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Evolution of Chaos in the Matsumoto-Chua Circuit:
a Symbolic Dynamics Approach
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We use symbolic dynamics to follow the evolution of the Matsumoto-Chua circuit in the chaotic regime. We
consider the evolution of the whole population of unstable periodic orbits and of the associated trajectories, in
four chaotic attractors generated by the circuit. Symbolic planes and first return maps are built for different
values of the control parameter. The bifurcation mechanism suggests the possibility of the existence of a
homoclinic orbit.

1 Introduction
We use symbolic dynamics to revisit the well-studied
Matsumoto-Chua circuit. In this analysis we follow the be-
havior of the whole population of unstable periodic orbits
and of the associated trajectories, in four chaotic attractors
generated by Chua’s circuit in the chaotic regime. With a
convenient embedding, we use a natural partition that seems
to elucidate the specific bifurcation mechanism characteriz-
ing the evolution of the chaotic regime in the system, for a
certain range of the control parameter. We show that there is
a pattern in the way new (unstable) periodic orbits are cre-
ated, which is very similar to the mechanism that leads to a
homoclinic orbit in one-dimensional systems. The analysis
of the symbolic sequences of the trajectories of the circuit,
through its fragmentation patterns [6], reinforces the conjec-
ture that the model may present a homoclinic orbit.

This work is organized as follows. In section 2, we
present the Matsumoto-Chua circuit as well as the spiral-like
attractors associated with this model for a range of values of
the control parameter R. In section 3, we identify and ex-
tract the unstable periodic orbits and present the partitions
used to codify orbits and trajectories. We discuss the hy-
perbolic regime and show that the evolution of this circuit
is very similar to one-dimensional systems with homoclinic
chaos. In section 4, we show how the changes in the dynam-
ics of the circuit affects first return maps, symbolic planes
and fragmentation patterns. Finally, in section 5, we sum-
marize our conclusions.

2 The Matsumoto-Chua circuit
The Matsumoto-Chua circuit is a simple electronic circuit
made of two capacitors, one linear resistor, one inductor, and
one nonlinear diode (see Figs. 1(a) and 1(b)). This circuit is
modeled by the equations

C1
dv1

dt
=

(v2 − v1)
R

− h(v1) ,

C2
dv2

dt
=

(v1 − v2)
R

+ iL , (1)

L
diL
dt

= −v2 ,

where C1 and C2 are the capacitors, v1 and v2 the tensions
across the capacitors C1 and C2, R is the linear resistor,
L is the inductor, iL is the current across the inductor L,
and h(v1) is the characteristic curve in the (nonlinear) diode.
The function h(v1) (see Fig. 1(b)) is given by

h(v1) = m1v1+
1
2
(m2−m1)(|v1+BP |−|v1−BP |) , (2)

where m1, m2, and BP are constants. We fixed the follow-
ing values for these parameters: 1/C1 = 9.0, 1/C2 = 1.0,
1/L = 7.0, m1 = −0.5, m2 = −0.8 and BP = 1.0; R the
control parameter of the model.
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Figure 1. (a)Chua’s circuit, with two capacitors (C1 and C2), one
linear resistor (R), one linear inductor (L), and a nonlinear diode
(Nr). (b) Characteristic curve of the non-linear diode.

As the parameter R changes, the Matsumoto-Chua cir-
cuit exhibits a complex and rich behavior. This richness has
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been explored extensively in previous works (see for exam-
ple [8]). For R ≈ 1.55, we can identify a symmetric pair
of spiral-like attractors that, after a frontier crisis that oc-
curs for R ≈ 1.47, merge into a single attractor called by us
“double-scroll”. In this work we analyze in detail the pair
of spiral-like attractors for R = 1.510, R = 1.500, and
R = 1.495, which we call A, B, and C, respectively. Be-
cause the pair of attractors is symmetric, only one of them
needed to be analyzed. The results for attractors A, B, and
C, are then compared with results obtained for a forth attrac-

tor, D, that appears for a slightly larger value of R = 1.488,
right after what may be the the onset of a hyperbolic regime.

All the attractors were obtained from numerical integra-
tion of equations 1. As an example, a picture of attractor B
can be seen in figure 2(a), together with its first return map
(fig. 2(b)). Attractors A, B and C show a similar behavior.
Attractor D will be better discussed in section 4.

