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We solve the problem of a resistive toroid carrying a steady azimuthal current. We use standard toroidal coor-
dinates, in which case Laplace’s equation is R-separable. We obtain the electric potential inside and outside the
toroid, in two separate cases: 1) the toroid is solid; 2) the toroid is hollow (a toroidal shell). Considering these
two cases, there is a difference in the potential inside the hollow and solid toroids. We also present the electric
field and the surface charge distribution in the conductor due to this steady current. These surface charges gene-
rate not only the electric field that maintains the current flowing, but generate also the electric field outside the
conductor. The problem of a toroid is interesting because it is a problem with finite geometry, with the whole
system (including the battery) contained within a finite region of space. The problem is solved in an exact
analytical form. We compare our theoretical results with an experimental figure demonstrating the existence of
the electric field outside the conductor carrying steady current.

1 Toroidal Ring

The electric field outside conductors with steady currents
has been studied in a number of cases. These cases, howe-
ver, consider infinitely long conductors: coaxial cable, [1,
pp. 125–130], [2, pp. 318 and 509–511], [3], [4, pp. 336-
337] and [5]; solenoid with azimuthal current, [2, p. 318]
and [6]; transmission line, [7, p. 262] and [8]; straight wire,
[9]; and conductor plates, [10]. The only cases solved in the
literature where the geometry of the conductor is finite are
those of a finite coaxial cable considered by Jackson, [11],
and that of a toroidal conducting ring, [12].

Here we consider the case of the conducting toroid with
a steady current. Our goal is to find the electric potential
inside and outside the toroid, and from the potential we
can find the electric field and surface charges. More details
about this problem and its analytical solution can be found
in [12].

Consider a toroidal conductor with uniform resistivity.
It has greater radiusR0 and smaller radiusr0 and carries
a steady currentI in the azimuthal direction, flowing along
the circular loop. The toroid has rotational symmetry around
the z-axis and is centered in the planez = 0. The battery
that maintains the current is located atϕ = π rad, see Fig. 1.
Air or vacuum surrounds the conductor.

The electric potentialφ can be calculated using toroidal
coordinates(η, ξ, ϕ) [13, p. 112], defined by:

x = a
sinh η cosϕ

cosh η − cos ξ
, y = a

sinh η sinϕ

cosh η − cos ξ
,

z = a
sin ξ

cosh η − cos ξ
. (1)

Figure 1. A toroidal ohmic conductor with symmetry axisz, smal-
ler radiusr0 (m) and greater radiusR (m). A thin battery is loca-
ted atϕ = π rad maintaining constant potentials (represented as
the “+” and “-” signs) in its extremities. A steady current flows
azimuthally in this circuit loop in the clockwise direction, from
ϕ = +π rad toϕ = −π rad.

Here,a is a constant such that whenη → ∞ we have the
circle x = a cosϕ, y = a sinϕ and z = 0. The toroi-
dal coordinates can have the possible values:0 ≤ η < ∞,
−π rad ≤ ξ ≤ π rad and−π rad ≤ ϕ ≤ π rad. We take
η0 as a constant that described the toroid surface in toroidal
coordinates. The internal (external) region of the toroid is
characterized byη > η0 (η < η0).

The potential along the surface of the toroid is linear in
ϕ, φ(η0, ξ, ϕ) = A + Bϕ. This potential can be expanded
in Fourier series inϕ:

φ(η0, ξ, ϕ) = A + Bϕ = A + 2B

∞∑
q=1

(−1)q−1

q
sin(qϕ).

(2)
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Figure 2. Equipotentials for a resistive full solid toroidal conductor
in the planez = 0. The bold circles represent the borders of the to-
roid. The current runs in the azimuthal direction, fromϕ = +π rad
to ϕ = −π rad. The thin battery is on the left (ϕ = π rad). We
have usedη0 = 2.187.

Figure 3. Equipotentials in the planex = 0 for a resistive full solid
toroidal conductor carrying a steady azimuthal current, Eq. (7) with
A = 0 andB = φ0/2π. The bold circles represent the conductor
surface. We have used Eq. (22) withη0 = 2.187.

Eq. (2) can be used as the boundary condition for our parti-
cular solution to this problem.

