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Tiling in the Geometric Model for Water

M. Girardi, W. Figueiredo,
Departamento de F́ısica, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina, Brasil
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Hydrogen bonded liquids like water present a rich thermodynamic behaviour due to the strength and direction-
ality of the bonds. In a recent paper a geometric model based on Bernal’s model for liquids was proposed to
study the effects of the hydrogen bonds on the phase transitions of water, under pressure and temperature vari-
ations. Water molecules were assumed to stay at the vertices of coordinationr (r = 4, 5, 6) of perfectly tiled
polygons, and to have four links which allow up to four hydrogen bonds per particle. Mean field calculations
yielded a phase diagram with three phases of different densities and a critical point at the end of the coexistence
line between the high and low density phases. The three phases were considered to be liquids of different den-
sities. In the present work we have shown that applying some geometric constraints to particle arrangements
(thus correcting the system entropy, which was overestimated in the previous work), and allowing a variable
number of links per molecule, leads to substantial alteration of the phase diagram. Three phases of different
densities are still present, but no critical point appears. Two of the phases are solid, and one phase is amorphous.

1 Introduction

Water and other hydrogen bonded liquids are known to
exhibit many anomalous properties [1-10], which seem to
arise from the strength and directionality of hydrogen bonds
(HB), and ensuing low density. The HB network, which per-
colates in liquid water, is thought to be responsible, among
other things, for the increase of the isothermal compressibil-
ity and constant pressure specific heat upon cooling, and for
the isothermal compressibility minimum at46◦C.

In the context of molecular dynamics simulations, sev-
eral microscopic models have been studied in an attempt
to describe the peculiar properties of the associated liquid
[1, 4, 5, 6]. These models focus attention mainly on the
charge distribution on the rigid molecule and the parameters
of the electrostatic and Lennard-Jones potential are adjusted
to fit experimental data. Definition of hydrogen bonds de-
pends on still controversial energetic and angular criteria,
and are also parameter dependent.

A different approach is that of simplified models. In
this case one hopes to include microscopic properties able
to reproduce qualitatively the main features of liquid wa-
ter behaviour, independently of adjustable parameters. One
example is the square water model, which incorporates the
directional character of the HB[10, 8, 11]. Square water
is exactly solvable atT = 0 and gives an excellent es-
timation of the residual entropy of the ice [12]. The HB
number is a decreasing function of temperature, but the
model does not present an order-disorder transition driven
by temperature[10, 8, 11]. Under an external electric field,
the system displays a structural phase transition[10] at T=0.

Used as a solvent, square water presents hydrophobic hydra-
tion [8], albeit insufficient to explain water solubility prop-
erties.

Density fluctuations seem to be an essential ingredi-
ent. The geometric model for water, proposed by two of
us [9], allows for changes in the local environment of the
molecules. It is based on the geometric description of liq-
uids given by Bernal [13], and developed on the plane by
Collins[17] a few decades ago. In two dimensions, the wa-
ter molecules are disposed at the vertices of squares and
triangles of equal sides, perfectly tiling the plane. Such
tiling yields coordination numbers for sites (vertex) given
by r = 4, 5 or 6. Four open links are allowed for each
molecule, so that it can form up to four hydrogen bonds
with its r neighbors. A mean-field treatment of the model,
adapted from a previous study[17] for the inclusion of HBs,
yielded coexistence of three phases of different densities,
and a critical point at the end of a high-low densities co-
existence line. The three phases present no regularity, and
therefore were interpreted as liquid phases.

To obtain the above results, a tiling constraint on entropy
was left aside. It was assumed that the entropic term in the
free energy has two contributions: one coming from the dis-
tribution of four bonds amongr neighbors, and another one,
coming from the number of geometric arrangements of the
sites. Particles were treated as independent, therefore the
geometric constraint of perfect tiling was not taken into ac-
count in the calculation of the degeneracy of the spatial ar-
rangements.