In order to build the first return maps, we used a Poincaré
section Pv+

1
defined by

c

Pv+
1

=
{

(v1, v2, iL) ∈ R3 | v1 = v+
1 =

m2 −m1

1/R + m1
, v2 < v+

2 = 0
}

, (3)
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Figure 2. (a) Spiral-like attractor B, (R = 1.500), obtained from
numerical integration of eq. (1). The full vertical line indicates
the Poincaré section P

v+
1

from which the first return map (b) was
obtained. Attractors A and C present a similar behavior.

where (v+
1 =

m2 −m1

1/R + m1
, v+

2 = 0, i+L = −v+
1 ) define one

of the fixed points of the attractor. Following [9], and tak-
ing advantage of the equivariant symmetry presented by the
model, we adopted, for the first return map, a new variable
w = |iL|+ ε|v2|, where ε is an empirical factor (ε = 1.3 for
attractors A, B, C, and 1.2 for attractor D). If the first return
map is written in terms of either iL or v2, the branches are
shown in duplicate, which makes it more difficult to identify
the critical points and, consequently, establish the correct
partition needed to code the dynamics. In Fig. 2(b) we see
that, for attractor B, the first return map has two branches
and a single critical point (at w = wc), as an unimodal map.

As usual, we associate the symbol 0 with the left branch
(w < wc) and the symbol 1 with the right branch (w > wc).
We observe essentially the same scenario for attractors A
and C. However, that does not happen for attractor D (see
Fig. 4(d)). Now the first return map is bimodal, and we will
need three symbols to code the dynamics.

3 Unstable periodic orbits and sym-
bolic dynamics

We combined two numerical methods to extract the unstable
periodic orbits from attractors A, B, C and D [9]. First, we
estimate the positions of the unstable periodic orbits with a
method known as close returns [10]. We then refined the
estimate employing a Newton-Raphson algorithm, adapted
to differential equations [11]. Each periodic orbit can then
be identified by a (finite) sequence of points w(i), that are
the intersections of the orbit with a Poincaré section (in our
case defined by (3)). The sequence of points w(i) is then
codified into a symbolic sequence Si of zeros and ones, fol-
lowing the usual procedure [7, 4, 5]. The results of applying
this procedure to attractors A, B and C are shown in tables I,
II and III, respectively. In the tables, for each orbit, one can
see the coordinates iL and v2 of the intersections of the orbit
with the Poincaré section Pv+

1
, its period, and the symbolic

sequence that represents it.

TABLE I. Spectrum of unstable periodic orbits for attractor A up to period 4. For each orbit the table shows the period, the total number
of orbits with the same period, coordinates v2 and iL, orbital period and symbolic sequence. Coordinates v2 an iL are the coordinates of
the (negative) periodic point farthest in the Poincaré section P

v+
1

. The orbit codified by the symbol 0 is pruned and does not appear in the
attractor.

period orbits found v2 iL orbital period symbolic sequence
1 1 0.375245 2.110601 3.258975 1
2 1 0.400512 2.149006 6.432970 10
3 2 0.401600 2.164640 9.644468 101

0.409619 2.171327 9.569009 100
4 3 0.398906 2.158945 12.923580 1011

0.411168 2.182921 12.738679 1001
0.414299 2.183881 12.694483 1000
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TABLE II. Spectrum of unstable periodic orbits for attractor B up to period 6. For each orbit the table shows the period, the total number
of orbits with the same period, coordinates v2 and iL, orbital period and symbolic sequence. Coordinates v2 an iL are the coordinates of
the (negative) periodic point farthest in the Poincaré section P

v+
1

. The orbit codified by the symbol 0 is pruned and does not appear in the
attractor.

period orbits found v2 iL orbital period symbolic sequence
1 1 0.355969 2.060343 3.279190 1
2 1 0.380220 2.098244 6.461487 10
3 2 0.380330 2.112240 9.696066 101

0.388819 2.119516 9.603776 100
4 3 0.378275 2.107688 12.992824 1011

0.388977 2.129868 12.804077 1001
0.393345 2.131243 12.734498 1000

5 6 0.379110 2.109425 16.264183 10111
0.383923 2.107424 16.170103 10110
0.387477 2.126501 16.109447 10011
0.389686 2.122016 16.062037 10010
0.393488 2.138606 15.911679 10001
0.395959 2.138435 15.866200 10000

