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Carbon Nanotube Structures: Y-Junctions and Nanorings
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The possibility of coupling two Y-junctions of carbon nanotubes, forming a type of nanotube ring is addressed
here. Recent experimental evidences of growing carbon nanotube structures forming basically Y-kind junctions
give support to this theoretical proposition. A single-band tight-binding Hamiltonian is considered and local
electronic properties are investigated via the Green function formalism following renormalization techniques.
Modulation on the transport properties of those nanostructured systems may be induced by considering different
kind of junctions and different symmetries. Quantum interference phenomena are proven to reduce partial or
completely the conductance of such nanoring structures.

1 Introduction

Single-wall carbon nanotube junctions have recently ap-
peared as excellent candidates for nanoscale multi-terminal
electronic devices. Experimental reports have presented
clear support on the possibility of synthesizing stable junc-
tions incorporating mainly two quite different approaches.
Controlled growth using a template-based chemical vapor
deposition technique [1] allows reproducible and high-yield
fabrication of Y-junctions. Another procedure allows weld-
ing together two crossed carbon-nanotubes under quite high
temperatures (around 800o C), by exposing to a controlled
electron beam [2, 3]. Continuous sputtering of carbon atoms
from the perfect nanotubes lead to dimensional changes and
surface reconstruction with annealing at their contact region
forming a X-like junction with diverse angles between the
branches. Under careful irradiation one of the branches of
the X-junction can be removed, creating Y- and T-like junc-
tion [2], denoted in what follows by YJ. Experimental [4]
and theoretical [5] studies have shown, that this particular
new class of carbon junctions exhibits an intrinsic non-linear
transport behavior, depending mainly on pure geometrical
configuration and on the kind of the topological defects used
to build the YJ. Calculations and measurement of character-
istic curves like current vs. voltage of different sets of YJ
show robust rectification properties giving rise to the possi-
bility of using YJ as a nanoscale three-point transistor.

Alternatively, carbon-nanotube ring transistors have
been proposed experimentally [6]. Under ultrasonic irra-
diation, pure nanotubes can fold to form nanotube rings
with controlled ring diameter. To measure the current-
voltage characteristic of these rings a scanning tunneling
microscope was used with two pure carbon nanotubes as
dual probe allowing an image-resolution of about 1 nm.
Theoretical studies show, again, that mainly the topology
and structure details determine the electronic properties
of the ring [7].

Figure 1. The 6 heptagon topological defect of the Y-junction.

By taking into account both carbon nanotube (CNT)
configurations, YJs and rings, here we propose a new class
of nanoscale device similar to the above mentioned ring
transistor configuration. Joining the smaller arms of two
YJs, a nanotube ring system may be idealized with two
attached nanotube leads, called here as an Y-junction ring
(YJR). The electronic characteristics of the carbon nanotube
together with the annular geometry of those rings can be
very useful for investigating interesting physical phenom-
ena such as Aharonov-Bohm effects [8]. Here we investi-
gate the dependence of constructive or destructive quantum
phenomena in function of the branch lengths and diameters.
In all studied symmetry geometries the conductance exhibit,
near the Fermi-energy, a reduction of the quantum channels
when compared to the case of pure CNT. We also show the
transistor-like behavior controlled by one finite arm of the
YJ and compare it to the pure one-dimensional case and a
5-7 CNT-heterojunction previously studied[9].
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2 Y-Junction

A pure CNT can be uniquely determined by the chiral vector
C = na1 + ma2, wheren andm are integers anda1 and
a2 are the graphene sheet lattice vectors, with|ai| ≈ 2, 49
Å. The (n,m) CNTs are metallic, ifn − m is a multiple
of three and semiconducting otherwise, i.e., the armchair
CNTs (n, n) are always metallic whereas the zigzag CNTs
(n, 0) requires ann multiple of 3.

