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Onset of Classical Behaviour After a Phase Transition
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We analyze the onset of classical behaviour in a scalar field after a continuous phase transition, in which the
system-field, the long wavelength order parameter of the model, interacts with an environment of its own short-
wavelength modes. We compute the decoherence time for the system-field modes from the master equation
and compare it with the other time scales of the model. Within our approximations the decoherence time is in
general the smallest dynamical time scale. Demanding diagonalisation of the decoherence functional produces
identical results. The inclusion of other environmental fields makes diagonalisation occur even earlier.

1 Introduction
The standard big bang cosmological model of the early uni-
verse assumes a period of rapid cooling, giving a strong like-
lihood of phase transitions, at the grand unified and elec-
troweak scales [1] in particular. What interests us in this
talk is the way in which phase transitions naturally take us
from a quantum to classical description of the universe.

That (continuous) transitions should move us rapidly to
classical behaviour is not surprising. Classical behaviour
has two attributes:

• Classical correlations: By this is meant that the
Wigner function(al) W [π, φ] peaks on classical phase-
space trajectories, with a probabilistic interpretation.

• Diagonalisation: By this is meant that the density ma-
trix ρ(t) should become (approximately) diagonal, in
this case in a field basis. Alternatively, we can de-
mand diagonalisation of the decoherence functional.
In either case a probabilistic description (no quantum
interference) is obtained.

From the papers of Guth and Pi [2] onwards, it has been ap-
preciated that unstable modes lead to correlations through
squeezing. On the other hand, we understand diagonalisa-
tion to be an almost inevitable consequence of tracing over
the ’environment’ of the ’system’ modes.

Continuous transitions supply both ingredients. Firstly,
the field ordering after such a transition is due to the growth
in amplitude of unstable long-wavelength modes, which
arise automatically from unstable maxima in the potential.
Secondly, the stable short-wavelength modes of the field, to-
gether with all the other fields with which it interacts, form
an environment whose coarse-graining enforces diagonali-
sation and makes the long-wavelength modes decohere.

While there are few doubts about the classical outcome,
to quantify these general observations is difficult because,

with fields, we are dealing with infinite degree of freedom
systems. One of us (F.L) has shown elsewhere [3] how clas-
sical correlations arise in quantum mechanical systems that
mimic the field theory that we shall consider here, and we re-
fer the reader to that paper for the role that classical correla-
tions play. Our concern in this talk is, rather, with diagonal-
isation, equally necessary for the onset of classical behav-
iour. This is determined both through the master equation
for the evolution of the density matrix and the decoherence
functional, whose role is to describe consistent histories.

This talk builds upon earlier work by us [4, 5, 6], and we
refer the reader to it for much of the technical details. We
restrict ourselves to flat space-time. The extension to non-
trivial metrics is straightforward in principle. See the talk
of Lombardo in these same proceedings [7], which comple-
ments this.

2 Basic Ideas
The evolution of a quantum field as it falls out of equilibrium
at a transition is determined in large part by its behaviour at
early times, before interactions have time to take effect. To
be concrete, consider a real scalar field φ(x), described by a
Z2-symmetry breaking action (µ2 > 0)

S[φ] =
∫

d4x

{
1
2
∂µφ∂µφ +

1
2
µ2φ2 − λ

4!
φ4

}
. (1)

with symmetry breaking scale η2 = 6µ2/λ. On heating,
this shows a continuous transition, with critical temperature
T 2

c = 2η2. If, by virtue of the expansion of the universe the
system is very rapidly cooled (quenched) from T > Tc to
T < Tc, the initial stages of the transition can be described
by a free field theory with inverted mass−µ2 < 0. The state
of the field is initially concentrated on the local maximum of
the potential, and spreads out with time. This description is
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valid for short times, until the field wave functional explores
the ground states of the potential.

