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Cooling Many Particles to Very Low Temperatures
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In a recent paper [Beige, Knight, and Vitiello, quant-ph/0404160], we showed that a large number N of particles
can be cooled very efficiently. The particles should be excited by red-detuned laser fields while coupling to
the quantized field mode inside a resonant and leaky optical cavity. When the coupling constants are for all
particles the same, a collective behavior can be generated and the cooling rate can be as large as

√
N times the

single-particle coupling constants. Here we study the algebraic structure of the dynamics and the origin of the
collective cooling process in detail.

1 Introduction

Collective features in the microscopic dynamics often lead
to the emergence of surprising and unexpected effects in the
evolution of a physical system at the macroscopic level [1].
The collective cooling of many two-level particles to very
low temperatures is discussed here as an example of such a
macroscopic manifestation of microscopic collective behav-
ior [2]. It is shown that the collective behavior of a large
number of particles can produce much higher cooling rates
than could be obtained by means of individual cooling based
on the spontaneous decay of the individual particles [3-5].

As in laser sideband cooling techniques for single two-
level atoms [3], we consider an experimental setup, where
red-detuned laser fields increase the excitation of the parti-
cles, thereby continuously reducing the number of phonons.
Afterwards, the phonon energy can be removed constantly
from the system. This requires energy dissipation and yields
an overall decrease of the von Neumann entropy in the setup
[6]. One possible decay channel is spontaneous emission
from the excited states of the particles. During such a pho-
ton emission, a particle returns most likely into its ground
state without regaining the phonon energy lost in the excita-
tion process. The net result is a conversion of the phonons,
originally existing in the setup in the form of thermal energy,
into photons escaping the system.

Here we are interested in realizing much higher cooling
rates than could be achieved with the help of the above de-
scribed spontaneous decay of individual particles. This is
possible, when the time evolution of the system remains re-
stricted onto a subspace of states presenting high symmetry
and strong coupling. Maximum cooling is obtained when
the particles exhibit cooperative behavior in the excitation
step as well as in the de-excitation step. To achieve this we

assume as in Ref. [2], that the outward energy dissipation is
conducted by an optical cavity. As shown in Fig. 1, the par-
ticles should be placed inside a resonant optical cavity with
a relatively large rate for the leakage of photons through the
cavity mirrors. The particles can then transfer their exci-
tation collectively into the resonator field, from where the
energy leaves the system without affecting the number of
phonons in the setup and without changing the symmetry of
the involved states.
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Figure 1. (a) Experimental setup for the collective cooling of many
particles. The particles should be trapped inside an optical cavity,
where they arrange themselves in the antinodes of the resonator
field. (b) Level configuration of a single two-level particle for the
cooling of a vibrational mode with frequency ν driven by a red-
detuned laser field with Rabi frequency Ων and coupling to a reso-
nant optical cavity with strength g.

Collective behavior of the system requires furthermore
that the Rabi frequency Ων of the laser field for the cooling
of a vibrational mode with frequency ν and the cavity cou-
pling constant g are for all particles (practically) the same.
Initially, the particles should all be prepared in their ground
state (in the large N limit fluctuations can be neglected).
As shown below, the collective states of the assembly of N
particles then experience a very strong coupling to the laser
field as well as to the cavity mode [2]. As a consequence,
the number of phonons decreases exponentially with a rate
as large as

√
N times the single particles coupling constants,

which can be much higher than previously predicted rates in
comparable setups [7-15].
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The proposed cooling scheme might be used to cool a
large number of particles very efficiently. So it should be
applicable to the preparation of Bose Einstein condensates.
Currently, these experiments mainly use evaporative cooling
[16] which systematically removes those atoms with a rel-
atively high temperature from the trap. Consequently, only
a small percentage of the initially trapped atoms is finally
included in the condensate. If one could instead cool all
the atoms efficiently, yet at the same time avoid the loss
of particles, it should become easier to experiment with
large condensates. Cooling is also crucial for ion trap quan-
tum computing, where the achievable gate operation times
can depend primarily on the efficiency of the cooling of
a common vibrational mode [17]. First cavity-cooling ex-
periments involving many particles and observing enhanced
cooling rates have already been performed [18, 19].