In the present work, we have modified the treatment of
the geometric model for water imposing a geometric con-
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straint to the neighborhood of each site, in order to have a
perfect tiling of squares and triangles at least at the nearest-
neighboring sites. We have also allowed for a variable num-
ber of links (nc = 2, 3, 4), in order to represent possible
misalignment under temperature variations. The geomet-
ric constraint on entropy was first calculated by Kawamura
[14], for a purely hard core semi-infinite system and a solid-
liquid transition was suggested. Similar corrections to en-
tropy were found by Do et al. [15] and Yi et al. [16], in the
treatment of the geometric model with a Lennard-Jones po-
tential, for which they also proposed a melting line. We will
show that the geometric correction for the water model pro-
duces a substantial change of the phase diagram: two of the
phases of different densities are crystalline and no critical
point is present.

This article is organized as follows: in Sec. 2 we review
the geometric model for water and introduce a variable num-
ber of bonds per molecule. In Sec. 3 we perform a mean
field calculation of the Gibbs free energy of the model, in
which the constraint of tiling is introduced in the calculation
of entropy. Finally, in Sec. 4, we present our discussions
and conclusions.

2 The model

In 1960, Bernal proposed a geometric model for liquids, in
which the fluid particles were placed at the vertices of reg-
ular or quasi-regular polyhedra. The choice of these ran-
domly distributed three-dimensional objects was motivated
by the presence of local ordering, together with the absence
of long range order in the liquid phase. Collins [17] con-
sidered a two-dimensional version of Bernal’s model that
consists of a perfect tiling of triangles and squares of equal
sides. He found a discontinuous phase change for a special
energy condition, from a mean-field calculation, which he
suggested to be analogous to a change of association num-
ber from one liquid phase to another. The noninteracting
version of the model was employed later in the study of
quasi-crystals [18, 19, 20], observed in alloy systems such
as V-Ni and V-Ni-Si, in an attempt to explain their mecha-
nism of formation.

In Fig. 1, we show a typical configuration of the system
in an amorphous phase. The ordered (crystalline) phases are
the square and triangular lattices, where the plane is com-
pletely filled by triangles or squares. The possible local
structures around each site are shown in fig. 2. The sites
can have three different coordination numbers1 (r = 4, 5
and6), whose specific volumesvr are

v4 = b2 , (1)

v5 = b2(2 +
√

3)/4 , (2)

v6 = b2
√

3/2 , (3)

whereb is the intermolecular distance (polygon side), which
is kept fixed (b = 1 in this work). Each lattice site is occu-
pied by a molecule, and we defineNr as being the number
of molecules withr neighbors. Volume and particle number

conservation give

∑
r=4, 5, 6

Nr = N , (4)

∑
r=4, 5, 6

Nrvr = V , (5)

whereV is the total volume andN is the total number of
particles.
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Figure 1. Typical configuration of the geometrical model for liq-
uids (or a random square-triangle tiling) with intermediate density.

Hydrogen bonds will be defined as follows. Each
molecule is connected to itsr neighbors byr lines. It may
havenc = 2, 3 or 4 open links with itsr neighbors. These
links may or may not be available due to, for example, orien-
tational restraints and, if available, are distributed randomly
over ther lines. An HB will be present if two neighboring
molecules point one of their links towards each other. In this
way, the maximum number of hydrogen bonds for a given
molecule isnc. In Fig. 2, (S1) and (S2) represent pairs of
molecules at sites of the type A and B, with coordination
numbersr = 4 and s = 5, respectively. In the case of
(S1), the A molecule hasnc = 4 links (represented by the
full lines), and the B molecule, hasnc = 2. Only in (S2),
where two links are in the line joining A and B, do we have
a hydrogen bond between the two molecules.

Only hydrogen-bond energies shall be considered, since
van der Waals interactions are one order of magnitude
smaller than the hydrogen bond ones.

1There are two possible geometries for the molecule with coordination numberr = 5 but in the previous work [9], it was considered just one.
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Figure 2. The four possible configurations of the vertices: (A) ver-
tex with coordination numberr = 4, (B) and (C) vertices with
r = 5 but different geometries, and (D) vertex withr = 6. (S1)
and (S2) represent two neighboring molecules and their links (full
lines). In (S1) the upper molecule has four links, while the lower
one has only two. There is not an HB between them. In (S2) there
is one HB since two links are aligned.