6 9 0.378759 2.108697 19.546526 101111
0.382473 2.103817 19.459271 101110
0.385952 2.123788 19.283093 100101
0.388119 2.127780 19.375027 100111
0.391105 2.125702 19.309144 100110
0.392440 2.136122 19.220406 100011
0.394071 2.133682 19.189325 100010
0.396380 2.143670 19.036973 100001
0.397506 2.143324 19.018181 100000

TABLE III. Spectrum of unstable periodic orbits for attractor C up to period 7. For each orbit the table shows the period, the total number
of orbits with the same period, coordinates v2 and iL, orbital period and symbolic sequence. Coordinates v2 an iL are the coordinates of
the (negative) periodic point farthest in the Poincaré section P

v+
1

. The orbit codified by the symbol 0 is pruned and does not appear in the
attractor.

period orbits found v2 iL orbital period symbolic sequence
1 1 0.346631 2.035522 3.289718 1
2 1 0.370350 2.073135 6.476573 10
3 2 0.370110 2.086434 9.722736 101

0.378688 2.093893 9.622686 100
4 3 0.368286 2.082318 13.029050 1011

0.378391 2.103745 12.837062 1001
0.383089 2.105259 12.758032 1000

5 6 0.369006 2.083846 16.311586 10111
0.373797 2.081734 16.210760 10110
0.377097 2.100762 16.150964 10011
0.379468 2.096118 16.096295 10010
0.382666 2.112373 15.954404 10001
0.385671 2.112181 15.897681 10000

6 9 0.368712 2.083222 19.604144 101111
0.372478 2.078432 19.510288 101110
0.375699 2.098180 19.328885 100101
0.377634 2.101866 19.428620 100111
0.380821 2.099620 19.353596 100110
0.381782 2.110216 19.269788 100011
0.383745 2.107347 19.229038 100010
0.385310 2.117473 19.098146 100001
0.387337 2.116889 19.067501 100000
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Continuation.

period orbits found v2 iL orbital period symbolic sequence
7 18 0.368828 2.083468 22.892743 1011111

0.370050 2.086053 22.753241 1011011
0.373016 2.079778 22.795416 1011110
0.373846 2.081856 22.685489 1011010
0.376020 2.098544 22.633431 1001011
0.377418 2.101425 22.722940 1001111
0.378068 2.103082 22.559760 1001101
0.379304 2.095697 22.573458 1001010
0.380283 2.098224 22.653816 1001110
0.380954 2.108957 22.444587 1000101
0.381248 2.100457 22.471575 1001100
0.382171 2.110981 22.544866 1000111
0.383375 2.106013 22.380280 1000100
0.384411 2.109156 22.489943 1000110
0.384689 2.115781 22.403247 1000011
0.386120 2.113963 22.373126 1000010
0.387501 2.121359 22.350529 1000001
0.388674 2.121168 22.377672 1000000

The dynamics of the system, in cases where it can be
coded by two symbols only (unimodal maps), can be rep-
resented by a diagram known as the alternating binary tree
(see Fig. 3). The alternating binary tree represents all se-
quences that form the itinerary; they appear in a specific
order, known as “natural order” [11]. A given orbit is rep-
resented by the specific sequence - among all compatibles
with its itinerary - that appears most at right in the alternat-
ing binary tree. It can be proved that, for unimodal maps
[12], if an specific orbit is present in a dynamical system, all
the other orbits that precede it according to the natural order
will also be present. An inspection of Fig. 3 shows that,
periodic orbits of period n, represented by sequences of the
form s

(n)
h = (100...0)︸ ︷︷ ︸

n

(one followed by (n − 1) zeros) are

always at the extreme right of the binary tree. So, the iden-
tification of an orbit of the type s

(n)
h means that the system

has all possible orbits, up to level n.

... ... ... ... ... ...... ...

s h
(n)

= 100...0

nível 3

nível 1

nível 2

nível n

00 01 11 10

000 001 010011 110 111 101 100

0 1
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Figure 3. Alternating binary tree for unimodal maps. In this di-
agram the periodic orbits are ordered in a natural sequence, from
left to right. If a periodic orbit is present in the attractor, all other
orbits that precede it in this tree are also present.