In this paper, we consider some algebraic features of the
dynamics ruling the collective cooling of many particles and
further clarify some aspects of the underlying mechanisms,
which have already been studied in Ref. [2]. A remarkable
feature is, for example, the presence of a relatively large and
negative coherence k3. Instead of solving the time evolution
of the system explicitly, we avoid certain approximations
made in Ref. [2] by referring to the Heisenberg picture. The
system considered in this paper and its collective dynam-
ics may be a paradigmatic example for other applications of
physical interest, like the evolution of a system undergoing
a continuous phase transition, yet preserving some specific
features during such an evolution.

2 The experimental setup
The cavity coupling constant g is for all particles the same,
when the particles distribute themselves in the antinodes
of the resonator field, as discussed in Ref. [12, 13] (see
Fig. 1(a)). Alternatively, a ring resonator could be used,
as proposed in Refs. [12,15,19]. In the following we con-
sider a collection of N two-level particles (atoms, ions or
molecules) with ground states |0〉i and excited states |1〉i
(see Fig. 1(b)). The setup should be operated in a parameter
regime, where

κ ∼
√

Ng , 1
2

√
NηΩ À Γ with Ω ≡

( ∑
ν

Ω2
ν

)1/2

. (1)

Here κ is the decay rate of a single photon in the cavity
mode, Γ is the spontaneous decay rate of a particle in the ex-
cited state and η denotes the Lamb-Dicke parameter charac-
terizing the steepness of the trap [20]. As in Ref. [2], we dis-
cuss in this paper the two extreme cases, namely the cooling
of common vibrational modes and the cooling of the indi-
vidual phonon modes in the absence of common vibrational
modes.

2.1 Cooling of common modes
In the following, bν denotes the annihilation operator for a
phonon in the common vibrational mode with frequency ν,
while c is the annihilation operator for the cavity photons

and σi = |0〉ii〈1| is the lowering operator for particle i.
Using the rotating wave approximation [21] and going over
to the interaction picture with respect to the interaction-free
Hamiltonian, the time evolution of the system can be de-
scribed by the Hamiltonian

Hcomm = ~
∑

i,ν

1
2ηΩν σ†i bν +

∑

i

g σ†i c + H.c. (2)

One way to simplify this Hamiltonian is to introduce the ef-
fective phonon annihilation operator

b ≡
∑

ν

(Ων/Ω) bν with [b, b†] = 1 , (3)

which allows to write the Hamiltonian (2) as

Hcomm = ~
∑

i

(
1
2ηΩσ†i b + g σ†i c + H.c.

)
. (4)

2.2 Cooling of individual particles
We now consider the operator bν,i for the annihilation of the
phonons of mode ν of particle i. Again we assume that the
corresponding laser Rabi frequencies Ων are for all particles
the same. Then the Hamiltonian of the system equals in the
interaction picture and in the rotating wave approximation

Hindi = ~
∑

i,ν

1
2ηΩν σ†i bν,i +

∑

i

g σ†i c + H.c. (5)

Proceeding as above, introducing the effective phonon anni-
hilation operator

bi ≡
∑

ν

(Ων/Ω) bν,i with [bi, b
†
i ] = 1 (6)

and using Eq. (1), the Hamiltonian (5) becomes

Hind = ~
∑

i

(
1
2ηΩσ†i bi + g σ†i c + H.c.

)
. (7)

Although this Hamiltonian has some similarities with the
Hamiltonian (4), it describes a physically different situation.
Instead of coupling to a set of common vibrational modes,
each particle sees his own set of phonons.

