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The rotating low frequency (RLF) field penetration and dissipation and the effect of ponderomotive forces
driven by Ergodic Magnetic Limiter (EML) on the poloidal/ toroidal flow in tokamak plasmas are discussed.
EML coils are represented as a sheet current expanded in Fourier series with poloidal/toroidal wave numbers
M/N depending on coil shape and feeding. The Aliwvave mode conversion effect in the RLF range is
found responsible for wave dissipation at the rational magnetic surfaces—M /N = 3 typical for EML

coil design. Analytical and numerical calculations show maximums of LF field dissipation at the locahAlfv
wave resonance = |k ca| near the rational magnetic surfage= 3 in Tokamak Chauffage Alf&n Biesilien.

The poloidal rotation velocity/, taken into account in the dielectric tensor, can strongly modify the LF field
and dissipated power profiles. Even stationary EML fields can dissipate at the locahAifwe resonance
(UM/ra = kjca). Preliminary estimations show that the stationary EML fields can decelerate the plasma
rotation.

1 Introduction nent of the wavevectof} is the tokamak major radius, and
ca = Bo/v/4mm;n; is Alfvén velocity.

) ) ] ] In this paper, we analyze the penetration, dissipation,
The tokamak is a toroidal magnetic confinement system gnd poloidal/toroidal flow driven by RLF fields, which are
where an equilibrium current in the toroidal direction is used jduced by EML at the rational magnetic surfaces=
for plasma heating, as result of the Joule effect. Earlier toka-_M/N, within a linear approximation for the wave ampli-
mak experiments had been already shown an obvious necesyde. The position of the rational surface is supposed to be
sity of instability control and auxiliary heating. The Ergodic c|ose to the plasma boundary. The coils are represented as
Magnetic Limiter (EML) has been proposed [1] for effec- g sheet current at = b, expanded in Fourier series with
tive heat exhaust, edge cooling, impurity screening, plasmapoloidal A/ and toroidalN wave numbers. The cylindrical

confinement, and stability control at the plasma boundary. model for EML coils used in calculations can be presented
Some promising results were already obtained in Tore Su-jn the form

pra tokamak with stationary EML coil current [1]. Recently,

EML coils were employed in Hybtok-Il tokamak [2] to ex- J= Z 2Mo L1, cos(sMof) {1 + 2cos (NZN e,
perimentally investigate the penetration process of Rotating N 7 Rob Ry

Low Frequency (RLF) fields into tokamak plasmas. EML

coils have also been installed in the Tokamak Chauffage N 4LI Esin(sM 0) sin <NZ> & 0
Alfvén Beésilien (TCABR) [3] with the main goal of af- (mRp)? s 0 Ro 0

fecting the plasma at the rational magnetic surface 3.

A theoretical analysis of stochastic effects produced by the
stationary EML coil current at the plasma boundary was
presented in Ref.[4]. A Dynamic Ergodic Divertor (DED)
with RLF fields was also installed in the TEXTOR toka-
mak [5]. In Ref.[6], it was shown that the RLF fields dri-
ven by DED can produce additional heating and plasma flow
near the rational magnetic surfage= 3, in the frequency
band5 — 10 kH z, at the plasma boundary in TEXTOR and
TCABR tokamaks. The RLF fields dissipate at the local j, , = Z Jo.6(M,N)o(r — b) exp[i(M6 + N¢ — wt)],
Alfvén wave resonanee = |k||[c4 Wherew is frequency, M.N

k= (m/r)Bg/Bo+ (n/Ro)B¢/ By is the parallel compo- 2

where the cylindrical coordinates, @, z are usedgy ande’,

are unit vectors in poloidal and axial (toroidal) directions,
My is the main poloidal number andis length of the EML
coils in z direction,s = 1, 3,5, .., and I, is current ampli-
tude of the coil in the case of stationary fields. The EML
model was also discussed in [4]. In the simplified pseudo-
toroidal model for DED [6], the coil current is presented in
the form
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Here, the relation between the cylindrica) @nd pseudo- 2 Plasma Parameters and LF Fields
toroidal () coordinates is established as= Ry¢ (Ry is
the major radius of the toroidal plasma column with minor To model the conditions of the RLF field excitation and pon-
plasma radiug). This model can be explored for EML coils deromotive forces induced by EML in the frequency range
if we did not take into accoun¥=0 harmonic in eq.(1). (10 — 30 kHZ) in TCABR, we assume circular magne-
To analyze LF field dissipation in tokamaks, we use tic sqrfaces with simplg fitting profiles of plasma parame-
analytical and numerical calculations. One dimensional nu- {rS i-., the pgtrQabollc in square temperature prafile =
merical kinetic [7, 8] (named "cylindrical” hereafter) and Le.ioll — (r/a)”]* + T ;o With pedestal, where the cen-
two-dimensional fluid [9] ("ALTOK” hereafter) codes were  tral electron and ion temperatures are 500 and 150 eV, and
developed for calculations of Alén wave excitation and ~ Le.a = Tia = 20 V. 2Thoe9electror_1 density prof|I1e9 'S glven
dissipation in axisymmetric tokamaks. The cylindrical code by ne = no[(1— (7‘/&_) )P 4+ ng, with ng :183 X 13()) m”°.
calculates the distribution of electromagnetic fields, dissi- SMall plasma density dropyf = 3 x 10°° m™") on the
pation profiles, and the impedance of the helical antennaP!@Sma boundary is taken into account to avoid divergence
for a given real frequency of the generator and toroidal of th_e LF fields due to f|r_1|te Larm_or_radlus effect in the low
N = k., R, and poloidal\ wavenumbers of the antenna, in hybrl_d resonance. The ion den_srty is taken to satisfy t_he
two-ion species magnetized plasmas with circular concen-réquirement of charge neutrality; = n.. ¢From Spit-
tric magnetic surfaces. The standard plasma model inclu-Z€" resistivity, we, f;ave that the current profile is given by
des Maxwell equations and the cylindrical kinetic dielectric J = Jo[l — (r/a)?]*”, and the values of the safety factor are