3 Mean field calculations

In this section, we consider a mean field approximation in
order to find the Gibbs free energy of the present geomet-
ric model. The first step is to obtain the total energy of the
system, which results solely from HBs. Following the defi-
nition of the previous section (see Fig. 2), we may write, for
the probability of an HB between two molecules (assuming
they are independent) whose sites have coordination num-
bersr ands

PHB =
nr

cn
s
c

rs
≈ nc

2

rs
, (6)

wherenr
c (ns

c) is the number of open links of a molecule with
coordination numberr (s), andnc is the fraction of links per

particle, which is independent of site-coordination. A natu-
ral choice for the potential energy between two sites is then
φrs = −εPHB (here,ε = 1).

The energy per particle is written as

e {Ni} =
∑
rs

Crsφrs , (7)

whereCrs is the number of(rs) nearest pairs, given by
Crs = [rNrps(r)+sNspr(s)(1−δr,s)]. The functionps(r)
is the probability of a pair of neighboring sites with coordi-
nation numbersr ands, which is given by

ps(r) =
Ns

Ntot(r)
, (8)

where

Ntot(4) = N4 + N5B + N5C , (9)

Ntot(5) = N , (10)

Ntot(6) = N5B + N5C + N6 . (11)

Here,N5B andN5C are the number of vertices of the type
B andC, respectively (fig. 2).Ntot(r) is the number of
neighbors tor particles, and the first neighbor geometric
constraint, which precludes 4 and 6-particles from being
neighbors is taken into account.

Now we must write the entropy of the system. Assum-
ing N independent sites distributed among{Nr} sites, the
number of spatial arrangements is simply

Ωo =
N !

N4!N5B !N5C !N6!
. (12)

The last expression overestimates the number of possible
states of the system, since tiling constraints were not taken
into account. To correct the number of states given by eq.
12, we consider the factor[14, 16]

c

F (N4, N5B , N5C , N6) = (n5B + n5C)N5B+2N5C (13)

(n4 + n5B)2N4+N5B/2(n4 + n5B + n5C)N4+(N5B+N5C)/2

(n5B + n5C + n6)N5B+N5C/2+3N6 ,

d

wherenr = Nr/N . The correcting factorF guarantees
a perfect arrangement of polygons at least for the nearest-
neighboring sites. For a further explanation concerning this
factor, see references 14 and 16. In this way, the number of
states due to this geometric constraint becomes

Ωg(N4, N5B , N5C , N6) = ΩoF (N4, N5B , N5C , N6) .
(14)

The newly calculated geometrically constrained number
of spatial arrangements is significantly improved with re-
spect to the non-constrained case. This can be seen from

comparison with the known entropy of the athermal ver-
sion of the square-triangle tiling model, given the area frac-
tion occupied by each component. The exact partition func-
tion for the latter was obtained using the Bethe ansatz and,
for the case of equal area fractions, the entropy per vertex
[19, 21, 22] is

sex = ln(2233)− 2
√

3 ln(2 +
√

3) ' 0.120 .

Maximization ofΩo andΩg (eqs. 12 and 14) for this special
case of area fractions yields, respectively,so ' 1.38 and
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sg ' 0.55, with s = kB

N lnΩ, indicating a significant im-
provement of the estimated entropy by taking into account
the constraint factorF .

We must yet compute the entropic contribution due to
the distribution of the molecular links. Let us defineMnc

as
the number of sites withnc links. Note thatMnc

satisfies the
relationsM2+M3+M4 = N and2M2+3M3+4M4 = Nc,
whereNc = Nnc. For a given set of values ofMnc

, the
number of arrangements of sites havingnc links is

Ωd =
N !

M2!M3!M4!
. (15)

The number of states for a given site withr neighbors
and nc links is the number of combinations ofr over nc

and, therefore, the total number of states accessible to the
system is

Ω = ΩgΩd

∏
r,nc

[
r!

nc!(r − nc)!