An orbit predicted by the alternating binary tree, but
not found in the dynamical system, is said to have been
“pruned”. Note that, in the case of attractor A, some orbits
start to be pruned for n = 5 (see table I). The same behavior
can be observed in attractors B and C. But in those cases
orbits start to be pruned for n = 7, and n = 8, respectively
(see tables II and III). Note that the period 1 orbit repre-
sented by the symbolic sequence 0 is not present in any of
the attractors.

In one-dimensional maps, as a dynamical system ap-
proaches homoclinicity, that is, as the unstable manifold
Wu, associated with a saddle cycle or a saddle point ap-
proaches and touches a stable manifold W s, many homo-
clinic points are created. As a consequence, the dynamics of
the system becomes more and more complex, with more and
more unstable periodic orbits. After the last tangency be-
tween manifolds Wu and W s, there is an infinite number of
homoclinic points. When the homoclinic orbit appears, the
dynamics reaches its highest degree of complexity; all pos-
sible periodic orbits are present and the alternating binary
tree is complete. We then say that the system has reached
the hyperbolic regime.

A homoclinic orbit can be represented by the symbolic
sequence OH = 1000... = sn→∞

h = (100...) [2]. The
symbol “1” represents the re-injection of the orbit towards
the saddle cycle, while the infinite number of symbols “0”
represent the divergent movement of the orbit around this
point. Such an orbit is represented by the last sequence that
appears in a complete and infinite alternating binary tree, so
the observation of a homoclinic orbit in a dynamical sys-
tem implies the existence of an infinite number of unstable
periodic orbits, of all possible periods. The occurrence of
a homoclinic orbit has been identified as the mechanism re-
sponsible for the onset of chaos in many dynamical systems.
The Rossler attractor [1] and some experimental systems as
glow discharge [2] or lasers with a saturable absorber [3] are
well-studied examples of more complex systems that have
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their chaotic behavior associated with the presence of a ho-
moclinic orbit. In such cases the system is said to display
homoclinic chaos. The analysis of those dynamical systems
has been based on the identification of homoclinic bifurca-
tions [3] - a sequence of saddle-node bifurcations that alter-
nates with period-doubling bifurcations - that leads to the
appearance of a homoclinic orbit. The occurrence of such
a sequence of bifurcations, before the observation of a ho-
moclinic orbit, has many times been considered sufficient
to assume homoclinicity. This sequence induces a ramified
structure in first-return maps, builded in a special way so
they can capture the number of turns that a trajectory per-
forms around a saddle point (or an unstable hyperbolic sad-
dle cycle [2, 3]) before being reinjected in the attractor. Each
of the branches of the first-return maps is associated with a
specific number of turns that the system gives around the
unstable saddle point or cycle.

The extrapolation, for smaller values of the control pa-
rameter R, of the sequence of unstable periodic orbits found
in attractors A, B and C (and shown, respectively, in ta-
bles I, II and III), allows us to conjecture about the existence
of a homoclinic orbit OH. This is better seen in table IV,
which shows, for attractors A, B and C, the last level n for
which all sequences predicted by the alternating binary tree
have been found. One can observe that the last sequence
in the alternating binary tree is, up to some level n, of the
form s

(n)
h = (100...0)︸ ︷︷ ︸

n

, with increasing values of n for de-

creasing values of R. The increase in the number of zeros
in the orbits of table IV is associated with an increase in the
divergent movement around the saddle cycle, in a typical be-
havior of systems with a homoclinic orbit. This observation
gives support to a conjecture that, in the Matsumoto-Chua
circuit, as the parameter R decreases, new orbits of period
n s

(n)
h = (100...0) are created, filling up every level of

the binary tree until the hyperbolic regime is attained. The
analysis of the symbolic planes and fragmentation patterns
gives further support to this conjecture.

TABLE IV. Last level (and the corresponding symbolic sequence)
that presents a complete spectrum of orbits in the alternating binary
tree, for attractors A, B and C.

attractor R level n s
(n)
h

A 1.510 4 (1000)
B 1.500 6 (100000)
C 1.495 7 (1000000)

4 Symbolic planes
The changes in the dynamics introduced by the development
of chaos in the Matsumoto-Chua circuit can be observed
both in the first-return maps and in the symbolic planes, for
attractors A, B, C, and D.