The Y-junction is modeled here joining three arms of
zigzag CNTs together maintaining the original chirality. The
large zigzag (m,0) CNT bifurcates into two smaller zigzag
CNTs, (n,0) and (̃n, 0), forming an acute angle between
the smaller arms, exactly where six heptagons are supposed
to be fixed as a topological defect. This YJ is denoted
asm → n/ñ. Fig. 1 illustrates the chosen YJ described
here. The defect atoms, forming six heptagons according to
the Crespi rule[10], are marked with dark lines. Indepen-
dently of the tube diameters composing the YJ, the number
of atoms in each cross section, before and after the bifur-
cation region is maintained constant, i.e.,ñ = m − n. If
one considers the YJ composed of an infinite nanotube het-
erostructure at which a finite tube is attached composed of
an ordered sequence ofl carbon rings (control arm), we call
it asm → n/ñl. Actually one may think that the finite arm
acts as an idealized CNT control of varied extension[11].
Other YJ configurations have been recently studied, show-
ing the dependence of interference effects on the topological
arrangement of the arms[5].

A singleπ-band tight-binding calculation is used to de-
scribe the electronic properties of the CNT structures (pure
carbon nanotubes, YJs and YJRs). Effects such asσ-π-
hybridisation are not included in this one-band scheme.
Rather then describing the system in the k-space, we treat
the CNT-structures entirely in a real space picture. We
follow the Green function formalism and adopt real-space
renormalization group techniques [9, 12, 13]. The local
density of states (LDOS) per electron is calculated directly
from the relationρi(ω) = −1/πTr(Ima[G̃ii(ω)]) where
the dressed Green functions are obtained by solving a set of
coupled matricial Dyson equations given by

G̃ij(ω) = g̃i(ω)δi,j + g̃i(ω)
∑

l 6=i

VilG̃lj(ω) , (1)

with g̃i denoting a matricial renormalized Green function
corresponding to a single CNT ring, written in terms of the
undressedgi(ω) = 1/(ω − εo). The microscopic atomic
details of the topological defect (heptagons) are taken into
account in the theoretical description through hopping en-
ergy matricesVil, connecting the neighboring atomic layers
(rings).

Results for the LDOS of an YJ14 → n/ñ with three
semi-infinite CNTs are shown in Fig. 2, considering differ-
ent combinations of arm sizes. A mean calculation is per-
formed through all the atomic sites of a single ring, posi-
tioned two ring- layered from the defect. One should no-
tice that semiconducting combinations of tubes, such as the
14 → 7/7 and14 → 4/10 generate localized states within
the energy gap. Combinations involving at least one metal-

lic tube arm, such as14 → 6/8 and14 → 5/9, leads to
the formation of a continuous band population within the
gap. Due to the peculiar electronic properties of carbon nan-
otubes it is then possible to modulate the electronic response
by selectively proposing proper Y-junctions with particular
topology.

Figure 2. Local density of states nearEF = 0 of symmetric and
asymmetric YJs with big leg (14,0). Curves are shifted for better
viewing. When one of the legs is metallic, the LDOS nearEF = 0
is non-zero.

The conductance may be written in terms of the
dressed Green functions [13] by following the Landauer
formalism[14] and the Kubo-Greenwood formula[15]. At
the Fermi energy and for zero temperature one has

Γ(ω) = −2e2

h
2Tr

∑

mnlk

~RmnVmnGI+
nl (ω). ~RlkVlkGI+

km(ω),

(2)
in which ~Rmn = ~Rm − ~Rn, ~R being the atomic site posi-
tion, GI+ means the imaginary part of the advanced Green
function and the factor 2 is concerned to spin degeneracy.
The present conductance calculation corresponds to the lin-
ear response of the total current density flowing through one
tube into the other two. One should take care in this type
of calculation about the role played by the imaginary part
added to the energyω + iη. A finite η defines an uncer-
tainty in the energy, which is inversely proportional to an
electronic transient-time. By performing calculations with
η ' 10−3, 10−4 and considering the control arm finite, one
gets spurious results for the conductance. In that sense, it
is very important to take correctly the limit ofη → 0 in or-
der to determine the localization properties of the electronic
wave function.