2.3 Spontaneous emission
Spontaneous emission is described in the following by the
master equation [22]

ρ̇ = − i
~

[HI, ρ] + κ
(
cρc† − 1

2c†cρ− 1
2ρc†c

)

+Γ
∑

i

(
σiρσ†i − 1

2σ†i σiρ− 1
2ρσ†i σi

)
(8)

with HI being Hcomm or Hind, respectively, κ being the de-
cay rate of a photon in the cavity and Γ being the decay
rate of the particle excited state. From this equation one can
easily see that the dissipation reduces the energy in the sys-
tem. This is achieved by lowering the number of photons
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inside the resonator but does not affect the state of the parti-
cles. Cavity decay therefore does not disturb the collective
behavior of the system. However, this does not apply to the
emission of photons from the particles, which can negatively
interfere with the collective cooling process.

3 Bosonic subsystems
In case of the cooling of common vibrational modes, the
setup consists effectively of two different subsystems. One
is the two-level particle system. As an effect of the emer-
gence of the cooperative behavior, the collection of particles
manifests itself as a bosonic system. We will see below that
a further consequence of this is the transition to a strong
coupling regime, which in turn implies a much shorter time
scale for the system evolution. The other subsystem is the
bosonic system of phonons and photons with a continuous
conversion of phonons into photons. We will see that it is
convenient to consider a boson mode which is a superposi-
tion of them. This is analogous to the field-atom polariton
of Hopfield [23, 24].

3.1 Bosonic behavior of the particles
Suppose the time evolution of the particles is solely gov-
erned by the operators σ+ =

∑
i σ+

i , σ− =
∑

i σ−i and
σ3 = 1

2

∑
i(|1〉ii〈1| − |0〉ii〈0|). The σi are the Pauli matri-

ces. These operators obey the SU(2) commutation relations
of a fermion-like N -body system

[σ3, σ
±] = ±σ± and [σ−, σ+] = −2σ3 . (9)

Under this condition, the time evolution of the system with
all particles initially prepared in |0〉i remains restricted to
a subspace of highly symmetric particle Dicke states (for
more details see [2,25-27]. Since we assume a large number
N of particles, small fluctuations in the initial state of the
system can be neglected. Let us denote by l the number of
particles excited by the laser action into the upper state |1〉.
Then it can be shown that for N À l the particle system can
be described by the collective operators [2]

S+ ≡ 1√
N

∑

i

σ+
i , S− ≡ 1√

N

∑

i

σ−i , S3 ≡ σ3 , (10)

with σ3 = S+S− − 1
2N . In the large N limit (N À l), the

operators in Eq. (10) obey the relations

[S3, S
±] = ±S± , [S−, S+] = 1 . (11)

This means, the su(2) algebra (9) written in terms of S± and
S3 contracts in the large-N limit to the (projective) e(2) (or
Heisenberg-Weyl) algebra (11) [28-30].

The physical implication of the familiar commutator re-
lations (11) is that the particles behave no longer like in-
dividual fermions. Instead, the time evolution generates
the excitation of bosonic modes, namely collective dipole
waves, with S± denoting the creation and annihilation op-
erators of the associated quanta obeying the usual commu-
tation relation (11). As a consequence, the collection of

the single two-level particles manifests itself as a bosonic
system. In other words, the ladder of equally-spaced Dicke
states approximates to a weakly-excited harmonic oscillator.

Using the operators (10), the Hamiltonian (4) for the
cooling of common vibrational modes can simply be writ-
ten as

Hcomm = ~
(
xS+b + y S+c + H.c.

)
, (12)

where we have introduced the notation

x ≡ 1
2

√
NηΩ and y ≡

√
Ng . (13)

From this one sees that the time evolution of the system is
mainly governed by the parameters x, y and κ, which scale
as
√

N . We thus have, as a consequence of the emergence of
the particle collective behavior, the transition to the strong
coupling regime, 1

2ηΩ → 1
2

√
NηΩ and g → √

Ng. The
evolution of the system happens no longer on the time scale
given by the parameters 1

2ηΩ and g but on a much shorter
time scale defined by 1

2

√
NηΩ and

√
Ng.

