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In this paper we theoretically investigate the magnetic-field and temperature dependence of the Shubnikov-de
Haas oscillations in group II-VI modulation-doped Digital Magnetic Heterostructures. We self-consistently
solve the effective-mass Schrödinger equation within the Hartree approximation and calculate the electronic
structure and the magneto-transport properties. Our results showi) a shift of the Shubnikov-de Haas minima to
lower magnetic fields with increasing temperature, andii ) an anomalous oscillation which develops when two
opposite Landau levels cross near the Fermi energy. Both of these are consistent with recent magneto-transport
measurements in such heterostructures [R. Knobelet al., Phys. Rev. B65, 235327 (2002)].

1 Introduction

Digital Magnetic Heterostructures (DMHs) are semiconduc-
tor heterostructures where magnetic monolayers are incor-
porated using the digital-alloy technique [1, 2]. Thes-d
exchange interaction in such systems is responsible for a
magnetic–field- and temperature-dependent giant spin split-
ting of the electronic bands [3], thus giving rise to strong
spin-dependent effects. This giant splitting is up to two
orders of magnitude larger than the ordinary Zeeman ef-
fect and is easily observed by magneto-photoluminescence
[4]. The successful achievement of high doping carrier
densities in such magnetic layered structures [5] has en-
abled magneto-transport and magneto-photoluminescence
measurements in these systems [1, 5]. More recently, thes-d
exchange enhanced spin-splitting has been used to align op-
posite spin Landau levels near the Fermi level [6, 7], reveal-
ing striking features in the electronic structure and magneto-
transport properties of such two-dimensional electron sys-
tems.

In Ref. 6 magnetization and magneto-transport measure-
ments inn-ZnSe/(Zn,Cd,Mn)Se DMHs were performed in
the quantum Hall regime for a wide range of temperatures
and carrier densities. In this paper we focus our analy-
sis on two particular features of the experimental results,
namelyi) a shift of the Shubnikov-de Haas (SdH) peaks to
lower magnetic fields as the temperature is raised andii ) an
anomalous peak in theρxx data nearB ∼ 3.2 T. We self-
consistently solve the effective-mass Schrödinger equation
within the Hartree approximation. Our results reproduce the
reported temperature dependence of the SdH peaks and the
anomalous oscillation. In the following sections we present
our model and results.

2 Model and Approach

The system we study consists of a modulation doped dig-
ital magnetic quantum well [6]. One1/16 monolayer of
MnSe is inserted every 7 monolayers in a105 Å (∼ 35
monolayers) wide Zn0.87Cd0.13Se quantum well. The well
is surrounded by two120 Å intrinsic ZnSe spacers, each
followed by a 200Å n-doped ZnSe layer. The measured
low-field two-dimensional density isns = 2.8 × 1011

cm−2. The strong Coulomb repulsion between confined
electrons, which deforms the potential profile, is treated
within the Hartree approximation. We self-consistently
solve the effective-mass Schrödinger equation
[
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wherem = 0.145m0 is the electron effective mass,i =
1, 2, . . . is the subband index, andσz = ±1 denotes the spin
components. The effective potential is
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wherev0 (z) is the the quantum well profile with band offset
of 210 meV [8];vb (z) is the Mn barrier profile with an as-
sumed height of800xp meV [9], xp being the nominal Mn
concentration;vσz

s−d (z; B, T ) is thes-d exchange contribu-
tion given by [10]
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whereN0α = 0.26 eV is thes-d exchange constant,x(z)
is an effective Mn concentration profile [11, 12],B5/2 is the
spin-5/2 Brillouin function, andT + T0 is an effective tem-
perature;vh (z) is the Hartree potential which is calculated
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by solving the Poisson equation. Each Landau level energy
is then given by

εσz
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σz

2
g∗µBB, (4)

wheren is the Landau level index,~ωc is the cyclotron en-
ergy, andg∗ = 0.4 [13] is the effective Land́e factor of the
Zeeman term.

We use gaussian broadened Landau levels with a density
of states (DOS) for each spin subband given by
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whereΓ is the broadening width. Using this DOS together
with the Fermi functionf(ε) = {1+ exp[(ε−µ)/kBT ]}−1

we self-consistently calculate the chemical potential by
solving the 2D density
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for µ.

We calculate the longitudinal conductivity using [14]
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whereΓσz
ext is the width of the extended states region within

eachΓ-broadened Landau level. The transversal conductiv-
ity is given by the Drude modelσxy = −ens/B. To calcu-
late the resistivities we simply invert the conductivity tensor
ρ = σ−1.