]Nr,nc

, (16)

whereNr,nc is the number of sites havingr neighbors and
nc links, which in this mean field approximation we take as
Nr,nc = NrMnc/N . The entropy per particle is given by
s = kB

N lnΩ and the partition function of the model is given
by:

Z(T, P ) =
∑′

{Ni, Mj}
exp

[
−βN(e + Pv − lnΩ

Nβ
)
]

, (17)

where P is the pressure,β = (kBT )−1, T is the tem-
perature, and the prime in the summation indicates the
constraints

∑
i Ni = N and

∑
i Mi = N . Writing

ζ({Ni,Mj}) = e−Ts+Pv, we can identify the Gibbs free
energy per particle asg(T, P ) = ζ(T, P, {Ni,Mj}min),
where {Ni,Mj}min is the set of values ofNi and Mj

which minimizesζ. Solutions were sought for in the ranges
0 ≤ Ni/N ≤ 1, 0 ≤ Mi/N ≤ 1 and2 ≤ n̄c ≤ 4 through
thesimulated annealing[23] algorithm.

4 Results and conclusions

In Fig. 3 we exhibit the phase diagram of the model in the
planeP versusT for both fixed (four) and variable number
of links. As can be seen in the figure, the diagram presents
three phases of different densities, a triple point (tp), and no
critical point. Note that allowing for a variable number of
links (continuous lines in Fig. 3) stabilizes the intermedi-
ate density phase at higher temperatures, in relation to the
case in that the number of links is fixed, which may be at-
tributed to the additional source of disorder that comes from
the variable number of links.
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Figure 3. Phase diagram P versus T of the geometric model for
a variable number of links (continuous line) and for a fixed num-
ber, nc = 4 (dashed line). The LD (low density), ID (intermediate
density) and HD (high density) regions represent phases rich in
r = 4, 5 and 6 sites, respectively. tp is the triple point.
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Figure 4. Fraction nr of r-coordinated sites as a function of tem-
perature T at P = 0 for a variable number of links. n4 (circles),
n5 = n5B + n5C (crosses) and n6 (triangles). Note that the frac-
tions nr are discontinuous at the transition temperatures T ' 0.18

and T ' 0.76, for a variable number of links.

In Fig. 4 we have plotted the fractions nr of r-
coordinated sites, as a function of temperature at P = 0. It
may be observed that the fractions nr change abruptly at the
transition temperatures. At low temperatures, the energetic
term dominates, and we have a low density (LD) phase with
n4 = 1. As the temperature increases, the entropic term
becomes important and we have two transitions to higher
density phases (ID and HD phases). Note that the HD phase
has n6 = 1. In Fig. 5, we show the fractions nr as a func-
tion of pressure at T = 0. At low pressures, the LD phase
has n4 = 1. Increasing the pressure, for P > 4.6 the LD
phase also presents sites with coordination numbers r = 5
and r = 6, indicating the appearance of defects in this crys-
talline phase. Around P ' 5 a transition to the HD phase is
accomplished. We have a competition between the Pv term,
which favours the HD phase, and the energy e contribution,
which favours the LD phase. The behaviour of the nr densi-
ties at temperatures and pressure away from the axes can be
read from the table 1.

Table 1: Fraction nr of r-coordinated sites for different
values of pressure and temperature for a variable number of
links.
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r = 4, 5 and6 sites, respectively.tp is the triple point.
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tions nr are discontinuous at the transition temperatures T ' 0.18

and T ' 0.76, for a variable number of links.

In Fig. 4 we have plotted the fractions nr of r-
coordinated sites, as a function of temperature at P = 0. It
may be observed that the fractions nr change abruptly at the
transition temperatures. At low temperatures, the energetic
term dominates, and we have a low density (LD) phase with
n4 = 1. As the temperature increases, the entropic term
becomes important and we have two transitions to higher
density phases (ID and HD phases). Note that the HD phase
has n6 = 1. In Fig. 5, we show the fractions nr as a func-
tion of pressure at T = 0. At low pressures, the LD phase
has n4 = 1. Increasing the pressure, for P > 4.6 the LD
phase also presents sites with coordination numbers r = 5
and r = 6, indicating the appearance of defects in this crys-
talline phase. Around P ' 5 a transition to the HD phase is
accomplished. We have a competition between the Pv term,
which favours the HD phase, and the energy e contribution,
which favours the LD phase. The behaviour of the nr densi-
ties at temperatures and pressure away from the axes can be
read from the table 1.