3.2 Photon-phonon exchange
Another factor that contributes significantly to the described
cooling mechanism is the interface or ambivalent role
played by the particles with respect to the phonons and
the photons in the setup. The only difference between the
particle-phonon and particle-photon interaction is the differ-
ence of the coupling constants, given by

√
N 1

2ηΩ and
√

Ng,
respectively. In some sense, the particles act as an engine
transforming phonon energy into photon energy. This last
one is then dissipated outward through the coupling with
the cavity which allows energy leakage. However, in the
absence of the leakage of photons through the cavity, the in-
verse transformation, photons to phonons, is also possible
in principle. In such a situation, interesting interference and
coherence effects arise, which we analyze below in detail.

Indeed, a closer look at Eq. (12) reveals that the Hamil-
tonian for the cooling of common vibrational modes can al-
ternatively be written as

Hcomm = ~z S+a + H.c. (14)

with

z ≡
√

x2 + y2 , a ≡ 1
z

(xb + yc) and [a, a†] = 1 . (15)

Instead of interacting with the phonons and photons sepa-
rately, the particles see the boson mode with annihilation
operator a and number operator

a†a =
1
z2

[
x2 b†b + y2 c†c + yx k3

]
(16)

with

k3 ≡ b†c + bc† . (17)

Physically, the creation of bosons corresponding to a† does
not only affect the number of phonons and the number of
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photons in the system. Inevitably, it also creates a coher-
ence between the b and the c subsystem. This coherence k3

provides a “symmetric” channel for the phonon-photon en-
ergy transformation. However, the leakage of energy outside
the cavity perturbs such a symmetric phonon-photon balanc-
ing due to the k3 action. The system reacts by subsequent
adjustments, trying to recover its lost balance. Crucial to
such a re-adjustment mechanism is the difference in the time
scales. The time scale for reaching the quasi-stationary state
is of the order 1/N , while the time scale for spontaneous
decay is, as we see in the next Section, of order 1/

√
N .

4 Collective cooling of common vi-
brational modes

The time evolution of the system turns out to be highly non-
linear since the second and higher order derivatives of the
physical observables are much larger than their first order
derivatives. The system reaches a quasi-stationary state on
a time scale of the order 1/N . The formation of this local
equilibrium is solely governed by the effect of the Hamil-
tonian Hcomm. Let us therefore first consider the situation,
where we can neglect spontaneous emission and κ ≈ 0 and
Γ ≈ 0.

4.1 Conservation laws in the absence of dissi-
pation

In this case, the time evolution of the system, governed by
the Hamiltonian (14), results in a redistribution of popula-
tion between the bosonic subsystem described by a†a and
the particles described by S+S−. To analyse this process
we introduce the operators

L1 ≡ 1
2 (S+a + S−a†) ,

L2 ≡ − i
2 (S+a− S−a†) ,

L3 ≡ 1
2 (S+S− − a†a) (18)

with the familiar SU(2) commutators

[Li, Lj ] = iεijk Lk . (19)

With this notation, the Hamiltonian (14) becomes

Hcomm = 2~z L1 (20)

and this, formally, simply generates a rotation around the 1-
axis. In such an algebraic picture, we can immediately con-
clude that the angular momentum L1 and the total angular
momentum

L2 = L2
1 + L2

2 + L2
3

= 1
2 (S+S− + a†a)

[
1 + 1

2 (S+S− + a†a)
]

(21)

are conserved during the time evolution of the system under
the considered conditions. Especially, the conservation of
L2 implies the conservation of the total number of bosons,
as accounted for by the number operator S+S− + a†a.

When the number of particles in the excited state |1〉i re-
mains small compared to N , the commutator relations (11)
hold. In such a case, we can assume that the expectation
value of S+S− = 1

N

∑
i,j σ+

i σ−j remains small. Neglect-
ing S+S− in Eq. (21) implies

d
dt (a

†a) = 0 . (22)

Using the definition (15), this conservation law translates
into

d
dt

(
y2 b†b + x2 c†c− xy k3

)
= 0 , (23)

which coincides with Eq. (16) in Ref. [2] and describes the
continual balance between the rate of change of the expec-
tation value of k3 and the rate of change of the total number
of phonons and photons in the system.

