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Statistical Behavior and Symmetry Tests
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Symmetries and statistical properties in nuclei are closely related. The most striking example is the extremely
large enhancement of parity violation in neutron resonances. Statistical distributions can provide information
about the underlying character of nuclear properties. Level statistics and electromagnetic transition distributions
have been used successfully to provide unique tests of predictions of random matrix theory.

1 Introduction

The topic of fundamental symmetries is central to nuclear
physics. The issue of whether the fundamental interactions
are modified in the nuclear many-body system and how the
physical observables are affected by the many-body environ-
ment is the subject of many investigations. Since at least un-
der some circumstances the nucleus is well described by sta-
tistical approaches such as Random Matrix Theory (RMT),
it seem appropriate to examine the interplay between sym-
metries and statistical concepts. In addition to fundamental
symmetries, the nucleus displays a number of approximate
symmetries (isospin, the K quantum number, F spin, etc.)
which are crucially important to practicing nuclear physi-
cists. The interplay between these approximate symmetries
and statistical properties is also interesting.

We restrict the considerations here to discrete symme-
tries. This restriction is not essential, since there have been
many proposed experiments that utilize proposed enhance-
ments arising from stochastic properties. However, none of
these proposed experiments have been performed [1-5].

For fundamental symmetries we consider parity as the
classic example of the effect of statistical properties on phys-
ical observables. As we shall discuss below, the size of the
measured longitudinal asymmetry (helicity dependence of
the total cross section) for neutron resonances in heavy nu-
clei is amplified by a factor of106 relative to the longitudinal
asymmetry measured in the nucleon-nucleon system. The
details of these experimental results, as well as the historical
background, are presented in a comprehensive review [6].

For an approximate symmetry we consider isospin. We
have performed a series of measurements on the effect of
isospin symmetry breaking on level statistics [7,8] and on
electromagnetic transitions [9,10]. The most striking feature
is that a small symmetry breaking can have a large impact
on the level statistics and on the transition distributions.

Work on the weak interaction in nuclei has always had
a dual role. Understanding the effective weak interaction
in nuclei is a basic problem of many-body theory. How-
ever, one can also use the weak interaction as a probe of this
strongly interacting system. In a similar manner one can use
statistical concepts (RMT) to learn about nuclear properties,
but one can also use the nucleus as a laboratory to test ex-
plicit predictions of RMT.

2 Parity violation in neutron reso-
nances

The strength of the weak interaction is about10−7 that of
the strong force. In nuclei the weak force has been stud-
ied through measurement of parity violating observables in
nucleon-nucleon scattering, in few-body systems, and in
light nuclei. The latter measurements (which require de-
tailed knowledge of the wave functions involved) were sum-
marized by Adelberger and Haxton [11].

A completely different approach to experiment and anal-
ysis involves neutron resonances in medium and heavy nu-
clei. For some two decades (approximately 1960 to 1980)
there were sometimes conflicting reports about parity viola-
tion in neutron-induced reactions. The now accepted expla-
nation for the very large enhancements that were sometimes
observed was provided by Sushkov and Flambaum [12].
They estimated the size of the weak matrix elementsV J

sp

betweens- andp-wave resonances to be≈ 1 meV and pre-
dicted a longitudinal asymmetry

p =
σ+ − σ−
σ+ + σ−

= 2
∑

s

V J
sp

Es − Ep

√
Γns/Γnp (1)

for the + and - helicity cross sectionsσ+ andσ− for p-wave
compound nuclear (CN) resonances in specific nuclei. The
predicted values were first observed at JINR, Dubna [13,14].
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The qualitative explanation for the large asymmetries ob-
served is that very larges-wave resonances are mixed into
very smallp-wave resonances, producing what is usually
calledkinematical enhancement. (Note that the kinemat-
ical enhancement is specific to the particular measurement
of the helicity dependence of the cross section forp-wave
neutron resonances at epithermal neutron energies.) The
matrix elements between these very complicated states (for
heavy nuclei there are of the order of 105 components in
the CN wave functions) and the close spacings(Es − Ep)
lead to another enhancement – usually calleddynamical or
statistical enhancement. (Note that in contrast to the kine-
matical enhancement, the statistical enhancement is generic.
It should – and does – occur in general in other strongly in-
teracting quantum systems [15].) The history and develop-
ment of this subfield is briefly reviewed by Mitchellet al.
[6].