The φ-field ordering after the transition is due to the
growth in amplitude of its unstable long-wavelength modes,
which we term φ<(x). For an instantaneous quench these
have wave-number k < µ for all time. Although the sit-
uation is more complicated for slower quenches, until the
transition is complete there are always unstable modes. As
a complement to these, we anticipate that the stable short-
wavelength modes of the field φ>(x), where

φ(x) = φ<(x) + φ>(x),

will form an environment whose coarse-graining makes
the long-wavelength modes decohere [8]. In practice, the
boundary between stable and unstable is not crucially im-
portant, provided there is time enough for the power in the
field fluctuations to be firmly in the long-wavelength modes.
This requires weak coupling λ ¿ 1. Of course, all the other
fields with which φ interacts will contribute to its decoher-
ence, but for the moment we ignore such fields (before re-
turning to them in the last section).

After splitting, the action (1) can be written as

S[φ] = S[φ<] + S[φ>] + Sint[φ<, φ>], (3)

where the interaction term is dominated [4, 6] by its bi-
quadratic term

Sint[φ<, φ>] ≈ −1
6
λ

∫
d4x φ2

<(x)φ2
>(x). (4)

The total density matrix (for the system and bath fields)
is defined by

ρr[φ+, φ−, t] = ρ[φ+
<, φ+

>, φ−<, φ−>, t] = 〈φ+
<φ+

>|ρ̂|φ−<φ−>〉,
and we assume that, initially, the thermal system and its en-
vironment are not correlated.

On tracing out the short-wavelength modes, the reduced
density matrix

ρr[φ+
<, φ−<, t] =

∫
Dφ>ρ[φ+

<, φ>, φ−<, φ>, t],

whose diagonalisation determines the onset of classical be-
haviour, evolves as

ρr[t] =
∫

dφ+
<i

∫
dφ−<i Jr[t, ti] ρr[ti],

where Jr[t, ti] is the evolution operator

Jr[t, ti] =
∫ φ<f

φ+
<i

Dφ<

∫ φ<f

φ<i

Dφ< exp{iSCG[φ+
<, φ−<]}.

(8)
SCG[φ+

<, φ−<] is the coarse-grained effective action, of the
closed time-path form

SCG[φ+
<, φ−<] = S[φ+

<]− S[φ−<] + δS[φ+
<, φ−<].

All the information about the effect of the environment is
encoded in δS[φ+

<, φ−<] through the influence functional (or
Feynman-Vernon functional [9])

F [φ+
<, φ−<] = exp{iδS[φ+

<, φ−<]},
giving δS a well defined diagrammatic expansion.

3 The Master Equation

To see how the diagonalisation of ρr occurs, we construct
the master equation, which casts its evolution in differen-
tial form. As a first approximation, we make a saddle-point
approximation for Jr in (8),

Jr[φ+
f , φ−f , tf |φ+

i , φ−i , ti] ≈ exp(iSCG[φ+
cl, φ

−
cl ]), (11)

In (11) φ±cl is the solution to the equation of motion

δReSCG

δφ+

∣∣∣∣
φ+=φ−

= 0,

with boundary conditions φ±cl(t0) = φ±i and φ±cl(t) = φ±f .
It is very difficult to solve this equation analytically.

We exploit the fact that, after the transition, the field can-
not be homogeneous in one of its groundstates φ = η or
φ = −η because of causality [10]. As a result there is
an effective ’domain’ structure in which the domain bound-
aries are ’walls’ across which φ flips from one groundstate
to the other. Further, these domains have a characteristic
size ξ, where ξ−1 = πk0 labels the dominant momentum
in the power of the φ-field fluctuations as the unstable long-
wavelength modes grow exponentially. For simplicity, we
adopt a ’minisuperspace’ approximation, in which we as-
sume regular domains, enabling φcl(~x, s) to be written as

φcl(~x, s) = f(s, t)Φ(x)Φ(y)Φ(z), (13)

where Φ(0) = Φ(ξ) = 0, and

Φ(x + ξ) = −Φ(x).

f(s, t) satisfies f(0, t) = φi and f(t, t) = φf . We write it as

f(s, t) = φiu1(s, t) + φfu2(s, t). (14)

In [6] we made the simplest choice for Φ(x),

Φ(x) = sin k0x.