To show that Eq. (23) does not violate the conservation
of the number of particles in the setup, we remark that the
system obeys a second conservation law. Considering again
the Heisenberg picture, we indeed find

d
dt (b

†b + c†c) = − d
dt (S

+S−) = −2zL2 . (24)

In the presence of many particles, with most of them remain-
ing in their ground state, the expectation value of S+S−

remains negligible. This implies d
dt (S

+S−) = 0 and, con-
sequently, also L2 = 0 [31]. Inserting this into Eq. (24), we
obtain the particle number conservation law

d
dt

(
b†b + c†c

)
= 0 . (25)

Despite being a coherence, the expectation value of k3 acts
like a population. This allows the system to obey conserva-
tion of the particle number a†a as well as conservation of
b†b + c†c by balancing the coherence k3 accordingly. In the
following, we study the conversion of phonons into cavity
photons and creation of a non-zero coherence k3 in more
detail.

4.2 Quasi-stationary states
In the absence of spontaneous emission, the system reaches
after a very short time a stationary state with constant ex-
pectation values for b†b, c†c and k3. To calculate the corre-
sponding values of the cavity photon number and coherence
k3 as a function of the phonon number, we use again the
Heisenberg picture, and obtain the second order differential
equations

d2

dt2 (b†b) = −2x2 b†b− xy k3 ,

d2

dt2 (c†c) = −2y2 c†c− xy k3 ,

d2

dt2 k3 = −2xy
(
b†b + c†c

)− z2 k3 . (26)

These equations imply that the first order derivatives of the
operators b†b, c†c and k3 change on a time scale of the order
1/N , which is, for large N , much faster than the time scale
on which the time evolution of b†b, c†c and k3 takes place.
Since we are only interested in the time dependence of the
phonon number b†b, we can safely assume that the first order
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derivatives d
dt (b

†b), d
dt (c

†c) and d
dtk3 adapt adiabatically to

the state of the system. Setting the right hand sides of the
differential equations (26) equal to zero, we find

c†c =
x2

y2
b†b and k3 = −2x

y
b†b . (27)

Moreover, Eq. (27) implies, due to the conservation laws
(23) and (25), that

d
dt (b

†b) = d
dt (c

†c) = d
dtk3 = 0 . (28)

This means that, after a short time of order 1/N , the sys-
tem reaches a quasi-stationary state with a constant ratio
between the expectation value of the coherence k3 and the
number of photons inside the cavity, respectively, compared
to the total number of phonons in the system. To a very good
approximation, these ratios remain constant throughout the
whole cooling process.

4.3 Cooling equations
In the absence of spontaneous emission, at most a redistribu-
tion of phonon energy can occur in the system [6]. Efficient
cooling and the irreversible removal of energy from the sys-
tem requires dissipation. We therefore now consider the ef-
fect of dissipation in more detail. Using the master equation
(8) we find

d
dt (b

†b) = ix (S+b− S−b†) ,

d
dt (c

†c) = iy (S+c− S−c†)− κ c†c ,

d
dtk3 = iy (S+b− S−b†) + ix (S+c− S−c†)

− 1
2κ k3 . (29)

The leakage of photons through the cavity mirrors with de-
cay rate κ not only decreases the number of photons in the
cavity mode but also affects the size of k3.

In the previous subsection, we have seen that the system
reaches a stationary state on a time scale of the order 1/N
with c†c and k3 being a multiple of b†b. Using Eq. (29), we
find

d
dt (b

†b) = −x2

y2

[
κ c†c + d

dt (c†c)
]
+

x

y

[
1
2κ k3 + d

dtk3

]
.