Results for the conductance of a metallic YJ of type
12 → 6/6L for different values of L (control tube length)
are shown in Fig. 3. In the depicted energy range, where
the conductance of a pure metallic CNT equals two units
of a conductance quantum2e2/h (two electronic channels),
one may clearly observe a set of oscillations in the conduc-
tance as a function of the energy, associated probably with
the presence of normal modes such as those of a resonant
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cavity, which number depends on its sizes. It is worth notic-
ing that for sufficiently long control tubes (see the example
of 100 control rings) a small variation in the number of car-
riers causes very large percentile changes of the system’s
conductance. Otherwise, an interesting result is the pinning
of the conductance value at the Fermi energy for all YJs of
finite control tube considered (when correctly taken the limit
η → 0). One clearly see that by varying the tube length one
may modulate the conductance respectively (without getting
zero-conductance), which rises the possibility of using the
YJ as an idealized three-point transistor.

Fig. 3. Conductance vs. Fermi-energy of a symmetric12 → 6/6
YJ with 1, 5, 10 and 100 (dotted line) rings in the control leg.
Energy window is restricted to energies where (12,0) has two con-
ductance channels. Note the pinning of the conductance value at
EF = 0, marked with an arrow.

Figure 4. Conductance of symmetric a12 → 6/6 YJ with three
semi-infinite legs in comparison with a12 → 6 heterojunction.
The conductance channels of a pure(12, 0) and(6, 0) are shown
with dashed lines.

For a single heterojunction of type(12, 0) → (6, 0), the
greatest reduction of the conductance occurs at the center of
the electronic band[9], i.e. atEF = 0 as shown in Fig. 4.

However, for the12 → 6/6 YJ with three semi-infinite legs,
the minimum occurs at the transition of a conductance chan-
nel of a pure metallic (12,0) CNT. The conductance of YJs
with finite control arm is, like in the case of the heterojunc-
tion, limited by the conductance channels of the smaller arm,
i.e. six channels in the chosen12 → 6/65 YJ. Otherwise,
in the case of the semi-infinite YJ the conductance in each
of the three semi-infinite legs is restricted by the dimension
of their self size: the big(12, 0) arm has maximal twelve
channels whereas both the two small(6, 0) arms have max-
imal six. Due to impurity scattering at the defect region, the
conductance as a whole is reduced. One may also notice
that due to quantum interference phenomena, the sum of the
conductance of the small legs does not equal the conduc-
tance of the big one (contribution of mixed products of the
electronic wave functions of each arm). As expected by the
finite value ofη in the calculus, evaluating the semi-infinite
limit one may find all the intermediate values on the way
to the twelve-channel case. Furthermore, the conductance
in the finite leg becomes non-zero for big control lengths,
demonstrating the effect of the electronic transient time.

3 Y-Junction Rings

As discussed before, a ring-like nanotube structure may be
idealized by joining two Y-Junctions presenting finite arms.
Considering twom → nL1/2/ñL2/2 YJs, one may get a Y-
Junction-Ring with upper and down arms composed ofL1

andL2 rings, respectively. The so-builtm → nL1/ñL2 →
m YJR has two attached semi-infinite arms (m,0) acting as
a lead contact, where againn + ñ = m.

The easiest way to obtain the annular structure is by cal-
culating renormalized non-diagonal Green function, obey-
ing the recurrence relation

G̃ij = G̃iVi,i−1G̃i−1 . . . G̃j+1Vj+1,jG̃j , (3)

with G̃i =
(
1− g̃iVi,i−1g̃i−1Vi−1,i

)−1
g̃i , (4)

for i > j and assuming̃Gj = g̃j in the initial iterative step.
We investigate here the possibility of generating quantum
interference phenomena through the annular systems and
study its correlation with the arm sizes composing the YJRs.