Table 1: Fraction nr of r-coordinated sites for different
values of pressure and temperature for a variable number of
links.
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Figure 4. Fractionnr of r-coordinated sites as a function of tem-
peratureT at P = 0 for a variable number of links.n4 (circles),
n5 = n5B + n5C (crosses) andn6 (triangles). Note that the frac-
tionsnr are discontinuous at the transition temperaturesT ' 0.18
andT ' 0.76, for a variable number of links.

In Fig. 4 we have plotted the fractionsnr of r-
coordinated sites, as a function of temperature atP = 0. It
may be observed that the fractionsnr change abruptly at the
transition temperatures. At low temperatures, the energetic
term dominates, and we have a low density (LD) phase with
n4 = 1. As the temperature increases, the entropic term
becomes important and we have two transitions to higher
density phases (ID and HD phases). Note that the HD phase
hasn6 = 1. In Fig. 5, we show the fractionsnr as a func-
tion of pressure atT = 0. At low pressures, the LD phase
hasn4 = 1. Increasing the pressure, forP > 4.6 the LD
phase also presents sites with coordination numbersr = 5
andr = 6, indicating the appearance of defects in this crys-
talline phase. AroundP ' 5 a transition to the HD phase is
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accomplished. We have a competition between thePv term,
which favours the HD phase, and the energye contribution,
which favours the LD phase. The behaviour of thenr densi-
ties at temperatures and pressure away from the axes can be
read from the table 1.

Table 1: Fractionnr of r-coordinated sites for different val-
ues of pressure and temperature for a variable number of
links.

P T n4 n5B n5C n6

0 0.08 1 0 0 0
0.3 0.012 0.531 0.392 0.065
0.8 0 0 0 1

2 0.08 1 0 0 0
0.2 0.015 0.532 0.388 0.065
0.8 0 0 0 1

4 0.025 1 0 0 0
0.2 0 0 0 1
0.8 0 0 0 1
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Figure 5. Fraction nr of r-coordinated sites as a function of pres-
sure P at T = 0 for a variable number of links. n4 (circles),
n5 = n5B + n5C (crosses) and n6 (triangles). Fractions nr are
discontinuous at the transition pressure P ' 5 for a variable num-
ber of links.

From the two figures and data in the table 1 it can be seen
that the HD phase is the ordered triangular lattice, whereas
the LD phase is the square lattice, except near the phase
boundary, where defects appear. These two phases may be
associated with crystalline solid phases. The ID phase has
no long range order and can be described as amorphous.

Let us compare our results with those of the previ-
ous work[9], in which entropy of spatial arrangement of
molecules was not geometrically constrained. At T = 0 the
effects of entropy (of the spatial arrangements of molecules
and of links) are absent and both phase diagrams coincide,
presenting a LD-HD transition at P ≈ 5 . However, away
from this axis, the absence of a liquid-liquid phase transi-
tion line and a corresponding critical point, features present
in our earlier model [9], are remarkable. The differences
in the thermodynamic behaviour of the two systems arise
mainly from the geometric constraint imposed on entropy,
once variations on the number of links do not change the
phase diagram qualitatively (see Fig. 3). Three points de-
serve our attention: i) The strongly reduced role of spatial
entropy (see eqs. 12 and 14), associated with a restriction
in the number of possible geometric arrangements, prevents
the system from going continuously from the LD phase to
HD phase; ii) The negative slope of the coexistence lines
indicates, in accordance with Le Chatelier’s principle, that
entropy increases while volume decreases, on transitions
to higher temperature. The energetic term favours the LD
phase (φrs is a minimum for r = s = 4), while the to-
tal entropy (geometric entropy plus entropy from the links)