The symbolic plane gives a way of summarizing the or-
dering of symbolic sequences in a two-dimensional map.
This method has been widely employed to identify topolog-
ically similar systems (see examples in references [13], [15]
and [14]). Each point (α, β) in a Cartesian plane is associ-
ated with a possible sequence in a way described below. If
all possible orbits are present, the plane is completely filled.
Empty points, represent orbits that have been pruned and are
forbidden. From the symbolic plane it is possible to identify
the pruning fronts and the kneading sequences.

The coordinates (α, β) of a specific orbit or trajectory
is built in a unique way from the symbolic sequence of ze-
ros and ones that represents the orbit, through the following
procedure. Let the symbolic sequence

. . . s−m . . . s−2s−1s0s1s2 . . . sm . . . si ∈ 0, 1 , (4)

represent a given trajectory. The symbol s0 (representing the
current position of the system) splits the sequence into two
parts, a forward sequence given by s0s1s2 . . . sm . . . which
represents the “symbolic future”, and a backward sequence
. . . s−m . . . s−2s−1, which represents the “symbolic past”.
The symbolic coordinates (α, β) for the point that will rep-
resent this orbit are then given, in binary notation, by

α = 0.a1a2a3 . . . , β = 0.b1b2b3 . . . , (5)

where

ai =
i−1∑

j=0

sj (mod2) , and bi =
i∑

j=1

s−j (mod2) ,

(6)
where α and β correspond to real numbers, given by

α =
m∑

i=1

ai

2i
, β =

m∑

i=1

bi

2i
. (7)

This formalism can be extended to represent a dynamics
described by 3 or more symbols (see, for example,[15] and
[16]).

In Figs. 4(a), 4(b), 4(c) and 4(d) we can see the first re-
turn maps and the symbolic planes for attractors A, B, C
and D, respectively. The first return maps of attractors A,
B and C show that those attractors have a unimodal behav-
ior, and can essentially be described by a symbolic dynamics
made of two symbols. The first-return map for attractor A
(R = 1.510) indicates that the system does not have all pos-
sible orbits; the symbolic plane shows many forbidden re-
gions (empty regions) together with allowed regions (filled
with dots). Comparing with Figs. 4(b) and 4(c) (attractors
B and C, for R = 1.500 and R = 1.495, respectively) we
notice that the left branch of the first-return map approaches
more and more the diagonal, and less orbits are forbidden.
Fig. 4(c) captures the dynamics in a point with almost no
forbidden orbits.
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Figure 4. First-return maps and corresponding symbolic planes for attractors A,B, C and D respectively. We can observe that, as the
parameter R decreases, the symbolic plane is more and more complete. From A to C the symbolic planes show an increase in the allowed
regions, indicating the approach of the hyperbolic regime. Attractor D shows a complete different scenario. The first-return map is not
unimodal anymore, and in the symbolic plane (now associated with a symbolic dynamics of three symbols) we observe a predominance of
forbidden regions.

Figure 4(d) (attractor D, with R = 1.488) shows a com-
pletely different scenario, with the drastic changes in the
behavior of the system that may have been induced by the
onset of a homoclinic regime. Now the first-return map is
bimodal. The symbolic plane, now built with a dynamics of
three symbols, is completely different, with many forbidden
regions.

In unimodal maps with a unidimensional structure, the
pruning front, in the symbolic plane, is a continuous line,
while in two-dimensional maps the pruning front is discon-
tinuous [14]. Fig. 5, an amplification of the symbolic planes
presented in Fig. 4, clearly shows that there is a disconti-
nuity in the pruning fronts of attractors A, B and C, indi-
cating that they do have a two-dimensional structure. We

see, however, that those pruning fronts get closer and closer
to each other as we go from attractor A to C 1. In or-
der to measure how good is the one-dimensional approxi-
mation, we can define an index d, equal to the integer part

of log2(
1

α2 − α1
), where α1 and α2 define the smaller and

larger pruning fronts, respectively. The index d gives the
level, in the binary tree, up to which the behavior of the sys-
tem can be considered one-dimensional. For instance, for
attractor A, α1 = 0.9472 and α2 = 0.9605, so dA = 4.
Analogously, dB = 7 and dC = 11. Those results show
that the one-dimensional approximation becomes better and
better as the chaotic regime evolves.

1notice that, in order to show the existence of a discontinuity, the scales of each symbolic plane of Fig. 5 are not the same.
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Figure 5. Blow up of the pruning front region of Figs. 4A, 4B and
4C, showing the two-dimensional structure of attractors A, B and
C.