Extensions to include more Fourier modes are straightfor-
ward in principle, but our work in [6] was sufficient to show
that the results only depend weakly on the details of the
domain function Φ(x) for few Fourier modes. In the light
of the more qualitative comments made here, we refer the
reader again to [6] for details. On the other hand, the ui(s, t)
are solutions of the mode equation for wavenumber k0 dur-
ing the quench, with boundary conditions u1(0, t) = 1,
u1(t, t) = 0 and u2(0, t) = 0, u2(t, t) = 1.

In order to obtain the master equation we must compute
the final time derivative of the propagator Jr. After that, all
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the dependence on the initial field configurations φ±i (com-
ing from the classical solutions φ±cl) must be eliminated. As-
suming that the unstable growth has implemented diagonal-
isation before back-reaction is important, Jr can be deter-
mined, approximately, from the free propagators as

J0[t, ti] =
∫ φ<f

φ+
<i

Dφ<

∫ φ<f

φ<i

Dφ< exp{i[S0(φ+)−S0(φ−)]}
(15)

where S0 is the free-field action. This satisfies the general
identities [8]

φ±cl(s)J0 =
[
φ±f [u2(s, t)− u̇2(t, t)

u̇1(t, t)
u1(s, t)]∓i

u1(s, t)
u̇1(t, t)

∂φ±<f

]
J0

which allow us to remove the initial field configurations φ±i ,
and obtain the master equation.

Even with these simplifications the full equation is very
complicated, but it is sufficient to calculate the correction
to the usual unitary evolution coming from the noise (diffu-
sion) kernels (to be defined later). The result reads

iρ̇r = 〈φ+
<f |[H, ρr]|φ−<f〉 − iV ∆2D(ω0, t)ρr + ... (17)

where D is the diffusion coefficient and

∆ = (φ+2
f − φ−2

f )/2

for the final field configurations (henceforth we drop the suf-
fix). The ellipsis denotes other terms coming from the time
derivative that do not contribute to the diffusive effects. V is
understood as the minimal volume inside which there are no
coherent superpositions of macroscopically distinguishable
states for the field.

The effect of the diffusion coefficient on the decoher-
ence process can be seen by considering the following ap-
proximate solution to the master equation:

ρr[φ+
<, φ−<; t] ≈ ρu

r [φ+
<, φ−<; t] exp

[
−V ∆2

∫ t

0

ds D(k0, s)
]

,

where ρu
r is the solution of the unitary part of the master

equation (i.e. without environment). The system will deco-
here when the non-diagonal elements of the reduced density
matrix are much smaller than the diagonal ones.

The decoherence time tD sets the scale after which we
have a classical system-field configuration, and depends
strongly on the properties of the environment. It satisfies

1 ≈ V ∆2

∫ tD

0

ds D(k0, s), (19)

and corresponds to the time after which we are able to distin-
guish between two different field amplitudes, inside a given
volume V .

To terms up to order λ2 and one loop in the ~ expansion
(we continue to work in units in which ~ = kB = 1), the
influence action due to the biquadratic interaction between
system and environment has imaginary part

ImδS = −
∫

d4x

∫
d4y∆(x)N(x, y)∆(y), (20)

where N(x, y) = 1
4λ2ReG>2

++(x, y) is the noise (diffu-
sion) kernel and G>

++(x, y) is the thermal short-wavelength
closed time-path correlator.

Explicit calculation shows that D(k0, t) takes the form

D(k0, t) =
∫ t

0

ds u(s, t) F (k0, s, t) (21)

where

u(s, t) =
[
u2(s, t)− u̇2(t, t)

u̇1(t, t)
u1(s, t)

]2

,

and F (k0, s, t) is built from the spatial Fourier transforms
of the overlap of the diffusion kernel with the field profiles
Φ(x)Φ(y)Φ(z).