favours the phases of higher densities, leading to a compe-
tition between energy and entropy, at constant pressure. In
our earlier work [9] we have shown that the unconstrained
geometrical entropy favours the low density phase, while the
link entropy favours the phases of higher density. These
facts arise as interpretations of the phase diagram, which
presents a coexistence line of positive inclination for the
first case, of pure spatial disorder, and negative slope in case
link disorder is included. In this work, spatial disorder is re-
duced, and link entropy is increased (through the introduc-
tion of variable link numbers). As a result, coexistence lines
are all of negative slope. iii)The reduced role of spatial dis-
order is also apparent in the fact that the LD and HD phases
are crystalline, for the variable link case. In these phases en-
tropy increase with temperature is due solely to the link dis-
order, while the system remains quasi-crystalline. In the pre-
vious model the absence of the geometrical constraint allows
smooth variation on each r-coordinated site fraction, imply-
ing in the presence of more heterogeneous phases, with no
predominant nr.

Figures 6 and 7 exhibit the fractions of hydrogen bonds
and links per molecule as a function of temperature and pres-
sure, respectively, at P = 0 and T = 0. As expected, in
both figures, the fraction of hydrogen bonds, which is pro-
portional to energy, is a decreasing function of temperature,
and presents discontinuities at the transition temperatures.
In the region of constant pressure (Fig. 6) the fraction of
links also decreases with temperature, except at the ID-HD
phase transition, at which it shows an evident increase. This
behavior can be seen from the fact that total entropy must
increase with temperature: while the HD phase has a low
spatial entropy (n6 = 1 as can be seen in Fig. 4) the num-
ber of links contributes to raise the entropy (eq. 16). For
T = 0 (Fig. 7) the fraction of links remains constant, with
nc = 4, and the number of hydrogen bonds is maximum (4
in the LD phase and 8/3 in the HD phase), corresponding to
the minimum energy configurations.

Figure 5. Fractionnr of r-coordinated sites as a function of pres-
sureP at T = 0 for a variable number of links.n4 (circles),
n5 = n5B + n5C (crosses) andn6 (triangles). Fractionsnr are
discontinuous at the transition pressureP ' 5 for a variable num-
ber of links.

From the two figures and data in the table 1 it can be seen
that the HD phase is the ordered triangular lattice, whereas
the LD phase is the square lattice, except near the phase
boundary, where defects appear. These two phases may be
associated with crystalline solid phases. The ID phase has
no long range order and can be described as amorphous.

Let us compare our results with those of the previ-
ous work[9], in which entropy of spatial arrangement of
molecules was not geometrically constrained. AtT = 0 the
effects of entropy (of the spatial arrangements of molecules
and of links) are absent and both phase diagrams coincide,
presenting a LD-HD transition atP ≈ 5 . However, away
from this axis, the absence of a liquid-liquid phase transi-
tion line and a corresponding critical point, features present

in our earlier model [9], are remarkable. The differences
in the thermodynamic behaviour of the two systems arise
mainly from the geometric constraint imposed on entropy,
once variations on the number of links do not change the
phase diagram qualitatively (see Fig. 3). Three points de-
serve our attention: i) The strongly reduced role of spatial
entropy (see eqs. 12 and 14), associated with a restriction
in the number of possible geometric arrangements, prevents
the system from going continuously from the LD phase to
HD phase; ii) The negative slope of the coexistence lines
indicates, in accordance with Le Chatelier’s principle, that
entropy increases while volume decreases, on transitions
to higher temperature. The energetic term favours the LD
phase (φrs is a minimum forr = s = 4), while the to-
tal entropy (geometric entropy plus entropy from the links)
favours the phases of higher densities, leading to a compe-
tition between energy and entropy, at constant pressure. In
our earlier work [9] we have shown that the unconstrained
geometrical entropy favours the low density phase, while the
link entropy favours the phases of higher density. These
facts arise as interpretations of the phase diagram, which
presents a coexistence line of positive inclination for the
first case, of pure spatial disorder, and negative slope in case
link disorder is included. In this work, spatial disorder is re-
duced, and link entropy is increased (through the introduc-
tion of variable link numbers). As a result, coexistence lines
are all of negative slope. iii)The reduced role of spatial dis-
order is also apparent in the fact that the LD and HD phases
are crystalline, for the variable link case. In these phases en-
tropy increase with temperature is due solely to the link dis-
order, while the system remains quasi-crystalline. In the pre-
vious model the absence of the geometrical constraint allows
smooth variation on eachr-coordinated site fraction, imply-
ing in the presence of more heterogeneous phases, with no
predominantnr.

