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We calculated the classical electron dynamics of three–dimensional electrons in a billiard system in tilted mag-
netic field and analyzed the evolution of trajectories in phase space by means of Poincaré space of sections.
The low field magnetoresistanceρxx was calculated through linear response theory and found that nonlinear
resonances between the cyclotron radiusRc, the antidot lattice perioda, and the well widthW , are reflected in
the observed magnetoresistance peaks.

1 Introduction

Advances in epitaxial growth and microfabrication tech-
nology have led to the experimental realization of a
quasi–three–dimensional electron billiard system, in wide
AlxGa1−xAs/GaAs parabolic quantum wells (PQW), with
high mobility [1]. These systems contain a rectangular array
of cylindrical voids, with sub–micron diameter, patterned
across the PQW and barrier layers. Due to the combined in-
fluence of the electron magneto–focusing effect and bound-
ary scattering the electron motion leads to different kinds
of anomalous peaks in the experimentalρxx, at low field,
performed in tilted magnetic field [1]. These measurements
also demonstrated that the oscillations do not shift continu-
ously toward higher values of the field as in the case of an-
tidots lattices in strictly two–dimensional systems, instead
they suffer a sudden transformation into structures that were
attributed to galvano–magnetic size effects. However, for
the proper understanding of the experimental data, and for
a determination of the role of the electron trajectories, it is
necessary to calculate the carrier dynamics of a thin film
with a lattice of periodical voids confined, axially, by a
parabolic potential.

2 Tilted field dynamics

For the present work, we use a classical approximation for
the dynamics of electrons in a 3D billiard under the influence
of tilted magnetic field. Indeed the full quantum-mechanical
calculations of the energy spectrum and conductivities are
necessary to describe the experimental results. However,
we believe that classical calculations can reproduce theρxx

curves including peak positions of the commensurate reso-
nances. In this work we compare only positions of the peaks
of magnetoresistance with experimental traces and consider
different 3D regular trajectories and its contribution to the
conductivity. For this purpose classical method works quite

effectively. In order to model the electron dynamics in an ar-
ray of cylindrical voids, we depart from the single–particle
Hamiltonian for a three–dimensional electron,

H =
1

2m∗ (~p− e ~A)2 + UAD(x, y) + Uw(z), (1)

we chose an angle dependent potential vector given by
~A = (1/2)B[z cos θ − y sin θ, x sin θ,−x cos θ], wheree
is the electron charge,m∗ is the electron effective mass,
andΘ is the angle between the magnetic field vector and
the surface of the PQW sample. The modulation of the
electrostatic potential has no dependence of thez coordi-
nate and can be simulated by the expression,UAD(x, y) =
U0 {cos (2πx/a) cos (2πy/a)}β , whereβ is an even inte-
ger which stands for the steepness of the potential,U0 is the
maximum amplitude, anda is the antidot lattice period. For
our calculations we used the soft–potential picture and take
β = 6− 8. U0 is assumed to be 1.6 times the Fermi energy.
The confinement along thez direction due to the potential of
the well and barriers is introduced by means of the expres-
sion: Uw(z) = (1/2m∗)Ωγzγ , whereΩ andγ are param-
eters that may be used to fit different profiles of the confin-
ing potential. We used dimensionless variables defined by:
x̃ = x/a, ỹ = y/a, z̃ = z/a, t̃ = t/τ0, H̃ = H/EF , and
Ũ = U/EF , whereEF is the three dimensional Fermi en-

ergy. The time is scaled by:̃τ0 =
(
m∗a2/2EF

)1/2
, where

τ0 is the time that an electron delays when travel a distance
equivalent toa running at the Fermi velocity. The mag-
netic field is scaled by:B0 = (2/ea)(2m∗EF )1/2, where
B0 is the value of the magnetic field which corresponds
to a cyclotron radius equivalent to half the lattice period
(Rc = a/2). By performing these substitutions, and omit-
ting tildes, the dimensionless Hamiltonian reads:
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(
dx

dt
+

B

B0
(z cos(θ)− y sin(θ)

)2

+

(
dy

dt
− B

B0
x sin(θ)

)2

+
(

dz

dt
+

B

B0
x cos(θ)

)2

+

UAD + Uw. (2)

The equations of motion for the system are given by:

vx = 2
(

dx

dt
− B

B0
(z cos(θ)− y sin(θ)

)
(3)

vy = 2
(

dy

dt
− B

B0
x sin(θ)

)
(4)

vz = 2
(

dz

dt
+

B

B0
x cos(θ)

)
(5)

v̇x =
1
2

B

B0

(
vx sin(θ)− vz cos(θ)

)
− ∂UAD

∂x
(6)

v̇y = − B

B0
sin(θ)vx − ∂UAD

∂y
(7)

v̇z =
B

B0
cos(θ)vx − ∂Uw

∂z
(8)