In the integrand of (21) u(s, t) is rapidly varying, driven
by the unstable modes, and F (k0, s, t) is slowly varying.
For long-wavelengths k0 ¿ µ we have, approximately,

F (k0, s, t) = O(N(k0 = 0; t− s)),

whereby

D(k0, t) ≈ F (k0, 0, t)
∫ t

0

ds u(s, t). (22)

That is, the diffusion coefficient factorises into the environ-
mental term F , relatively insensitive to both wavenumber
and time, and the rapidly growing integral that measures the
classical growth of the unstable system modes that are or-
dered in the transition.

To be specific, we restrict ourselves to the simplest
case of an instantaneous quench from a temperature T =
O(Tc) > TC , for which

u1 =
sinh[ω0(t− s)]

sinh(ω0t)
, u2(s, t) =

sinh(ω0s)
sinh(ω0t),

, (23)

where ω2
0 = µ2 − k2

0 ≈ µ2. It follows that

u(s, t) = cosh2[ω0(t− s)], (24)

from whose end-point behaviour at s = 0 of the integral (22)
we find the even simpler result

D(k0, t) ∼ µ−1F (k0, 0, t) u(0, t) ∼ (λTc/4πµ)2 exp[2µt],
(25)

assuming µtD À 1.
For more general quenches growth is more complicated

than simple exponential behaviour but a similar separation
into fast and slow components applies.

We have omitted a large amount of complicated techni-
cal detail (see [6]), to give such a simple final result. This
suggests that we could have reached the same conclusion
more directly.

We now indicate how we can obtain the same results by
demanding consistent histories of the φ field.
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4 The Decoherence Functional
The notion of consistent histories provides a parallel ap-
proach to classicality. Quantum evolution can be consid-
ered as a coherent superposition of fine-grained histories.
If one defines the c-number field φ(x) as specifying a fine-
grained history, the quantum amplitude for that history is
Ψ[φ] ∼ eiS[φ] (we continue to work in units in which
~ = 1).

In the quantum open system approach that we have
adopted here, we are concerned with coarse-grained histo-
ries

Ψ[α] =
∫
Dφ eiS[φ]α[φ] (26)

where α[φ] is the filter function that defines the coarse-
graining.

From this we define the decoherence function for two
coarse-grained histories as

D[α+, α−] =
∫
Dφ+Dφ− ei(S[φ+]−S[φ−])α+[φ+]α−[φ−].

(27)
D[α+, α−] does not factorise because the histories φ± are
not independent; they must assume identical values on a
spacelike surface in the far future.

A necessary and sufficient condition for the validity of
the sum rules of probability theory (i.e. no quantum inter-
ference terms) is [11]

ReD [α+, α−] ≈ 0, (28)

when α+ 6= α− (although in most cases the stronger condi-
tion D[α+, α−] ≈ 0 holds [12]). Such histories are consis-
tent [13].

For our particular application, we wish to consider as
a single coarse-grained history all those fine-grained ones
where the full field φ remains close to a prescribed classical
field configuration φcl. The filter function takes the form

αcl[φ] =
∫
DJ ei

R
J(φ−φcl)αcl[J ]. (29)

In principle, we can examine general classical solutions for
their consistency but, in practice, it is simplest to restrict
ourselves to solutions of the form (13). In that case, we have
made a de facto separation into long and short-wavelength
modes whereby, in a saddle-point approximation over J ,

D(φ+
cl, φ

−
cl) ∼ exp{iSCG[φ+

cl, φ
−
cl ]}. (30)

As a result,

|D(φ+
cl, φ

−
cl)| ∼ exp{−ImδS[φ+

cl, φ
−
cl ]} (31)

For the instantaneous quench of (14), using the late time be-
haviour φ±cl ∼ eµsφ±0 , ImδS[φ+

cl, φ
−
cl ] takes the form

Im δS ∼ V ∆2

µ2

∫ t

0

ds

∫ t

0

ds′e2µs e2µs′F (k0, s, s
′). (32)

From this viewpoint adjacent histories become consis-
tent at the time tD, for which

1 ≈
∫ tD

0

dt Im δS. (33)

5 The Decoherence Time

We have used the same terminology for the time tD since,
on inspection, (33) is identical to (19) in defining the onset
of classical behaviour. As we noted, in practice the use of
the decoherence functional looks to be less restrictive than
the master equation, and we hope to show this elsewhere.