Figures 6 and 7 exhibit the fractions of hydrogen bonds
and links per molecule as a function of temperature and pres-
sure, respectively, atP = 0 andT = 0. As expected, in
both figures, the fraction of hydrogen bonds, which is pro-
portional to energy, is a decreasing function of temperature,
and presents discontinuities at the transition temperatures.
In the region of constant pressure (Fig. 6) the fraction of
links also decreases with temperature, except at the ID-HD
phase transition, at which it shows an evident increase. This
behavior can be seen from the fact that total entropy must
increase with temperature: while the HD phase has a low
spatial entropy (n6 = 1 as can be seen in Fig. 4) the num-
ber of links contributes to raise the entropy (eq. 16). For
T = 0 (Fig. 7) the fraction of links remains constant, with
nc = 4, and the number of hydrogen bonds is maximum (4
in the LD phase and 8/3 in the HD phase), corresponding to
the minimum energy configurations.

In conclusion, we have improved a previous geometric
model for water, including a variable number of links, and
a first order correction to the geometric entropy, with the
purpose of achieving a good tiling of the polygons. The
phase diagram presents three phases of different densities,
two crystalline (LD and HD) and one amorphous phase (ID).
No critical point or liquid-liquid phase transition is present.
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Figure 6. Fraction of hydrogen bonds nHB (circles) and fraction
of links n̄c (triangles) as a function of temperature at P = 0 for
a variable number of links. At the transition temperatures nHB

changes discontinuously. n̄c jumps in the second transition.
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Figure 7. Fraction of hydrogen bonds nHB (circles) and fraction
of links n̄c (triangles) as a function of pressure at T = 0 for a
variable number of links. At the transition pressure nHB changes
discontinuously. n̄c is constant, equal to 4.

In conclusion, we have improved a previous geometric
model for water, including a variable number of links, and

a first order correction to the geometric entropy, with the
purpose of achieving a good tiling of the polygons. The
phase diagram presents three phases of different densities,
two crystalline (LD and HD) and one amorphous phase (ID).
No critical point or liquid-liquid phase transition is present.
However, the diagram has some resemblance to that near
the ice-Ih, where, for some values of temperature, the sys-
tem goes from the ice-Ih to the liquid water and from this
to the ice-V as the pressure increases[24]. These qualita-
tive features are seen in our Fig. 3, at intermediate tem-
peratures. The model cannot account for the liquid-vapor
transition since the distance between the molecules is kept
fixed. However, the increase in the density as the tempera-
ture raises is akin to the behaviour of water at low tempera-
tures.
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of links n̄c (triangles) as a function of pressure at T = 0 for a
variable number of links. At the transition pressure nHB changes
discontinuously. n̄c is constant, equal to 4.

In conclusion, we have improved a previous geometric
model for water, including a variable number of links, and

a first order correction to the geometric entropy, with the
purpose of achieving a good tiling of the polygons. The
phase diagram presents three phases of different densities,
two crystalline (LD and HD) and one amorphous phase (ID).
No critical point or liquid-liquid phase transition is present.
However, the diagram has some resemblance to that near
the ice-Ih, where, for some values of temperature, the sys-
tem goes from the ice-Ih to the liquid water and from this
to the ice-V as the pressure increases[24]. These qualita-
tive features are seen in our Fig. 3, at intermediate tem-
peratures. The model cannot account for the liquid-vapor
transition since the distance between the molecules is kept
fixed. However, the increase in the density as the tempera-
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