3 Results

The electronic structure and magneto-transport calculations
were performed at four different temperaturesT . We use
xp = 0.093 and ns = 2.8 × 1011 cm−2 (the low field
measured areal density [6]) to obtain a good agreement with
the experimental findings. For the other parameters we use
T0 = 1.55 K, Γ = 0.36B1/2 meVT−1/2, Γ↓ext = 0.25 meV,
andΓ↑ext = 0.05 meV, the same values as in Ref. 6.
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Figure 1. Calculated Shubnikov-de Haas oscillations for differ-
ent temperatures. Oscillations inρxx shift to lower fields asT in-
creases. An anomalous peak develops atBc ∼ 3.2 T for T = 0.36

K and atBc ∼ 3.4 T for T = 1.0 K. The shift to lower fields of
the SdH peak atB ∼ 4 T from T = 1.0 K to T = 2.5 K is bigger
than fromT = 0.36 K to T = 1.0 K, in accordance to exper-
iment [6]. The Fermi function softens the oscillations for higher
temperatures, thus making them wider. The offset between curves
is 0.1 h/e2.

Figure 1 shows the theoretical magnetic field and tem-
perature dependencies ofρxx. In accordance with the exper-
imental results [6], our calculated SdH oscillationsi) shift to
lower magnetic fields as the temperature increases, andii)
show an anomalous peak atBc ∼ 3.2 T.

The temperature dependence of the Mn magnetization
[Brillouin function in Eq. (3)] is responsible for the SdH
shift, as pointed out in Ref. 6. As the temperature rises, the
s-denhanced spin splitting decreases and the spin down en-
ergy increases (Fig. 2), crossing the Fermi energy at a lower
B field. Note that temperature also plays a role via the Fermi
distribution, which smooths the SdH oscillations asT in-
creases (Fig. 1). However, its effect on the SdH shift within
the investigated temperature range is small when compared
to thes-dexchange contribution.

The anomalous peak that develops atBc ∼ 3.2 T (Fig. 1,
T = 0.36 K) is a result of a Landau level crossing near the
Fermi energy [Fig. 2(a)]. AtT = 0.36 K, just belowBc, a
SdH oscillation takes place while the Fermi energy crosses
the|3, ↓〉 level. Meanwhile the|0, ↑〉 is increasing in energy
and becomes degenerate with|3, ↓〉. As the magnetic field
increases, the Fermi energy crosses the spin up level just
before it becomes completely empty, resulting in the small
SdH peak. This effect is suppressed for higher temperatures
as the Fermi function increases the overlap between levels
thus making them indistinguishable and giving rise to the
wider peaks atT = 2.5 K andT = 4.2 K in Fig. 1.
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Figure 2. Landau level fan diagrams for different temperatures.
In (a) and (b) the Fermi level crosses the|3, ↓〉 Landau level just
after the crossing of|3, ↓〉 and |0, ↑〉, thus giving rise to an extra
Shubnikov-de Haas oscillation shown in Fig. 1. AtT = 2.5 K
(c) the |2, ↓〉 and|0, ↑〉 levels cross atB ∼ 3.7 T near the Fermi
energy, thus originating a wide oscillation shifted to lowerB fields.

4 Discussions and Conclusions

We have done a self-consistent calculation of the electronic
structure and magneto-transport properties of a modulation-
doped DMH. Our results not only reproduce the experimen-
tal findings, but also justify the phenomenological model
used in Ref. 6. Since the quantum well is very deep, the
main effect of the Hartree contribution is to increase the sub-
band energy by∼ 57 meV, leaving the subband structure
almost unchanged.

Note that the value of the fitting parameterxp = 0.093
is greater than the nominal onexp = 0.0625. A possible ex-
planation for this discrepancy is that we have neglected the
contribution of the exchange-correlation energy of the 2D
electron gas. Its inclusion may enhance the spin splitting
[15] thus allowing the use of a smaller value forxp, closer
to the experimental one [16].

It is worth mentioning that neither the experimental nor
our theoretical results show any sign of an itinerant ferro-
magnetic phase transition [17] at the Landau level crossings.
Reference 7 suggests that the effects observed by Knobelet
al. [6] take place in a regime above a critical temperatureTc.
Here we note, in addition, thatBc = 3.2 T corresponds to
a filling factor of3.6, which deviates from the integer filling
factor favoring quantum Hall ferromagnetism [18]. The in-
clusion of exchange and correlation effects should allow us
to study the possibility of quantum Hall ferromagnetic states
in these magnetic heterostructures [16].
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