(30)

This shows that on the time scale we are interested in,
namely a time scale of the order 1/

√
N , both, the opera-

tor c†c and the presence of a negative valued operator k3,
provide effective cooling channels in the system. Inserting
the results (27) and (28) into Eq. (30) we obtain indeed

d
dt (b

†b) = −x2z2

y4
κ b†b . (31)

If m denotes the phonon number expectation value 〈b†b〉ρ
and m0 = m(0), we finally obtain

m = m0 exp
[
− x2z2

y4
κt

]
. (32)

This describes exponential cooling of the atomic sample
with a rate that can be as large as

√
Ng and 1

2

√
NηΩ

(cf. Eq. (1)). The result (32) coincides with Eq. (17) in
Ref. [2] and is in good agreement with an exact numerical
solution of the time evolution of the system (see Fig. 2(a)).
Spontaneous emission from excited atomic levels with de-
cay rate Γ is too slow to contribute to the cooling of the
system, since most of the particles remain in their ground
states and κ À Γ.
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Figure 2. Cooling of common vibrational modes obtained from a
numerical solution of the master equation (8) (solid line) in com-
parison to Eq. (32) (dashed line) for g = 10−3 κ, ηΩ = 5 ·10−4 κ,
N = 106 and m0 = 103 (a). Cooling of individual phonon modes,
obtained from a numerical solution of Eq. (21) in Ref. [2] under the
assumption of negligible cavity photon numbers, for g = 10−3 κ,
ηΩ = 5 · 10−4 κ, N = 106 and m̃0 = 109 (b).

4.4 Similarities between collective cooling
and phase transitions

Finally, we remark that the cooling process we describe here
is not simply a redistribution of phonons into cavity pho-
tons and k3, which then decay into the environment with the
spontaneous decay rates κ and 1

2κ, respectively. Instead, the
leakage of photons through the cavity mirrors disturbs the
equilibrium expressed by Eqs. (23) and (25) perturbing the
otherwise conserved quantities

Q ≡ 〈a†a〉 and Q′ ≡ 〈b†b〉+ 〈c†c〉 . (33)

The coupling to the environment causes a dynamical re-
sponse in the system, which generates a transition from
a state with a fixed ratio of phonons to cavity photons
(cf. Eq. (27)) into a state with no phonons and photons in
the setup.

In atom-cavity systems, the time evolution of the system
is, on a very short time scale, usually dominated by spon-
taneous emission. However, in the presence of many parti-
cles, the evolution is primarily governed by the Hamiltonian
Hcomm, which drives the system into a quasi-stationary state
characterised by the preserved quantities Q and Q′ within a
time of the order 1/N . The presence of the spontaneous de-
cay rate κ, which scales as

√
N (cf. Eq. (1)), disturbs this

stationary state and causes the system to continuously as-
sume new values for Q and Q′. Using Eqs. (27) and (31),
we find

d
dtQ = −x2z2

y4
κQ and d

dtQ
′ = −x2z2

y4
κQ′ . (34)
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While the relative size of the photon number 〈c†c〉 and the
coherence 〈k3〉 with respect to the number of phonons m re-
main constant, their sum, as accounted for by Q and Q′ de-
crease exponentially in time due to the presence of dissipa-
tion, namely leakage of photons through the cavity mirrors.
This is typical for a system undergoing a phase transition.

5 Collective cooling of individual
phonon modes

There are many similarities but also many differences be-
tween the cooling of the common and the cooling of the indi-
vidual phonon modes of particles. For example, one cannot
simplify the Hamiltonian Hind using the collective lowering
operator S−, as we did in Eq. (12). However, there is still a
high symmetry in the system and all particles are treated in
exactly the same way. To take this into account we introduce
the vector operators

S± ≡ 1√
N

{
σ±i

}
, b ≡ {

bi

}
and c ≡ c

{
1i

}
(35)

with the usual scalar product, such that, for example,

S± · b =
1√
N

∑

i

σ±i bi . (36)

This notation allows us to write the Hamiltonian (7) as

Hind = ~
(
x S+ · b + y S+ · c + H.c.

)
, (37)

which is of a similar form as the Hamiltonian Hcomm in
Eq. (12).

