer ball
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problem. The issue addressed here is more generally
how to derive the classical limit of DSR which should
describe the classical world with undeformed disper-
sion relation.

The main idea to solve this problem is to propose that
κ gets rescaled with the number of components of the
system. In this sense this is not a constant like the
speed of light. Magueijo and Smolin constructed by
hand such a scheme[9]: they considered DSR as arising
from a non-linear representation of the Lorentz group
and introduced by hand in the coproduct a rescaling
of the deformation parameter κ. If the intuitive physi-
cal origin of this proposition is clear -a renormalization
group picture- the resulting mathematical setting is dif-
ferent than the quantum group approach (or Snyder’s)
and deserves therefore a better understanding. Here,
we provide solid grounds for the renormalisation of κ
introducing a natural scattering rule (on the pentamo-
mentum) and showing its compatibility with the Rela-
tivity principle.

An important point when thinking of DSR physics is that
DSR is very likely an effective description of 4d Quantum
Gravity (QG) on a flat background [11, 12]. Indeed, although
the theory initially started as a mathematical trick to regu-
larize Quantum Field Theory, many arguments show it as a
possible manifestation of QG. For example, the algebra of
observables for one particle in 3d quantum gravity is given
by a DSR algebra [10].

Here, we attempt to provide DSR with consistent physical
foundations and embed it in a clear physical setting, putting
the stress on the Relativity principle. Our study, clearly dis-
tinguishing the composition of reference frames and the scat-
tering rule and analyzing their compatibility, allows to solve
all the conceptual issues mentioned above.

4 New relativity principle and Penta-
momentum

In this section, we propose a general framework to consis-
tently interpret DSR. There are two main points. First, ref-
erence frames are described by both their relative speed and
their mass and we extend the Relativity principle to represent
the resulting composition of momenta. Then systems are not
solely described by the relativistic quadrimomentum but by
a DSR pentamomentum which carries a representation of the
dS group and takes into account the mass bound κ associated
to the system.

4.1 Reference frames have a speed and a mass
In Special Relativity, reference frames, physically defined
as set of particles, are described only through their relative
speeds. Since we are introducing a maximal mass, the mass
of a reference frame naturally becomes relevant in DSR.
Then reference frames are described by their relative (4-
)momentum and not only their relative (3-)speed. As shown
in [2], the mass of a reference frame is already important in

the context of usual quantum mechanics. There, a reference
frame is made of quantum particles and it is essential to spec-
ify its mass for a correct physical description.

Starting with a system whose quadrimomentum is
bounded by κ in a given reference frame, and is thus rep-
resented as a point/vector on the dS space. We would like
that the system stays bounded by κ under change of refer-
ence frame, so that κ be a property of the system and do
not a priori depend on the particular observer. Similarly
to SR where the composition of speeds is represented as
translation on the mass-shell hyperboloid, the DSR compo-
sition of momentum is represented by translation on the dS
space SO(4, 1)/SO(3, 1). Therefore the (non-commutative)
co-product of the deformed Poincaré algebra describes this
composition of momentum under change of reference frames
and does not describe the addition of momentum of the scat-
tering rule.

Moreover, under the choice of a section p ∈ dS ↪→ g ∈
SO(4, 1), the composition of momentum as translation on dS
comes directly from the group multiplication on SO(4, 1),
which now reads as:

g(p1)g(p2) = L(p1, p2)g(p1 ⊕ p2), (5)

where L(p1, p2) is a Lorentz transformation resulting from
the coset structure. A generic choice of section, like Sny-
der’s, will have non-trivial L factors, which lead to the non-
associativity of the induced composition of momenta. We
call this effect Lorentz precession.

Our point of view naturally solves the issue of non-
commutativity and non-associativity, and the spectator prob-
lem disappears. Indeed, it is not unusual that the composi-
tion of reference frames leads to such structures. Already
the composition of speeds of Special Relativity is both non-
commutative and non-associative, which become physical
features measured through the well-known Thomas preces-
sion.

4.2 Pentamomentum

DSR proposes an extension of the symmetry group from the
Poincaré group ISO(3, 1) to the Poincaré de Sitter group
ISO(4, 1). The natural momentum to consider is now a five-
dimensional object πA describing the translations on the 5d
Minkowski space. This pentamomentum carries a representa-
tion of the dS group and πAπA is the Casimir of ISO(4, 1). A
system is then naturally defined through a generalized mass-
shell equation:

πAπA = −κ2. (6)

κ still has the dimension of a mass. It is not the relativistic
rest mass of the system, and is interpreted as its mass bound.
The quadrimomentum pµ can be computed from πA, but its
precise expression depends on the particular deformation or
equivalently on the coordinate system chosen on dS.