For the moment what is of interest is whether tD, based
on linearisation of the model, occurs before backreaction
sets in, to invalidate this assumption. When all the details
are taken onto account, whether from (14) or (23), tD satis-
fies

1 = O
(

λ2V T 2
c

µ3
∆2

)
exp(4µtD) (34)

or, equivalently

exp(4µtD) = O
(

µ3

λ2V T 2
c ∆2

)
(35)

For the rapid quenches considered here, linearisation mani-
festly breaks down by the time t∗, for which 〈φ2〉t∗ ∼ η2,
given by

exp(2µt∗) = O
(

µ

λTc

)
. (36)

The exponential factor, as always, arises from the growth of
the unstable long-wavelength modes. The factor T−1

c comes
from the coth(βω/2) factor that encodes the initial Boltz-
mann distribution at temperature T & Tc.

Our conservative choice is that the volume factor V is
O(µ−3) since µ−1 (the Compton wavelength) is the smallest
scale at which we need to look. With this choice it follows
that

exp 2(t∗ − tD) = O
( |∆|

µ2

)
) = O(φ̄δ), (37)

where φ̄ = (φ+
< + φ−<)/2µ, and δ = |φ+

< − φ−<|/2µ. Within
the volume V we do not discriminate between field ampli-
tudes which differ by O(µ), and therefore take δ = O(1).
For φ̄ we note that, if tD were to equal t∗, then φ̄2 =
O(1/λ) À 1, and in general φ̄ > 1. As a result, if there
are no large numerical factors, we have

tD < t∗, (38)

and the density matrix has become diagonal before the tran-
sition is complete. Detailed calculation shows [6] that there
are no large factors [14].

We already see a significant difference between the be-
haviour for the case of a biquadratic interaction with an en-
vironment given in (19) and the more familiar linear inter-
action usually adopted in quantum mechanics. This latter
would have replaced ∆/µ2 just by δ, incapable of inducing
decoherence before the transition is complete.

We note that, once the interaction strength is sufficiently
weak for classical behaviour to appear before the transition
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is complete, this persists, however weak the coupling be-
comes. It remains the case that, the weaker the coupling, the
longer it takes for the environment to decohere the system
but, at the same time, the longer it takes for the transition to
be completed, and the ordering (38) remains the same. This
is equally true for more general quenches provided the sys-
tem remains approximately Gaussian until the transition is
complete.

6 Extensions of the Model
Finally, it has to be said that taking only the short wave-
length modes of the field as a one-loop system environment
is not a robust approximation. We should sum over hard
thermal loops in the φ-propagators. To be in proper control
of the diffusion we need an environment that interacts with
the system, without the system having a strong impact on the
environment. We are helped in that, in the early universe,
the order parameter field φ will interact with any field χ for
which there is no selection rule. Again, it is the biquadratic
interactions that are the most important.

The most simple additional environment is one of a large
number N À 1 of weakly coupled scalar fields χa, for
which the action (1) is extended to

S[φ, χ] = S[φ] + S[χ] + Sint[φ, χ], (39)

where S[φ] is as before, and

S[χa] =
N∑

a=1

∫
d4x

{
1
2
∂µχa∂

µχa − 1
2
m2

aχ
2
a

}
,

Sint[φ, χ] = −
N∑

a=1

ga

8

∫
d4xφ2(x)χ2

a(x), (40)

where m2
a > 0. For simplicity we take weak couplings

λ ' ga and comparable masses ma ' µ. The effect of a
large number of weakly interacting environmental fields is
twofold. Firstly, the χa fields reduce the critical tempera-
ture Tc and, in order that T 2

c = 2µ2

λ+
P

ga
À µ2, we must

take λ +
∑

ga ¿ 1. Secondly, the single χ-loop contri-
bution to the diffusion coefficient is the dominant χ-field
effect if, for order of magnitude estimates, we take identical
ga = ḡ/

√
N , whereby 1 À 1/

√
N À ḡ ' λ. With this

choice the effect of the φ-field on the χa thermal masses is,
relatively, O(1/

√
N) and can be ignored. We stress that this

is not a Hartree or large-N approximation of the type that,
to date, has been the main way to proceed [15, 16, 17] for a
closed system.