In analogy to Section 3.2, we proceed by introducing an
effective annihilation operator ai for each particle i with

ai ≡ 1
z

(xbi + yc) , a ≡ {
ai

}
with [ai, a

†
i ] = 1 . (38)

Then the Hamiltonian (37) can be written as

Hind = ~z S+ · a + H.c. (39)

Each particle couples individually to a new type of bosons,
which are a superposition of a single phonon and a cavity
photon. The number operator accounting for all bosons ai

equals

a† · a =
1
z2

[
x2 b† · b + y2 c† · c + yx k3

]
, (40)

where we defined the coherence

k3 ≡ b† · c + b · c† . (41)

While b†·b counts the total number of phonons in the system,
the expectation value of c† · c = Nc†c. Again, the coher-
ence k3 describes a certain “symmetry” between phonons
and photons in the setup and accounts for a continual con-
version of the two types of bosons into each other.

5.1 Conservation laws in the absence of dissi-
pation

Neglecting spontaneous emission, i.e. assuming κ ≈ 0 and
Γ ≈ 0, and using the Hamiltonian (37), we find

d
dt (b

† · b) = ix (S+ · b− S− · b†) ,

d
dt (c

† · c) = iNy (S+ · c− S− · c†) ,

d
dtk3 = iy (S+ · b− S− · b†) + ix (S+ · c− S− · c†) .

(42)

In the derivation of these equations, we neglected the op-
erators σ†i bj and σib

†
j with i 6= j since there are no inter-

actions between particles and the phonons of other particles.
From Eq. (42) we see that there are, as before, two conserved
quantities in the system, namely

Q ≡ y2 〈b† · b〉+
x2

N
〈c† · c〉 − xy 〈k3〉 ,

Q′ ≡ 〈b† · b〉+
1
N
〈c† · c〉 . (43)

One is associated with the total number of bosonic particles
with annihilation operators ai, the other one counts the total
number of phonons and photons in the setup and

d
dtQ = d

dtQ
′ = 0 . (44)

From the formal equivalence of the Hamiltonians (14) and
(39) pointed out in the previous subsection, one might have
had expected that the expectation value 〈a† · a〉 is preserved
in the time evolution of the system. However, this would
only be the case if ai and a†j commute with each other for
i 6= j and does not apply here.

5.2 Quasi-stationary states
To calculate the distribution of phonons, cavity photons and
coherence k3 in the system, which builds up in the absence
of spontaneous emission, we now consider the second deriv-
atives of the operators b† · b, c† · c and k3 in the Heisen-
berg picture. Neglecting again the population in the excited
states, as accounted for by S+ · S−, we obtain

d2

dt2 (b† · b) = −2x2

N
b† · b− xy

N
k3 ,

d2

dt2 (c† · c) = −2y2 c† · c− xy k3 ,

d2

dt2 k3 = −2xy

N

(
b† · b + c† · c)− z2

N
k3 . (45)

Setting the right hand side of these equations equal to zero
and taking the conservation laws (44) in the absence of dis-
sipation into account, we find that the system possesses a
stationary state with

c† · c =
x2

y2
b† · b , k3 = −2x

y
b† · b ,

d
dt (b

†b) = d
dt (c

†c) = d
dtk3 = 0 . (46)
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In contrast to the results in Section 4.2, this equation de-
scribes a state with only a relatively small number of pho-
tons in the cavity mode compared to the total number of
phonons in the setup. However, as we see in the next subsec-
tion, the presence of a negative coherence k3 of the same or-
der of magnitude as b† · b provides a cooling channel, which
is sufficient to obtain a cooling rate of the same order of
magnitude as the cavity decay rate κ.