Let us point out an important difference with the SR case:
in SR, the deformation parameter is the speed of light and is
universal, while here the deformation parameter κ is more
similar to the concept of mass in SR and changes with the
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system. A consequence is that the representation of the sym-
metry group of the space-time, depending on κ, changes with
the system.

Let us work in the Snyder deformation. The other defor-
mations can be derived from this case by an adequate coordi-
nate transformation on dS. We define:

pµ = cκ
πµ

π4
, π2

4 =
κ2

1− 1
(cκ)2 pµpµ

= κ2Γ2. (7)

This factor Γ is similar to the relativistic factor γ2 = (1 −
v2/c2)−1 of Special Relativity. Indeed, we write cπµ = Γpµ

just as the relativistic momentum reads in term of the Galilean
momentum! Note that in the chosen metric (+ − − − −),
the quadrimomentum of a particle being time-like, we have
1 ≤ Γ < ∞, and the quadrimomentum is bounded in norm
by the mass κ2: m2 < κ2. Let’s point out that the DSR
momentum πA is not bounded.

When pµpµ ¿ κ2, the DSR momentum coincides with
the usual one and we recover the relativistic regime. This
is the notion of classical limit. On the other hand when
|pµpµ| ∼ κ2, Γ grows arbitrary large and we are fully in
the DSR regime.

Just as one interprets γ as the new notion of relativistic
energy in SR, one is tempted to interpret Γ as a new notion
of DSR energy. The main reason to look for a new concept of
energy is that the relativistic energy-momentum is not an ex-
tensive quantity anymore due to the non-linear deformation
of the Poincaré algebra: pµ is not additive for many bodies,
which we would expect for free systems. This is encoded in
the non-linearity of the commutation relations (in the Snyder
coordinates)

[Xi, p0] = i~
p0pj

(cκ)2
.

If one considers the DSR pentamomentum instead, it behaves
in the right way with linear commutation relations:

[Xi, π4] = i
κπi, [Xi, πj ] = − i

κδijπ4, [Xi, π0] = 0,
[X0, π4] = i

κπ0, [X0, π0] = i
κπ4, [X0, πi] = 0,

(8)
so that it is natural to introduce the DSR energy E = π4c

2 =
Γκc2. Note that since Γ ≥ 1, even when the rest mass van-
ishes m = 0, we still have a non-trivial DSR rest-energy
Em=0 = κc2.

Let us now describe the addition of pentamomenta. An
object is described by the pentamomentum πA in a given
κ-representation of the Poincaré dS group. Let us consider
two-body system made of two objects with the same κ. The
global state of the composite system is described by the diag-
onal algebra constructed from the product of the two iso(4, 1)
algebras of the two objects. We define the global DSR penta-
momentum and global Lorentz generators:

π = π(1) + π(2),
J = J(1) + J(2).

(9)

The coarse-grained position operator X = X(1)+X(2)

2 then
acts on the new momentum as

[Xi, πj ] = −iδij

2κ π4, [Xi, π0] = 0, [Xi, π4] = i
2κπi,

[X0, π0] = i
2κπ4, [X0, πi] = 0, [X0, π4] = i

2κπ0.
(10)

Thus, this addition of the pentamomentum directly implies a
rescaling of κ

κ → κ′ = 2κ. (11)

This scaling for composite systems naturally solves the clas-
sical limit problem. The soccer ball problem disappears. For
bigger and bigger system, κ will grow and we recover the
classical Poincaré algebra when κ →∞ since we have:

[Xµ, pν ] = ηµν + O(
p2

κ2
). (12)

Note that because κ gets modified, the representation of
the operators p and X is modified and the addition is in fact
non-linear. Indeed, we have:

pj
tot = κ′

πj
1 + πj

2

π4
1 + π4

2

6= p1 + p2 = κ

(
πj

1

π4
1

+
πj

2

π4
2

)
.

This implies that the new representation of the space-time co-
ordinates is

Xi ≡ i ~cκ (π4∂πi − πi∂π4)
↓

Xtot
i ≡ i ~cκ′

(
(π4

1 + π4
2)∂(πi

1+πi
2)
− (πi

1 + πi
2)∂(π4

1+π4
2)

)
.

Although Xtot = (X1 +X2)/2 at the level of the abstract al-
gebra, this linear relation doesn’t hold at the level of their rep-
resentations in terms of operators only because we are chang-
ing the representation and the Hilbert space from κ to 2κ.

