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Semiclassical Coulomb Excitation Matrix Elements
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Coulomb excitation matrix elements are often expressed in terms of the scalar electric potential and the elec-
tromagnetic fields. We show that, through an appropriate gauge transformation, the excitation matrix elements
can always be expressed in terms of the electromagnetic fields alone. This change in representation becomes
important when the widths of the excited states are taken into account.

1 Introduction

In an often cited work on Coulomb excitation[1] and in a
more recent analysis of the same topic[2], the Coulomb ex-
citation matrix elements are expressed in terms of the scalar
electric potential and the electromagnetic fields. This repre-
sentation of the interaction is adequate for use in a perturba-
tive treatment and also provides a reasonably good estimate
of the excitation cross section for states of zero width. In
fact, in these two cases, the results are almost identical to
those obtained by directly using the electromagnetic fields,
or their derivatives, as these would appear in a classical treat-
ment of the problem.

However, the mixed potential/field representation of the
interaction is not adequate for a nonperturbative treatment of
of excited states of finite width. In this case, the mixed rep-
resentation yields large, unphysical cross sections due to the
absorption of flux after excitation by the long-range poten-
tial term. The excitation cross section of a dipole transition,
in particular, diverges in this case. This makes a treatment of
multiple Coulomb excitation incorporating fluctuations con-
tributions, such as those of the Brink-Axel type[3, 4, 5, 6, 7],
impossible in the mixed representation, since finite widths
are a fundamental component of such models.

In the following, we show that, through an appropriate
gauge transformation, the Coulomb excitation matrix ele-
ments can always be expressed in terms of the electromag-
netic fields alone. Aside from making a satisfying parallel
with the classical case, the pure field representation of the
interaction matrix elements is found to provide physically
reasonable cross sections[7].

2 Expanding the interaction Hamilto-
nian

The electromagnetic interaction Hamiltonian is given by

V (t) =
∫

d3x

(
ρ(~x, t)ϕ(~x, t)− 1

c
~J(~x, t) · ~A(~x, t)

)
,

whereϕ(~x, t) and ~A(~x, t) are the scalar and vector electro-
magnetic potentials, for which

~E(~x, t) = −∇ϕ(~x, t)− 1
c

∂ ~A(~x, t)
∂t

and
~B(~x, t) = ∇× ~A(~x, t),

and we assumeρ(~x, t) and ~J(~x, t) to be the charge and cur-
rent density of a nucleus. We assume that the source of the
electromagnetic field does not overlap the nucleus.

We want to obtain the first few terms contributing to the
energy in the expansion of the electromagnetic fields about
the center of the nucleus,~x = 0. Such an expansion is rea-
sonable if the electromagnetic fields are slowly varying over
the extent of the nucleus[8] We thus take
∫

d3x ρ(~x, t)ϕ(~x, t) ≈
∫

d3x ρ(~x, t) (ϕ0(t) + ~x · ∇ϕ0(t)

+
1
2
~x~x · ∇∇ϕ0(t) + · · ·

)

and∫
d3x ~J(~x, t) · ~A(~x, t) ≈

∫
d3x ~J(~x, t) ·

(
~A0(t) + ~x · ∇ ~A0(t) + · · ·

)
,
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where the subscript0 on the fields and their derivatives de-
notes the evaluation of these at the point~x = 0.

Evaluation of the scalar potential terms is straightfor-
ward. Evaluation of the vector potential terms requires a
bit more work. We use the continuity equation,

∇ · ~J +
∂ρ

∂t
= 0,

to derive two supplementary identities:
∫

d3xJk =
∫

d3x
(
∇ ·

(
xk

~J
)
− xk∇ · ~J

)

=
∫

d3xxk
∂ρ

∂t
,

where the integral of the exact divergence is zero due to the
finite extent of~J , and
∫

d3xJkxi =
∫

d3x
(
∇ ·

(
xk

~J
)

xi − xkxi∇ · ~J
)

=
∫

d3x

(
−xk

~J · ∇xi + xkxi
∂ρ

∂t

)

= −
∫

d3xJixk +
∫

d3xxkxi
∂ρ

∂t

which we rewrite as∫
d3x (Jkxi + Jixk) =

∫
d3xxkxi

∂ρ

∂t
.

Using the first of these, we can write
∫

d3x ~J(~x, t) · ~A0(t) =
∑

k

∫
d3x Jk(~x, t)A0k(t)

=
∑

k

∫
d3x

∂ρ

∂t
xkA0k(t)

=
∫

d3x
∂ρ

∂t
~x · ~A0(t).

Using the second, we find
∫

d3x ~J(~x, t) · (~x · ∇) ~A0(t) =

=
∑

i,k

∫
d3xJk(~x, t)xi∂iA0k(t)

=
1
2

∑

i,k

∫
d3x ((Jkxi + Jixk) ∂iA0k

+(Jkxi − Jixk) ∂iA0k)

=
1
2

∫
d3x

∂ρ

∂t
~x · (~x · ∇) ~A0(t)

+
1
2

∫
d3x ~J ·

(
(~x · ∇) ~A0 −∇(~x · ~A0)

)
,

where the operator∇ acts only the vector potential~A0 in
the last term. We can manipulate the integrand of the sec-
ond term further,

~J ·
(
(~x · ∇) ~A0 −∇(~x · ~A0)

)
= − ~J ·

[
~x×

(
∇× ~A0

)]

=
(
~x× ~J

)
·
(
∇× ~A0

)
,

so that we may finally write for the entire term,
∫

d3x ~J(~x, t) · (~x · ∇) ~A0(t) =

=
1
2

∫
d3x

∂ρ

∂t
~x · (~x · ∇) ~A0(t)

+
1
2

∫
d3x

(
~x× ~J

)
·
(
∇× ~A0(t)

)
.