Unfortunately experimental limitations on the neutron
flux prevented the Dubna group from extending their semi-
nal measurements to higher energies. The TRIPLE collabo-
ration was formed to extend these parity violation measure-
ments to higher neutron energies, to more resonances, and
to a wider range of targets. The details of the experimental
efforts of this group are given in the previously cited review
[6]. In favorable cases the parity violation is apparent by
inspection in the raw data. This is illustrated in Fig. 1.

Figure 1.238U transmission spectra for two helicity states near the
63.4-eV resonance. The parity violation is apparent by inspection.

Although these very large longitudinal asymmetries
(the largest measured value was 14%), provided dramatic
evidence for the essential correctness of the Sushkov-
Flambaum theory, the general opinion was that these mea-
surements were of only anecdotal value: since the wave
functions were too complicated to be known, no quantita-
tive information could be obtained.

The solution to this apparent dilemma was to adopt a
purely statistical approach. The fact that the compound
nucleus behaves statistically – Random Matrix Theory de-
scribes the fluctuation properties of the CN states – suggests
that the weak matrix elements between the CN states be
treated as random variables. The observed asymmetry – see

Eq. (1) – is a sum (over the contributions from the manys-
wave states) of terms with the form of a product of the weak
matrix element between the two states in question and of
constants (spectroscopic parameters such as resonance en-
ergies and widths). Thus the measured asymmetry is the
sum of random variables (the weak matrix elements between
the CN states) and is itself a random variable. All of the
weak matrix elements are sampled from the same distribu-
tion. Although it is not possible to determine the individual
weak matrix elements, it is possible to determine from the
set of measured asymmetries the variance of the distribu-
tion of these matrix elements. Thus the experimental result
is the rms weak matrix element for a given nuclide. From
these values it was possible to determine the effective weak
nucleon-nucleus interaction. Within experimental errors this
effective weak interaction is constant as a function of mass
number.

Thus the stochastic nature of the highly excited nuclear
system resulted in an enhancement of the physical observ-
able (the longitudinal asymmetry) by a factor of about 106

relative to the a priori expected value of 10−7. In addi-
tion, the statistical nature of the CN system led to a rather
straightforward method of obtaining the rms weak matrix
elements. The very complexity that was thought to preclude
the determination of any detailed information was in fact the
solution to the perceived problem. Although one of these
enhancements (dynamical) is in fact generic and observed
elsewhere, these parity violation neutron resonance exper-
iments are the most striking example of the impact of the
statistical nature of the system on a physical observable.

3 Isospin violation

3.1 Effect of isospin symmetry breaking on
level statistics

Random Matrix Theory (RMT) has been employed in a wide
variety of applications [16]. Although first introduced in the
context of compound nuclear states by Wigner [17], there
have been few experimental tests of RMT in nuclei. The
primary reason is that the standard measures used to ana-
lyze the level statistics are sensitive to misassigned quantum
numbers and to missing levels. These stringent requirements
– usually called purity and completeness – have limited the
experimental tests.

The role of symmetries in RMT is crucial. Since the
symmetries govern the statistical distributions and there are
many approximate symmetries in nuclei, it is natural to con-
sider the effect of symmetry breaking on these distributions.
The only direct way to test this is to find all of the states
in an energy region and to determine all of their quantum
numbers.

We chose to test RMT by measuring the effect of isospin
symmetry breaking, since isospin is considered to be very
well understood. To maximize the symmetry breaking we
studied the nuclides26Al and 30P. TheseN = Z = odd nu-
clides have the feature that theT = 0 andT = 1 states coexist
from the ground state.
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The standard version of RMT that applies to nuclei is
the Gaussian Orthogonal Ensemble (GOE). The GOE pre-
diction for the distribution of the nearest neighbor spacings
S is very close to the Wigner distribution

PGOE(x) =
πx

2
e−πx2/4, (2)

wherex≡S/D, with D the average spacing. If isospin were
a good quantum number, then the mixture ofT = 0 and
T = 1 states observed in the measurements should be a ran-
dom mixture of two GOEs (or two Wigner distributions).
Since isospin is known to be broken at the few percent level
in these nuclei, one might expect only a small change from
the two-GOE distribution. Experimentally the distribution
is intermediate between the one-GOE and two-GOE dis-
tributions [7,8,10]. This agrees with predictions, first by
Dyson [18] and later by Pandey [19] that a small symmetry
breaking can have a large effect. The governing parameter
is λ = α/D, whereα is the relative size of the symme-
try breaking. This implies that even a very small symmetry
breaking can have a large effect in a sufficiently dense spec-
trum.