A sixth–order Runge-Kutta-Verner method was em-
ployed to integrate numerically these equations of motion.
When θ = 90o, the Hamilton function separates and the
motion in thex − y plane and inz direction can be treated
separately. There are two additional integrals of motion, the
energy of thez−motion and thexy−motion, that are con-
served individually. The resulting three–dimensional mo-
tion is a combination of a two–dimensional chaotic mo-
tion with the completely integrable motion alongz direc-
tion. Furthermore, the uncoupling of the motion also leads
to chaotic motion in thex − y plane for different energies
Ez, whereEF = Ex−y−Ez, EF is the Fermi energy,Ex−y

is the in–plane energy andEz the energy alongz direction.
Thus the dynamics is mixed and, there is a coexistence of
regular and chaotic trajectories. When the magnetic field
is tilted 0o < θ < 90o, a coupling of the degrees of free-
dom appears and the system undergoes a transition to chaos.
The system has three degrees of freedom and six dynami-
cal variables (x, y, z, vx, vy, vz), the electron trajectories in
phase space are confined to five–dimensional surface of con-
stant energy, in this space, a Poincaré section can be defined
as the intersection of the orbits with a subspace with dimen-
sion 2n − 2 = 4, in correspondence with the mapping in
two–dimensional systems. For a 3D integrable Hamiltonian
system, with a 6D phase space, the integrable surfaces are
tree–dimensional and the points belonging to the fourth–
dimensional mapping must lie on 2D invariant tori. If the
system turns non integrable, and the Kolmogorov–Arnold–
Moser (KAM) theorem [2] is still applicable, again the inte-
grable surfaces are 3D and the two–dimensional tori remain
on the 4D space.

Figure 1. 2D Poincaré projections of 4D space of sections for in-
creasing tilted fields and different magnetic field values.

Figure 1, show six 2D projections (x, ẋ) of the 4D space
of section (x, y, ẋ, ẏ) for a set of trajectories originated by a
particular ensemble of initial conditions, for the same value
of the normalized magnetic fieldB/B0 and for different
values of the angleθ. This mapping was calculated for
a ratio d/a = 0.22 (d is the antidot diameter), that cor-
responds to an experimental sample with lattice periodic-
ity a = 0.5 µm. For the calculation, the initial position
of the x, z coordinates, and all velocities were maintained
constant. After we vary the initial position of they coor-
dinate in steps of0.01a along one of the sides of the unit
cell defined by the antidot lattice perioda, The mappings
correspond to the two–dimensional case of Poincaré sur-
faces of the section aty = y0 which is the intersection
of the energy surface with the planey = y0 denoted by
[y(mod1) = 0]. When θ = 90o the islands correspond
to regular orbits revolving around a cylindrical void and af-
ter multiple specular reflections, with the well interfaces,
the electrons remain pinned by the antidot. The group of
small islands, located between the innermost and outermost
islands, correspond to a single quasi–periodic trajectories,
and indicates that almost all phase space is filled by inte-
grable KAM curves. As the tilted field increases the KAM
curves are gradually deformed and destroyed and the chaotic
component appears. Therefore, the distribution of chaotic
points, referred as “consequents” in literature [3], fills the
phase portrait atB/B0 = 1. However, for larger values
of the tilted field we still observe remnants of KAM curves
and stable islands for higher values ofB/B0. This feature
demonstrates that nonlinear resonances are still responsible
for the shifting of the commensurability peaks. Another im-
portant feature is that for tilted angles less thanθ ≈ 22.5o

we found again surviving KAM curves and stable islands for
magnetic field values close aroundB/B0 = 1, this is due to
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the fact that the degree of coupling decrease and the sys-
tem becomes again integrable in the case when the magnetic
field is parallel to they direction. In PQW in tilted field,
a new third length scale given by the well widthW plays
an important role by allowing extra geometrical resonances,
which may be responsible for the anomalous peaks in paral-
lel magnetic field, as demonstrated by theρxx calculations
showing in the next paragraph. In order to calculate the
magnetoresistance we used classical linear response theory
where the Ohmic conductivityσij is given, by the expres-

sion [2]: σij = m∗e2

π~2
∫∞
0
〈υi (t) υj (t = 0)〉Γ e−

t
τ dt, where

~ is the reduced Planck constant and< vi(t)vj(0) >Γ is the
velocity-velocity correlation function double averaged over
phase spaceΓ, the indicesi andj stand for thex andy di-
rection, respectively. The presence of impurity scattering is
included through the electron mean scattering timeτ , where
the probability of an electron not suffering a collision within
the time interval [0,t] is given bye−t/τ . From the numer-
ical computation of the conductivity tensorsσxx andσxy,
we are able to determine the longitudinalρxx and transverse
ρxy resistivities in tilted magnetic field. Figure 2(a) shows
the calculated magnetoresistance for a ratiod/a = 0.22 and
for a well with W = a, for different values of the angleθ.
In perpendicular field we obtain two peaks corresponding to
the conditionsRc = a/2 andRc ≈ 2.0a in correspondence
which is experimentally observed. As the angleθ decreases,
the peaks shift toward higher values of the normalized field.
If the well is narrowW = 0.4a the behavior of the main
peak tends to thesin−1(θ) law of two–dimensional antidots
in tilted magnetic field (see fig. 2(b)). However, when the
well width is increasedW = a we obtain a sudden turn at
the values ofθ ≈ 22.5o, that agrees with the observed in
experiments (see fig. 2(c)). These results indicate that the
coexistence of geometrical resonances between the antidot
period and the well width produce the anomalous behavior
of the commensurability peaks in tilted field. We would like
to thank FAPESP, Brazilian Funding Agency by financial
support and to the LCCA-USP by computational facilities.
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Figure 2. (a) Magnetoresistance in tilted field for an antidot sample
of periodicitya andW = a, (b) evolution of the main comensu-
rability peak position in tilted field forW = 0.4a, (c) the same
evolution that in (b) for a sample withW = a.
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