We can formalize this using the map Uκ from the 5d
Minkowski space to the dS space of curvature κ:

Uκ : M5 → dSκ

πA → pµ = κπµ

π4 .
(13)

Then ptot reads as:

ptot = U2κ(U−1
κ (p1) + U−1

κ (p2)) = U2κ(π1 + π2)
= 2κ π1+π2

π4
1+π4

2
= κ′ π1+π2

π4
1+π4

2
.

We recognize the formula proposed by Magueijo and Smolin
in [9]. However, unlike them, we are still working in the
context of the Snyder deformation and we are not interpret-
ing this addition of momentum as providing a new deforma-
tion. They proposed this non-linearity in order to have a well-
defined classical limit. We see that our construction naturally
implements this trick, which was also advocated in [12]. We
provide an explicit construction and more solid grounds for
their proposal, showing how this non-trivial addition rule on
the p’s comes from the trivial addition on the π’s.

More generally, one should deal with composite system
made from components of different maximal masses κi. Our
proposal is to add the pentamomenta to get the total pentamo-
mentum. The global κ of the composite system is the norm
of the total pentamomentum. More precisely, one deals with
the representation theory of ISO(4, 1) and it is likely we will
need to introduce the concept of a ”center of maximal mass”.
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The composite system should have then a maximal mass of
the order of magnitude of

∑
κi. This construction is exactly

the same as when adding objects of different masses in Spe-
cial Relativity, except that we work with one extra-dimension
in the momentum space. Let us underline some important
properties of this scattering rule.

• Binding energy: Let us consider the energy compo-
nent of total quadrimomentum resulting from the total
pentamomentum. We have

Etot = c2

(
E1√

1−(m1cκ)2
+ E2√

1−(m2cκ)2

)

(
1√

1−(m1cκ)2
+ 1√

1−(m2cκ)2

)−1 . (14)

It is obvious that ∆E ≡ Etot − (E1 + E2) does not
vanish, and we interpret this difference as an interac-
tion potential V ≡ ∆E between the two systems de-
pending on their momenta. This potential forbids the
composite momentum to exceed the bound 2κ.

• Consistency with the Relativity Principle: One of
the basic postulates of physics is the principle of rela-
tivity stating that different observers should still exper-
iment the same laws of physics. More precisely, we re-
quire to have the same laws of conservation in any ref-
erence frames. More technically this implies a compat-
ibility relation between the addition of momenta of the
scattering rule and the coproduct describing the com-
position of momenta under change of reference frames.
Let us consider two systems with pentamomenta π1, π2

in a given reference frame. We note p1, p2 their rel-
ativistic momentum. The system 1 + 2 has a total
pentamomentum π = π1(p1) + π2(p2) which is con-
served under a scattering process. Let us now make a
change of reference frame of momentum pµ. The to-
tal pentamomentum in the new reference frame is now
πp = π1(p1⊕p)+π2(p2⊕p). We require that the con-
servation of the total pentamomentum in all reference
frames are equivalent: the conservation of πp must be
equivalent to the conservation of π. Therefore it must
be possible to mathematically express πp in terms of π
without having to use knowledge about the momentum
of the constituents 1, 2: under scattering process, the
internal constituents can change and only the total mo-
mentum is restrained to be conserved. One can check
that the Snyder deformation actually behaves correctly
under this criterium. More generally, isotropic defor-
mation of Snyder’s choice also provide physics consis-
tent with the Relativity principle.

4.3 Deformations: one or many?
One last big issue is what deformation to use in DSR and
whether the deformations are physically equivalent or not.
First, one must be careful not to confuse the actual alge-
braic deformation which leads to physical consequences and
a mere change of coordinates. This is actually the distinc-
tion between active and passive coordinate changes (on the
dS momentum space).

Now a deformation is a choice of map f : R4 → Sκ, or
equivalently a choice of section dSκ ↪→ SO(4, 1). Isotropic
deformations are defined as:

fϕ : R4 → dSκ

pµ → eiηBµJ4µ (15)

with pµ = cκϕ(η)Bµ, where Bµ is of norm one and η is the
dS boost angle, i.e. the actual distance from the origin on dS.
Snyder’s deformation corresponds to the choice ϕ(η) = η.