A detailed analysis of the26Al data by Guhr and Wei-
denm̈uller [20] determined a Coulomb matrix element in
agreement with values obtained in previous experiments.
There are no other direct tests in nuclei, but there are ex-
tensive results in “analog” systems: acoustic resonances in
quartz blocks [21] and electromagnetic resonances in in su-
perconducting microwave billiards [22]. In both of these
experiments the magnitude of the symmetry-breaking was
varied – in the former case by adjusting the length of the
transmission line between the billiards and in the latter case
by physically removing part of the block. The results of
these very good statistics experiments agree extremely well
with RMT predictions.

3.2 Effect of isospin symmetry breaking on
electromagnetic transitions

The GOE predicts that the amplitudes are Gaussian dis-
tributed. The observable is the square of the amplitude and
the corresponding distribution is aχ2 of one degree of free-
dom, the Porter-Thomas (PT) distribution:

P (y) =
1√
2πy

e−
y
2 , (3)

wherey is the dimensionless strength parameter. For the
study of electromagnetic transitions it is convenient to de-
fine y = B(XL)/ < B(XL) >, where B is the reduced
matrix element,X is the character of the electromagnetic
transition (electric or magnetic), andL is the multipolarity
of the transition. In addition the transitions are labeled by
whether or not the (predominant) isospin changes. Because
the different types of transitions have very different average
strengths, the average matrix element must be determined
separately for eachB(XL∆T ). Since the reduced matrix
elements vary over several orders of magnitude, it is conve-
nient to rescale by changing to a new variablez = log10(y).

The PT distribution becomes

P (z) = ln 10
√

y/2π exp (−y/2) . (4)

The experimental procedures and the results for26Al and
30P are presented in [9,10]. Although the strength of the
conclusions is limited by the statistics, there are two rather
striking results. The transition distributions do not agree
with the PT distribution, and the distributions for the dif-
ferent types of transitions are not the same.

Although there were many data sets that agree with the
PT distribution, there was no theoretical prediction for the
effect of symmetry breaking on the distributions. Heuristic
arguments strongly suggested that the transition distribution
should not change from Porter-Thomas, in direct contradic-
tion to the experimental results. However, the first theoret-
ical studies [23,24] did predict that the effect of symmetry
breaking on the transition distributions is a change from the
P-T distribution. There are no other experimental results in
nuclei, but there is a recent result using coupled supercon-
ducting microwave billiards. Dembroskiet al. [25] mea-
sured the effect of symmetry breaking on the strength distri-
bution and observed a change from the PT distribution.

However, there is a new issue for the transition distribu-
tions. The effect of symmetry breaking on the eigenvalue
distribution was a generic effect, which could be explained
completely with RMT. The fact that RMT predicts a devia-
tion from the Porter-Thomas distribution is certainly part of
the story. However, if the distributions for E1 and M1 transi-
tions (for example) are different, then this must be a dynam-
ical effect which cannot be explained by a theory such as
RMT. Thus the approach of using a high statistics “analog”
measurement to supplement and confirm the experimental
results cannot be used. In order to simulate the dynamics
of the many-body problem, we are utilizing the shell model
to study the effect of isospin symmetry breaking on the dif-
ferent types of electromagnetic transitions. Naturally this
approach is somewhat model dependent (on the specific for-
mulation to characterize the isospin symmetry breaking) and
therefore not as straightforward as the RMT calculations.
These analyses are now in progress [26]. The general con-
clusion for the electromagnetic transition is that contrary
to conventional wisdom, symmetry breaking does change
the transition distributions from the standard Porter-Thomas
distribution. This opens the possibility to invert this logic
and to use measured distributions of electromagnetic tran-
sitions to infer characteristics of the relevant approximate
symmetries.

Thus the nucleus has proven to be a suitable laboratory
in which to test predictions of statistical theory. In particular
the prediction by Dyson [18] that a small symmetry break-
ing can have a large effect on the eigenvalue distribution was
demonstrated explicitly for the first time. In addition, it was
demonstrated for the first time that symmetry breaking does
change the statistical distribution of electromagnetic transi-
tions. These measurements preceded the theoretical analy-
ses, which are consistent with the unexpected experimental
results.
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4 Summary and conclusion

Symmetries and statistical properties are strongly connected
in nuclei. Statistical distributions can provide information
about the underlying character of nuclear properties. In fa-
vorable circumstances the statistical nature of the nucleus
can lead to large enhancements of observables: the most
striking example is the extremely large enhancement of par-
ity violation in neutron resonances. The nucleus can also be
used as a test laboratory. Level statistics and electromag-
netic transition distributions have been used successfully to
provide unique tests of predictions of random matrix theory.
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