Laplace’s equation for the electric potential∇2φ =
0 can be solved in toroidal coordinates with the method
of separation of variables (by a procedure known as R-
separation), leading to a solution of the form, [13, p. 112]:

φ(η, ξ, ϕ) =
√

cosh η − cos ξH(η)X(ξ)Φ(ϕ), (3)

where the functionsH, X, andΦ satisfy the general equati-
ons (wherep andq are constants):

c

(cosh2 η − 1)H ′′ + 2 cosh ηH ′ − [(p2 − 1/4) + q2/(cosh2 η − 1)]H = 0, (4)

X ′′ + p2X = 0, (5)

Φ′′ + q2Φ = 0. (6)

Using the boundary condition (2) and the possible solutions of Eqs. (4) to (6) we obtain the potential as given by, [12]:

φ(η ≤ η0, ξ, ϕ) =
√

cosh η − cos ξ

[ ∞∑
p=0

Ap cos(pξ)Pp− 1
2
(cosh η) +

∞∑
q=1

sin(qϕ)
∞∑

p=0

Bpq cos(pξ)P q

p− 1
2
(cosh η)

]
, (7)

d

where the coefficientsAp andBpq are given by, respecti-
vely:

Ap =
√

2A(2− δ0p)
π

Qp− 1
2
(cosh η0)

Pp− 1
2
(cosh η0)

, (8)

Bpq =
2
√

2B(−1)q−1(2− δ0p)
qπ

Qp− 1
2
(cosh η0)

P q

p− 1
2
(cosh η0)

, (9)

whereδwp is the Kronecker delta, which is zero forw 6= p
and one forw = p. The functionsP q

p− 1
2
(cosh η) and

Qq

p− 1
2
(cosh η) are known as toroidal Legendre polynomials

of the first and second kind respectively, [14, p. 173].
For the region inside the hollow toroid (that is,η > η0),

the potential is given by:

φ(η > η0, ξ, ϕ) = A +
√

cosh η − cos ξ

∞∑
q=1

sin(qϕ)
∞∑

p=0

B′
pq cos(pξ)Qq

p− 1
2
(cosh η), (10)

where the coefficientsB′
pq are defined by:

B′
pq =

2
√

2B(−1)q−1(2− δ0p)
qπ

Qp− 1
2
(cosh η0)

Qq

p− 1
2
(cosh η0)

. (11)

We plotted the equipotentials of a full solid toroid on the
planez = 0 in Fig. 2 with A = 0 andB = φ0/2π. Fig. 3
shows a plot of the equipotentials of the full solid toroid in
the planex = 0 (perpendicular to the current).
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2 Electric Field and Surface Charges

The electric field can be calculated by~E = −∇φ in toroidal
coordinates, as given by: c

Eη = − sinh η
√

cosh η − cos ξ

a

∞∑
p=0

cos(pξ)
{

Ap

[
1
2
Pp− 1

2
(cosh η) + (cosh η − cos ξ)Pp− 1

2

′(cosh η)
]

+
∞∑

q=1

sin(qϕ)Bpq

[
1
2
P q

p− 1
2
(cosh η) + (cosh η − cos ξ)P q

p− 1
2

′(cosh η)
]}

, (12)

Eξ = −
√

cosh η − cos ξ

a

∞∑
p=0

[
sin ξ cos(pξ)

2
− p(cosh η − cos ξ) sin(pξ)

]

×
[
ApPp− 1

2
(cosh η) +

∞∑
q=1

sin(qϕ)BpqP
q

p− 1
2
(cosh η)

]
, (13)

Eϕ = − (cosh η − cos ξ)3/2

a sinh η

∞∑
q=1

q cos(qϕ)
∞∑

p=0

Bpq cos(pξ)P q

p− 1
2
(cosh η), (14)

whereP q

p− 1
2

′(cosh η) are the derivatives of theP q

p− 1
2
(cosh η) relative tocosh η. The electric field inside the full solid toroid

(η > η0) is given simply by:

Eη = 0, Eξ = 0, Eϕ = −cosh η − cos ξ

a sinh η
B = − B√

x2 + y2
. (15)

For the full solid toroid, the surface charge distribution that creates the electric field inside (and outside of) the conductor,
keeping the current flowing, can be obtained with Gauss’ law (by choosing a Gaussian surface involving a small portion of the
conductor surface):

σ(η0, ξ, ϕ) = ε0

[
~E(η < η0) · (−η̂) + ~E(η > η0) · η̂

]
η0

=
ε0 sinh η0

a

{A + Bϕ

2
+ (cosh η0 − cos ξ)3/2

×
∞∑

p=0

cos(pξ)
[
ApPp− 1

2

′(cosh η0) +
∞∑

q=1

sin(qϕ)BpqP
q

p− 1
2

′(cosh η0)
]}

. (16)

d

3 Thin Toroid Approximation

Here we treat the case of a thin toroid, such that the ou-
ter radiusR0 = a cosh η0/ sinh η0 ≈ a and the inner ra-
dius r0 = a/ sinh η0 are related byr0 ¿ R0, see Fig. 1.
In this case we havecosh η0 À η0 À 1. The function
Qp− 1