We are aware that, if we have a 2D map, the existence of
a 10n orbit does not force the existence of all previous orbits
of the natural sequence, as it happens in 1D maps. How-
ever, we think that we have strong indications that, at least
in these case, as the chaotic regime evolves and the dynam-
ics of the system becomes more and more one-dimensional,
it approaches the dynamical behavior of a typical unimodal
map, and our observations may in fact indicate the existence
of homoclinic chaos. It would be interesting to observe if,
in other systems, for which it is well established that the hy-
perbolic regime is reached, the same scenario is found.

The fragmentation patterns (see Fig. 6) give another way
of showing that Chua’s circuit may be approaching a homo-
clinic regime. Through those patterns one can build a picto-
rial representations of the symbolic sequences that represent
the trajectories. We associate a black block with symbol 1
and a white block with symbol 0. For instance, the sequence
100 would be represented by the sequence of blocks “black-
white-white”. The blocks are placed in sequence, side by
side, from left to right, up to 50 blocks; after that, a new row
of symbols is added on top of the previous one. The process
continues until a grid of 50 × 50 blocks is built. As the
chaotic regime evolves, the allowed trajectories will present
an increasing number of symbols 0, associated with the di-
vergent movement around the saddle cycle, as compared to
the number of symbols “1”, associated with the reinjection
movement.

(b)(a)

(c)

Figure 6. Fragmentation patterns for symbolic sequences of attrac-
tors A, B and C respectively.

By visual inspection, it is possible to see that the orbits
of attractor A (Fig. 6a) have a predominance of symbols 1
(black blocks), while in attractor C (Fig. 6c) there is a pre-
dominance of symbols 0, reflecting the fact that, as the pa-
rameter R decreases, the trajectories stay longer and longer
in a divergent movement around the saddle cycle.

5 Conclusions
In conclusion, we have extracted the unstable periodic orbits
from attractors A, B, C and D of the Matsumoto-Chua cir-
cuit. We have used symbolic dynamics in order to show that
as the chaotic regime evolves the Matsumoto-Chua circuit
has a dynamics that is increasing one-dimensional. We have
presented numerical evidence that a homoclinic orbit may
be present in the Matsumoto-Chua circuit. The attractors of
the dynamics of the circuit were analyzed for four different
values of the control parameter R, R ∈ [1.510, 1.4888]. We
found that there is a pattern in the way new unstable periodic
orbits are created as the control parameter R is continuously
decreased. From this pattern, if the system had a truly 1D
dynamics, it would be possible to infer the existence of a
homoclinic orbit. If this behavior comes to be checked in
similar systems, it will be a new approach to the problem
of identifying the onset of homoclinicity that could be used
in many other problems, either in experimental situations or
numerical simulations.

For each of the studied attractors (attractors A, B and
C), we have extracted the unstable periodic orbits, built
first-return maps, codified the dynamics and ordered the or-
bits according to the natural order in an alternating binary
tree. It has been possible to see that the last orbit in the di-
agram, before orbits start to be pruned, was always of the
form s(n) = (100...0)︸ ︷︷ ︸

n

, with n → ∞ as the parameter R

decreases. Every level of the binary tree is then filled up
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as in a one-dimensional map, until the hyperbolic regime is
attained. We conjecture that, because the behavior of the
system becomes close to a one-dimensional map, maybe a
homoclinic orbit exists in this circuit.

We also built symbolic planes and fragmentation pat-
terns for all the studied sequences and trajectories, which
gives further support to our conjecture.

6 Acknowledgements
We acknowledge the financial support of the Brazilian
agency CNPq.

References
[1] P. Gaspard, R. Kapral, G. Nicolis, J. Stat. Phys. 35, 697

(1984).

[2] T. Braun, J. A. Lisboa, Int. J. Bifurc. Chaos, 4, 1483 (1994).

[3] F. Papoff, A. Fioretti, E. Arimondo, Phys. Rev. A 44, 4639
(1991).

[4] J. Plumecoq, M. Lefranc, Physica D 144, 231 (2000).

[5] N. B. Tufillaro, T. Abbott, J. Reilly, An experimental ap-
proach to nonlinear dyanamics and chaos (Addison-Wesley,
California, 1992).
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