The dependence of the conductance of a (metallic)12 →
6L/6L → 12 YJR in the energy window, where a pure
(12,0) tube has two ballistic channels, is shown in Fig. 5.
This YJR is called asymmetric in the length of upper and
lower braces between the two semi-infinite leads but sym-
metric in terms of the brace-tube size. The results for the
LDOS of the corresponding system are also shown, illustrat-
ing the oscillatory behavior and correlation of both physical
properties. Rather than the case of a single YJ, the conduc-
tance can be totally destroyed at particular energy values for
certain arm configurations. Again, through barely geomet-
rical configuration settings the YJR may be absolutely con-
ducting or isolating, leading to a perfect rectification tran-
sistor. Symmetric YJRs exhibit completely different fea-
tures: the conductance shows only smooth oscillations and
the LDOS remains mainly constant at the central non-zero
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plateau of a pure (12,0) tube, with isolatedδ-functions, in-
dicating localized states. One may understand such features
setting up a direct correspondence between these intricate
carbon system and their one-dimensional counterpart, com-
posed of an atomic loop connected to two metallic atomic
leads, shown in the inset of the figure.

Figure 5. Conductance (top view) and LDOS (bottom view) of
an asymmetric12 → 64/6L → 12 for different values of lower
brace-length (L=6,10,14,18). Inset: Results for a one-dimensional
symmetric counterpart, made of one atomic loop with 2 (straight),
4 (dotted) and 6 (dashed) atoms in each brace, connected to two
metallic leads.

The LDOS of the 1D ring-system exhibits a sequence
of peaks, positioned at energy values quite close to the dis-
crete states composing the energy spectra of a single ring
- which for the carbon YJR corresponds to a CNT-torus as
previously studied[16]. Moreover, just as it happens in the
1D system and in a single YJ, there is a perfect pinning of
the LDOS at the Fermi level (EF = 0) for all lengths of ring
braces, provided one considers only even values and sym-
metrical brace-tube size.

As YJRs composed of semiconducting tubes do not al-
low conductance channels near the Fermi level one should
suggest an extra junction formation to overcome this sit-
uation. Fig. 6 shows the conductance curves of the
semi-conducting YJRs for some brace-lengths, this time
connected to metallic leads through(14, 0) → (12, 0)
heterojunctions[9]. As expected, the conductance and
LDOS have finite values and are not zero as in the non-
connected case (shown as the dashed curve). Quite sharp
peaks are obtained in energy range corresponding to the low
band followed by smooth oscillation in the conductance and
LDOS results. Here, the brace distributions (size and type)
do not drive the main responses; actually it is the metal-
lic (12,0) lead which acts as the driving force for all con-
figurations. Similar conductance and LDOS oscillatory be-
havior, with broken electron-hole symmetry, are also found

for YJR presenting asymmetric brace-tube sizes, such as
12 → 5L1/7L2 → 12

Figure 6. Conductance of a14 → 7/7 → 14 YJR connected
to metallic lead through(14, 0) → (12, 0) heterojunctions in the
energy range, where a pure (14,0) has zero- conductance. A pure
14 → 7/7 → 14 YJR with zero-conductance near the central gap
is shown with dashed lines.

4 Conclusions

We have studied the electronic LDOS and conductance
near the Fermi level of single Y-junctions and two-joined
YJs, forming a Y-junction ring and compared with one-
dimensional counterpart examples. In all situations we ob-
served oscillatory behavior depending merely on geometri-
cal configuration. In the case of the Y-junction, the control
of one of the length-brace can lead to perfect switching be-
havior. In the case of the YJR, the position of the leads
depending on the annular sites can give rise to complete de-
structive or constructive quantum interference. Since trans-
port phenomena through varied nanotube structures are be-
lieved to be promising for technological applications, like a
three-point nanotransistor or nanoscale molecular circuit in-
cluding a carbon YJR, the understanding of their electronic
properties is essential for further development in this field.
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