2
(cosh η0) that appears in Eqs. (8) and (9) for the coef-

ficientsAp andBpq can be approximated by, [14, p. 164]:

Qp− 1
2
(cosh η0) ≈

√
πΓ

(
p + 1

2

)

2p+ 1
2 p! coshp+ 1

2 η0

, (17)

whereΓ is the gamma function, [15, p. 591].
Because Eq. (17) has a factor ofcosh−p− 1

2 η0 ¿ 1, we
can neglect all terms withp > 0 in Eq. (7) compared with
the term withp = 0. The potential outside the thin toroid
(η0 À 1):

c

φ(η ≤ η0, ξ, ϕ) =

√
cosh η − cos ξ

cosh η0

[
A

P− 1
2
(cosh η)

P− 1
2
(cosh η0)

+2B

∞∑
q=1

(−1)q−1

q
sin(qϕ)

P q

− 1
2
(cosh η)

P q

− 1
2
(cosh η0)

]
. (18)
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We are especially interested in the expressions for the potential and electric field outside but in the vicinity of the conductor,
η0 > η À 1. A series expansion of the functionsP q

− 1
2
(ξ) andP q

− 1
2

′(ξ) aroundξ → ∞ gives as the most relevant terms [14,

p. 173]:

P q

− 1
2
(ξ) ≈

√
2/π

Γ
(

1
2 − q

) ln(2ξ)− ψ
(

1
2 − q

)− γ√
ξ

, P q

− 1
2

′(ξ) ≈
√

2/π

Γ
(

1
2 − q

) 1
ξ3/2

[
1− ln(2ξ)− ψ

(
1
2 − q

)− γ

2

]
, (19)

whereψ(z) = Γ′(z)/Γ(z) is the digamma function, andγ ≈ 0.577216 is the Euler gamma. The potential just outside the thin
toroid, Eq. (7), can then be written in this approximation as:

φ(η0 ≥ η À 1, ξ, ϕ) = A
ln(8 cosh η)
ln(8 cosh η0)

+ 2B

∞∑
q=1

(−1)q−1

q
sin(qϕ)

ln(2 cosh η)− ψ
(

1
2 − q

)− γ

ln(2 cosh η0)− ψ
(

1
2 − q

)− γ
. (20)

This is a new result not presented in [12].
Far from the battery (that is, for|ϕ| ¿ π rad) the potential (20) can be fitted numerically by trial and error by the following

simpler expression (valid forη0 > 103):

φ(η0 ≥ η À 1, ξ, ϕ) = A
ln(8 cosh η)
ln(8 cosh η0)

+ Bϕ
ln(1.67 cosh η)
ln(1.67 cosh η0)

. (21)

This is a correction from Eq. (35) of [12].
The surface charge distribution in this thin toroid approximation is given by:

σ(η0 À 1, ξ, ϕ) =
ε0 sinh η0

a

[
A

ln(8 cosh η0)
+ 2B

∞∑
q=1

(−1)q−1

q

sin(qϕ)
ln(2 cosh η0)− ψ

(
1
2 − q

)− γ

]
. (22)

This is another new result not presented in [12]. In Fig. 4 we plotted the density of surface chargesσ as a function of the
azimuthal angleϕ. We can see thatσ is linear withϕ only close toϕ = 0 rad. Close to the batteryσ diverges to infinity (that
is, σ →∞ whenϕ → ±π rad).

Far from the battery Eq. (22) can be fitted numerically by a linear function onϕ, namely:

σ(η0 À 1, ξ, ϕ) =
ε0 sinh η0

a

[
A

ln(8 cosh η0)
+

Bϕ

ln(1.67 cosh η0)

]
=

ε0
r0

[
A

ln(8a/r0)
+

Bϕ

ln(1.67a/r0)

]
≡ σA + σBϕ. (23)

This is a correction from Eq. (37) of [12]. We definedσA andσB by this last equality.
We can calculate the total chargeqA of the thin toroid as a function of the constant electric potentialA. For this, we

integrate the surface charge densityσ, Eq. (22), inξ andϕ (in the approximationcosh η0 À 1):

qA =
∫ π

−π

hξdξ

∫ π

−π

hϕdϕσ(ξ, ϕ) =
4π2ε0Aa

ln(8 cosh η0)
=

4π2ε0Aa

ln(8a/r0)
, (24)

d

Figure 4. Density of surface chargesσ as a function of the azi-
muthal angleϕ in the case of a thin resistive toroid carrying a ste-
ady current. We usedη0 = 10.