First, one should check whether a deformation leads or
not to consistent physics, i.e. consistent with operational
principal. Here our criterium is the Relativity principle,
which selects the isotropic deformations. Then experimen-
tal input is essential to determine the exact deformation ϕ.
Nevertheless, if we require also linearity of the representation
of the SO(4, 1) transformation, then it would select only the
Snyder’s deformation. However there is no physical principle
behind such a choice. This issue is discussed in details in the
case of Special Relativity in [3]. Let us end this discussion
by reminding that the coproduct of Snyder’s deformation is
non-coassociative and thus doesn’t correspond to a quantum
group deformation.

5 A New Phenomenology
We have proposed a new framework to interpret DSR. The
natural question is what is the associated phenomenology.
The main point of our proposal is to make the deformation
parameter κ depend on the system. We have shown that it is
consistent with the Relativity principle and that it also a sim-
ple solution of the issue of the classical limit of DSR. Nev-
ertheless, it means we have traded all the conceptual issues
of DSR for the physical and experimental issue of measuring
the parameter κ for physical systems. The κ is essential in
order to make further predictions since it dictates the disper-
sion relation of the system for example. Our proposal is that
κ should be the Schwarzschild mass corresponding to the size
of the system, i.e. its maximal mass imposed by General Rel-
ativity. More generally, the situation is experimentally com-
parable to Quantum Field Theory where we must first deter-
mine the values of the coupling constants before making any
further predictions.

We are proposing here some physical situations which
should provide direct manifestations of the new symmetry.
There are some other physical situations which are usually
proposed as sensitive to DSR effects, e.g. GZK cutoff, the γ-
ray bursts and so on. Those latter should be reconsidered in
the context of a field theory expressed in terms of represen-
tations of the new symmetry. It is only then that one will be
able to make solid physical predictions for these experiments,
or more generally the calibration of the deformation.

• The Thomas precession: It indicates the relativistic
regime and is easily measurable. As the action of the
Lorentz boosts are deformed and now realized non-
linearly, we should have computable corrections to the
Thomas precession. This is therefore a new experimen-
tal situation that one should explore as a consistency
check for DSR.
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• The Lorentz precession: Similarly to the Thomas pre-
cession of Special Relativity, the law composition of
momenta in DSR contains a non-trivial Lorentz trans-
formation depending on the composed momenta. This
should have experimental consequences, such as cor-
rections to circular motions depending on the mass of
the central object (corrections in nuclear physics?).

• Varying speed of light: DSR is a well-known example
of varying Speed of Light [13]. The simple argument is
that masses should slow down the motion of light, and
stop it in the extreme case when we reach the maximal
mass (black hole case). It is clear that this is still the
case in our approach. We expect a redshifting of the
very energetic rays of lights i the DSR regime. Such a
feature should be seen in γ-ray bursts experiments.

6 Outlook

To sum up the situation, we have proposed a new physical
context in which to interpret Deformed Special Relativity.
First the deformed co-product on the de Sitter momentum
space describes the law of composition of momenta under
change of reference frames. In particular, reference frames
are not anymore defined only by their relative speeds but one
should also take into account their mass and therefore con-
sider their relative momenta. The second step is the shift
to an extended Poincaré-de Sitter symmetry and the use of
a pentamomentum to describe systems. The sum rule for
composite systems is to simply add the pentamomenta of the
constituents. A first consequence is that the DSR deforma-
tion parameter κ is rescaled for bigger systems: it runs to ∞
for macroscopic objects and we recover the usual classical
world. Then the pentamomentum is conserved under scatter-
ing and we have checked that this new conservation law is
indeed consistent with the law of change of reference frames:
DSR respects the Relativity principle.

For the theoretical point of view, the concept of space-
time in DSR is still unclear. The five-dimensional structure
of the momentum space and the relation between the bound
κ and the scale push towards a concept of five-dimensional
spacetime where the fifth coordinate is a renormalisation
scale. This is similar to ideas expressed in [14] where 5-
dimensional spaces are naturally derived from the renormal-
isation flow of a 4-dimensional spacetime. The whole point
is to understand the physical meaning of the DSR energy and
whether there exists an associated notion of time. There is
also the standard approach of understanding the operational
meaning of spacetime points through the construction of co-
herent states for fuzzy points [15].

Another issue is whether it is possible to couple the ex-
tended relativity principle to an equivalence principle and de-
rive a deformed general relativity which would take into ac-
count the Planck mass.

Finally, the most interesting issue is to study the new DSR
phenomenology. It is important to obtain definite physical
predictions, on the Thomas or Lorentz precession and the
propagation of rays of light, in order to test the theory, and
this becomes even more important in the context that DSR
provides an effective theory for Quantum Gravity on a flat
spacetime.
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