Provided the change in temperature is not too slow the
exponential instabilities of the φ-field grow so fast that the
field has populated the degenerate vacua well before the
temperature has dropped to zero. Since the temperature Tc

has no particular significance for the environment field, for
these early times we can keep the temperature of the envi-
ronment fixed at Tχ = O(Tc) (our calculations are only at
the level of orders of magnitude). As before, we split the
field as φ = φ< + φ>. The χ-fields give an additional one-
loop contribution to D(k0, t) with the same u(s) but a G++

constructed from (all the modes of) the χ-field. The separa-
tion of the diffusion coefficient due to χ into fast and slow
factors proceeds as before to give a term that is identical to
(25) (or (32)) but for its ḡ2 prefactor.

Diffusion effects are additive at the one-loop level, and
the final effect is to replace λ2 in (34) by λ2+ḡ2 > λ2, while
leaving (36) unchanged. Although the relationship between
Tc and λ has been uncoupled by the presence of the χa, the
relationship (37) persists, with an enhanced right hand side,
requiring that (38) is even better satisfied.

Given that the effect of further environmental fields is
to increase the diffusion coefficient and speed up the onset
of classical behaviour, additional fields interacting with the
φ field seem superfluous. However, the symmetries of the
universe seem to be local (gauge symmetries), rather than
global, and we should take gauge fields into account. We
conclude with some observations from our work in progress
[18] with local symmetry breaking.

Local symmetry breaking is not possible for our real φ
field but, as a first step [5], it is not difficult to extend our
model to that of a complex φ-field. At the level of O(2)
global interactions with external fields and with its own
short-wavelength modes, things are largely as before. Lo-
cal U(1) symmetry breaking is most easily accommodated
by taking the φ-field to interact with other charged fields χ
through the local U(1) action

S[φ,Aµ, χ] = S[φ,Aµ] + Sχ[Aµ, χ], (41)

in which S[φ,Aµ] =
∫

d4x

{
(Dµφ)∗Dµφ + µ2φ∗φ− λ

4
(φ∗φ)2 − 1

4
FµνFµν

}
,

(42)
and

S[Aµ, χ] =
∫

d4x
{
(Dµχ)∗Dµχ + m2χ∗χ

}
. (43)

For simplicity we have taken a single χ field. The theory
(41) shows a phase transition at temperature Tc, and we as-
sume couplings are such as to make this transition contin-
uous. At the level of one loop the additional term to the
diffusion function has derivative couplings. Having made a
gauge choice, these give rise to explicit momenta factors kµ

in the generalisation of F . Unlike the contributions to D that
we have seen so far, which are largely insensitive to the mo-
mentum scale k0, these contributions are strongly damped at
large wavelength. In consequence, they barely enhance the
onset of classical behaviour but, given that the effect of the
other environmental modes is to enforce classical behaviour
so quickly, it hardly matters.

7 Conclusion
The previous paragraph says it all. For fast quenches weakly
coupled environments make a scalar order parameter field
decohere before the transition is complete, under very gen-
eral assumptions. An essential ingredient for rapid deco-
herence is nonlinear coupling to the environment, inevitable
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when that environment contains the short-wavelength modes
of the order parameter field. Had we only considered linear
coupling to the environment, as in [19], for example (but an
assumption that is ubiquitous in quantum mechanical mod-
els, from Brownian motion onwards) decoherence would not
have happened before the transition was complete, and we
would not know how to proceed, although classical correla-
tions would have occurred.
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