where hη = hξ = a/(cosh η − cos ξ) and hϕ =

a sinh η/(cosh η − cos ξ) are the scale factors in toroidal
coordinates, [16]. Notice that from Eq. (24) we can obtain
the capacitance of the thin toroid, [17, p. 127]:

C =
qA

A
=

4π2ε0a

ln(8 cosh η0)
=

4π2ε0a

ln(8a/r0)
. (25)

It is useful to define a new coordinate system:

λ′ = aϕ, ρ′ =

√(√
x2 + y2 − a

)2

+ z2. (26)

We can interpretλ′ as a distance along the toroid surface
in the ϕ direction, andρ′ as the shortest distance from the
circle x2 + y2 = a2 located in the planez = 0. Consider a
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certain piece of the toroid between the anglesϕ0 and−ϕ0,
with potentials in these extremities given byφR = A+Bϕ0

andφL = A − Bϕ0, respectively. This piece has a length

of ` = 2aϕ0. Whenη0 > η À 1 (that is,r0 < ρ′ ¿ a) the
potential can be written as:

c

φ = A
ln(`/ρ′)− ln(`/8a)
ln(`/r0)− ln(`/8a)

+
2Bϕ0

`
λ′

ln(`/ρ′)− ln(`/1.67a)
ln(`/r0)− ln(`/1.67a)

≈
(

φR + φL

2
+

φR − φL

`
λ′

)
ln(`/ρ′)
ln(`/r0)

, (27)

where in the last approximation we neglected the termln(`/a) utilizing the approximationr0 < ρ′ ¿ a (so that`/r0 >
`/ρ′ À `/1.67a > `/8a). The electric field can be expressed in this approximation as:

~E = −
(

φR + φL

2
+

φR − φL

`
λ′

)
η̂

ρ′ ln(`/r0)
− φR − φL

`

ln(`/ρ′)
ln(`/r0)

ϕ̂. (28)

d

Eqs. (27) and (28) can be compared to Eqs. (12) and (13)
of Assis, Rodrigues and Mania, [9], respectively. They have
studied the case of a long straight cylindrical conductor of
radiusr0 carrying a constant current, in cylindrical coordi-
nates(ρ′, ϕ, z) (note that the conversions from toroidal to
cylindrical coordinates in this approximation areη̂ ≈ −ρ̂′

and ϕ̂ ≈ ẑ). In their case, the cylinder has a length` and
radiusr0 ¿ `, with potentialsφL andφR in the extremities
of the conductor, andRI = φL − φR. Our result of the

potential in the region close to the thin toroid coincides with
the cylindrical solution, as expected.

4 Charged Toroid Without Current

Consider a toroid described byη0, without current but char-
ged to a constant potentialφ0. UsingA = φ0 andB = 0 in
Eqs. (7) we have the potential inside and outside the toroid,
respectively:

c

φ(η ≥ η0, ξ, ϕ) = A = φ0, (29)

φ(η ≤ η0, ξ, ϕ) =
√

cosh η − cos ξ

∞∑
p=0

Ap cos(pξ)Pp− 1
2
(cosh η), (30)

where the coefficientsAp are given by Eq. (8). This solution is already known in the literature, [18, p. 239], [19, p. 1304].
It is also possible to obtain the capacitance of the toroid, by comparing the electrostatic potential at a distancer far from

the origin with the potential given by a point chargeq, φ(r À a) ≈ q/4πε0r:

φ(r À a, θ, ϕ) ≈ a
√

2
r

∞∑
p=0

√
2φ0(2− δ0p)

π

Qp− 1
2
(cosh η0)

Pp− 1
2
(cosh η0)

=
q

4πε0r
. (31)

d

The capacitance of the toroid with its surface at a cons-
tant potentialφ0 can be written asC = q/φ0. From Eq. (31)
this yields, [18, p. 239], [20, p. 5-13], [21, p. 9], [22, p. 375]:

C = 8ε0a

∞∑
p=0

(2− δ0p)
Qp− 1

2
(cosh η0)

Pp− 1
2
(cosh η0)

. (32)

Utilizing the thin toroid approximation,η0 À 1, one can

obtain the capacitance of a circular ring, Eq. (25).