Putting all the pieces together, we have

V (t) =
∫

d3x

(
ρ(~x, t)ϕ(~x, t)− 1

c
~J(~x, t) · ~A(~x, t)

)

≈
∫

d3x ρ(~x, t) (ϕ0(t) + ~x · ∇ϕ0(t)

+
1
2
~x~x · ∇∇ϕ0(t) + · · ·

)

−1
c

∫
d3x

∂ρ

∂t
~x ·

(
~A0(t) +

1
2
(~x · ∇) ~A0(t) + · · ·

)

− 1
2c

∫
d3x

(
~x× ~J

)
·
(
∇× ~A0(t)

)
+ · · ·

We can write the second line in this expansion as

−1
c

∫
d3x

∂ρ

∂t
~x ·

(
~A0(t) +

1
2
(~x · ∇) ~A0(t) + · · ·

)

= −1
c

∫
d3x

∂ρ

∂t

∫ ~x

0

~A(~l, t) · d~l.

3 The Gauge Transformation

Let us define a gauge transformationΛ(~x, t) as

Λ(~x, t) = −
∫ ~x

0

~A(~l, t) · d~l.

This gauge transformation will annul the integral above,
since for ~A′(~x, t) = ~A(~x, t) +∇Λ(~x, t),

∫ ~x

0

~A′(~l, t) · d~l =
∫ ~x

0

~A(~l, t) · d~l + Λ(~x, t) = 0.

It will not modify the magnetic field, since∇×∇Λ(~x, t) =
0. It will modify the scalar potential, however, which now
becomes

ϕ′(~x, t) = ϕ(~x, t)− 1
c

∂Λ
∂t

= ϕ(~x, t)+
1
c

∂

∂t

∫ ~x

0

~A(~l, t) ·d~l.

Expanding the transformed scalar potential about~x = 0,
we find

ϕ′(~x, t) = ϕ(~x, t) +
1
c

∂

∂t

∫ ~x

0

~A(~l, t) · d~l

≈ ϕ0(t) + ~x ·
(
∇ϕ0(t) +

1
c

∂ ~A0

∂t

)

+
1
2
~x~x · ∇

(
∇ϕ0(t) +

1
c

∂ ~A0

∂t

)
+ · · ·
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so that, after the gauge transformation, we have for the in-
teraction,

V (t) ≈
∫

d3x ρ(~x, t)

(
ϕ0(t) + ~x ·

(
∇ϕ0(t) +

1
c

∂ ~A0

∂t

)

+
1
2
~x~x · ∇

(
∇ϕ0(t) +

1
c

∂ ~A0

∂t

)
+ · · ·

)

− 1
2c

∫
d3x

(
~x× ~J

)
·
(
∇× ~A0(t)

)
+ · · · ,

which we can rewrite in terms of the fields~E0 and ~B0 as

V (t) ≈
∫

d3x ρ(~x, t)
(
ϕ0(t)− ~x · ~E0(t)

−1
2
~x~x · ∇ ~E0(t) + · · ·

)

− 1
2c

∫
d3x

(
~x× ~J

)
· ~B0(t) + · · · .

We can rewrite

~x~x · ∇ ~E0 =
∑

i,j

xixj∂jE0i =
∑

i,j

(xixj − ~x2δij/3)∂jE0i,

since∇ · ~E0 = 0, because of our assumption that the field-
producing charge does not overlap with the nuclear one. We
can then write

V (t) = qϕ(t)−~p· ~E0(t)−1
2

∑

i,j

Qij∂jE0i(t)−~m· ~B0(t)+· · · ,

whereq is the charge,

q =
∫

d3x ρ(~x, t),

~p is the eletric dipole operator,

~p =
∫

d3x~x ρ(~x, t),

theQij are the traceless electric quadrupole operators,

Qij =
∫

d3x (xixj − ~x2δij/3) ρ(~x, t),

and~m is the magnetic dipole operator,

~m =
1
2c

∫
d3x~x× ~J(~x, t).

4 Conclusions

As an example, we take as the potentials those due to a rela-
tivistic nucleus of chargeZ passing on a straight-line trajec-
tory with velocityv in the ẑ direction at a distanceb0 from

the center of the charge/current distribution of interest. We
then have

ϕ(~b, z, t) = γ
Ze√

(~b−~b0)2 + γ2(z − vt)2

and
~A(~b, z, t) =

v

c
ẑ ϕ(~b, z, t).

The electric field that results is

~E0⊥(t) = −γ~b0
Ze

(
~b2

0 + (γvt)2
)3/2

and

E0||(t) = −γvt
Ze

(
~b2

0 + (γvt)2
)3/2

,

which, together with the matrix elements of the dipole op-
erator~p, are all we need to describe excitations of the giant
dipole resonance. Matrix elements for other multipolarities
can be calculated similarly.

Bayman and Zardi[9] have noted that the mixed poten-
tial representation of the interaction matrix elements of Refs.
[1] and [2] also neglects relativistic contributions to the
quadrupole and higher multipolarity matrix elements that
could become important at high energies. These are also
taken into account correctly (and automatically) when the
pure field representation is used.
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