5.3 Cooling equations
As before, the effective removal of phonons from the setup
requires leakage of photons through the cavity mirrors. To
take spontaneous emission into account we consider again
the master equation (8) and find

d
dt (b

† · b) = ix (S+ · b− S− · b†) ,

d
dt (c

† · c) = iNy (S+ · c− S− · c†)− κ c† · c ,

d
dtk3 = iy (S+ · b− S− · b†) + ix (S+ · c− S− · c†)

− 1
2κ k3 , (47)

which implies

d
dt (b

† · b) = − x2

Ny2

[
κ c† · c + d

dt (c† · c)]

+
x

y

[
1
2κ k3 + d

dtk3

]
. (48)

As already mentioned above, the number of photons in the
cavity remains relatively small and does not contribute con-
siderably to the cooling process. Neglecting c† · c and using
the results from the previous subsection, we obtain

d
dt (b

† · b) = −x2

y2
κ b† · b (49)

and

m̃ = m̃0 exp
[
− x2

y2
κt

]
, (50)

where m̃ and m̃0 now describe the total number of phonons
in the system, as accounted for by b† · b at time t and t = 0,
respectively. As in the case of the cooling of common vibra-
tional modes, cooling rates of the same order of magnitude
as the cavity decay rate κ can be obtained, which can be as
large as

√
N times the single particle coupling constants.

However, there are some differences with respect to the
case considered in Section 4. In the present case, achieving
such a high cooling rate and cooling the system to very low
temperatures first requires the build up of a reasonably large
coherence k3, which does not exist in the absence of any
laser driving. Suppose, there are no initial correlations be-
tween the particles and their motional degrees of freedom.
Then d

dtk3 = 0 (cf. Eq. (47)). Moreover, the second or-
der derivative of k3 increases only on a time scale of order
one (cf. Eq. (45)). Initially, the system is far away from
the quasi-stationary state described in the previous subsec-
tion. However, once k3 reaches its equilibrium, the collec-
tive cooling process can begin. The coherence k3 needs no

longer to be established; the system only has to adapt to the
small changes of Q and Q′ caused by the leakage of photons
through the cavity mirrors. For a numerical solution of the
time evolution of the system see Fig. 2(b).

6 Conclusions
The emergence of collective dynamics in a system of a large
number of particles manifests itself in some macroscopic
features in the system behavior. As an example, we consid-
ered the problem of fast and efficient cooling of an assembly
of N two-level particles trapped inside a leaky optical cav-
ity. Results obtained here confirm those derived in Ref. [2].
The particles are excited by red-detuned laser fields. When
the coupling constants are for all particles the same, a collec-
tive behavior emerges and the cooling rate can be as large as√

N times the single-particle coupling constants. The gen-
eration of cooperative behavior of the N particles is crucial
in the excitation step as well as in the de-excitation step. The
collective states of the assembly of N particles then experi-
ence a very strong coupling to the laser field as well as to the
cavity mode.

We have considered the case of particles sharing a com-
mon phonon mode and the case of individual phonon modes
for each particle. The two cases are similar and in both cases
the collective cooling rate is very fast as compared to the
single-particle cooling rate. The two cases are, however, dif-
ferent for the behavior of the coherence k3: in the individual
mode case, high cooling rates are achieved by first building
up a reasonably large coherence k3, which does not exist
in the absence of any laser driving. Initially, the system is
far away from the quasi-stationary state, where the phonon
and the photon populations are balanced through the k3 ac-
tion. Only when k3 reaches its equilibrium, the collective
cooling process can begin and the system can adapt to the
small changes of Q and Q′ caused by the leakage of pho-
tons through the cavity mirrors. In the common mode case,
there is no need for the “pre-cooling” phase for a build up of
the coherence k3.

The system considered in this paper may be a paradig-
matic example for other applications of physical interest,
such as systems undergoing continuous phase transitions,
yet preserving some specific features during their evolution.
Systems presenting such a behavior might be of interest as
well in biology.
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[10] V. Vuletić, H.W. Chan, and A.T. Black, Phys. Rev. A64,
033405 (2001).

[11] P. Horak and H. Ritsch, Phys. Rev. A64, 033422 (2001).

[12] P. Domokos and H. Ritsch, J. Opt. Soc. Am. B20, 1098
(2003).

[13] A.T. Black, H.W. Hilton, and V. Vuletić, Phys. Rev. Lett. 91,
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