Another case of interest is that of a charged circular line
discussed below, which is the particular case of a toroid with
r0 → 0. With η0 À 1 andcosh η0 À 1 we haveR ≈ a.
Keeping only the term withp = 0 in Eqs. (8) and (30),
expressed in toroidal and spherical coordinates(r, θ, ϕ) res-
pectively, the potential for the thin toroid becomes:

c

φ(r, θ, ϕ) =
qA

4π
√

2ε0a

√
cosh η − cos ξP− 1

2
(cosh η) (33)
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=
qA

4πε0

1
[(r2 − a2)2 + 4a2r2 cos2 θ]1/4

P− 1
2

(
r2 + a2

√
(r2 − a2)2 + 4a2r2 cos2 θ

)
. (34)

We can expand Eq. (34) onr</r>, wherer< (r>) is the lesser (greater) betweena andr =
√

x2 + y2 + z2. We present
the first three terms:

φ(r, θ, ϕ) ≈ qA

4πε0

{
1
r>

− 1 + 3 cos(2θ)
8

r2
<

r3
>

+
3

512

[
9 + 20 cos(2θ) + 35 cos(4θ)

]r4
<

r5
>

}
. (35)

d

Eqs. (33) to (35) can be compared with the solution gi-
ven by Jackson, [23, p. 93]. Jackson gives the exact elec-
trostatic solution of the problem of a charged circular wire
(that is, a toroid with radiusr0 = 0), in spherical coordinates
(r, θ, ϕ):

φ(r, θ, ϕ) =
qA

4πε0

∞∑
n=0

r2n
<

r2n+1
>

(−1)n(2n− 1)!!
2nn!

P2n(cos θ),

(36)
whereqA is the total charge of the wire. Eq. (36) expan-
ded ton = 2 yields exactly Eq. (35). We have checked that
Eqs. (34) and (36) are the same for at leastn = 30.

Eqs. (33) and (36) yield the same result. It is worthwhile
to note that in spherical coordinates we have an infinite sum,
Eq. (36), while in toroidal coordinates the solution is gi-
ven by a single term, Eq. (34). The agreement shows that
Eqs. (33) and (36) are the same solution only expressed in
different forms.

Figure 5 shows the potential as function ofρ (in cylin-
drical coordinates) in the planez = 0. Eqs. (33) and (36)
give the same result.

Figure 5. Normalized potential as function ofρ (distance fromz-
axis) on the planez = 0. Eqs. (33) and (36) give the same result.
We utilizeη0 = 38 (cosh η0 = 1.6× 1016) anda = 1.

5 Discussion and Conclusion

Figure 2 can be compared with the experimental result found
by Jefimenko, [24, Fig. 3], reproduced here in Fig. 6 with
Fig. 2 overlaid on it. Jefimenko painted a circular conduc-
ting strip on a glass plate utilizing a transparent conducting
ink. A steady current flowed in the strip by connecting its

extremities with a battery. By spreading grass seeds on the
glass plate he was able to map the electric field lines inside
and outside the strip (in analogy with iron fillings mapping
the magnetic field lines). The equipotential lines obtained
here are orthogonal to the electric field lines. There is a very
reasonable agreement between our theoretical result and the
experiment.

Figure 6. Jefimenko’s experiment [24, Fig. 3] in which the lines
of electric field were mapped using grass seeds spread over a glass
plate. There is a circular conducting strip carrying a steady cur-
rent. Fig. 2 has been overlaid on it – the equipotential lines are
orthogonal to the electric field lines.

Our solution inside and along the surface of the full so-
lid toroid yields only an azimuthal electric field, namely,
|Eϕ| = ∆φ/2πρ. But even for a steady current we must
have a component of~E pointing away from thez axis,Eρ,
due to the curvature of the wire. Here we are neglecting this
component due to its extremely small order of magnitude
compared with the azimuthal componentEϕ. See further
discussion in [12].

The beautiful experimental result of Jefimenko showing
the electric field outside the conductor is complemented
by this present theoretical work, with excellent agreement,
Figs. 6. The electric potential and electric field of the
thin toroid approximation with a steady current, respecti-
vely Eqs. (27) and (28), agree with the known case of a
long straight cylindrical conductor carrying a steady current,
Eqs. (12) and (13) of [9]. The electric potential of the thin
toroid approximation without current agrees with the known
result of a charged wire, [23, p. 93].
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Here we have obtained a theoretical solution for the po-
tential due to a steady azimuthal current flowing in a toroidal
resistive conductor which yielded an electric field not only
inside the toroid but also in the space surrounding it. Our
solution showed a reasonable agreement with Jefimenko’s
experiment which proved the existence of this external elec-
tric field due to a resistive steady current.
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