tensor in the kinetic code. The LF electromagnetic fields 4 = 1:00, ¢(—0.16) = 3, andg, = 3.46. The plasma pro-
are represented as sum of the poloidal Fourier harmonicg/iles used in the ALTOK code are slightly different from the

expli(mf+k, z —wt)], and the dielectric tensor [7] is calcu- cylindrical representation. The density and current distribu-

. i i — 7
lated from the Vlasov-Boltzmann equation for each harmo- tion used in ALTOK code [9] are: = n(1 — ¥°7), and

. . . . _ 0.85\1.6 H H H
nic taking into account electron Landau damping, electron-J = Jo(1 —¥"%?)"-* whereW is the poloidal magnetic flux.
ion collisions, and finite Larmor radius effect. A multi-fluid  The calculations have been carried out assuming a circular

plasma model is used in the ALTOK code [9], with two di- crpss—sec.tion plasma column with the following parameters:
mensional inhomogeneity and arbitrary cross-section of theMinor radiusa = 0.18 m, major radiusikz = 0.615 m, an-
tokamak magnetic surface, including the Shafranov shift. In t€nna radiu$ = 0.2 m, vessel radiug = 0.23 m toroidal

the applications to TCABR, the fields and dissipation are Magnetic fieldB; = 1.1 T', and ohmic current, = 85 kA.
calculated on circular magnetic surfaces. Oscillating LF fi- We note that the direction of the current is opposite to the
elds are represented as one travelling waysi(N ¢ — wt)] toroidal magnetic field in this tokamak.

propagating in the toroidal direction excited by one toroi-  The conditions for validity of the kinetic and ALTOK
dal mode antenna in eq.(2). The ALTOK code includes the codes are satisfied in the periphery region (“cold plasma”),
natural electron-ion collision dissipation and electron iner- Which approximately equals one third part of the minor ra-
tia in the parallel component of the dielectric tensor [11], dius, in a frequency band that is determined by the inequali-
which is valid for analysis of LF dissipation in cold collisi- {ies valid outside the rational surfaces so thag 0,

onal plasmas. We note that small letterslesignate modes

that are actually excited in the plasma due to toroidal cou- Vig S w K Ve Lk Ve < kjca, 3)

pling effect, andM designates the modes produced by the _ . o
coils. The absorbed energy density on electrons and ions isWhereVT“f are the ion and electron thermal velocy;,

lculated using th ot () — (70 . B and th ve; are ion-ion and electron-ion collision frequencies, res-

calculated using the equaton™ >~ = (_] ) and the pectively, anc:4 = B;/(4mn;m;)'/? is Alfvén velocity. At

helical antenna model witky - j = 0 is assumed for LF the rational surfacé ~ 0, inequalities (3) are modified to

excitation in both codes. the collisional MHD conditions. In general, the multi fluid
To calculate the ponderomotive forces that may drive hydrodynamic code is valid within the conditions:

current and plasma flow, we use an approach based on avera-

ging of two fluid plasma equations over magnetic surfaces, kyVri < vii, w, kVre <w mkjca <vei (4)

developed in Ref.[10]. Using dissipation profiles calcula-

ted with the codes and expressions for ponderomotive for-where the electron drift frequency iswx =

ces taken from [10], we make first estimations of RLF on V7. (m/rwee)d(Inn.)/dr. In Fig. 1, we show the characte-

poloidal and toroidal flow driven by EML in TCABR plas- ristic dependence on radius of the parameters that appear ir

mas. The paper is organized as follows. In Section 1, weegs.(3,4) for TCABR. In this figure, we observe that at the

briefly describe the collisional plasma model and its MHD boundary region the ion collision frequency is of the order

limit that is valid for calculating RLF fields at the plasma of the electromagnetic field frequency and the result may be

boundary in TCABR. In Section 2, we discuss the results important for determining the RLF field dissipation.

for the RLF field distribution and dissipation over the toka-

mak cross-section. In Section 3, we calculate and discuss the . .

ponderomotive forces effect driven by EML on plasma po- 3 LF Fields Induced by EML Coils

loidal and toroidal flow in TCABR. Finally, we summarize

the main results of the calculations and present our conclu-For a qualitative understanding of the phenomena related

sions. to energy deposition and current drive by Adfvwaves in
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tokamaks like TCABR, we simplify the tokamak geometry
with the model of the axisymmetric plasma column with an

1679

plasma. We choose the dielectric tensor components taking
into account the plasma flow with the poloidal and toroidal

axial current. We use linearized Maxwell equations with lo- components: ¢ . and collisions as in Ref.[11],

cally constant parameters, to describe the wave field in the

]
2 A o
c © U0 .Ves Pe,i
€1 =1+ —5 1-— +1 ; €33 =1— = ——
1 A < w ) w2, 33 ; (w—Fk-up)(w—FKk- o+ ive)
2 L. 7\2 2 2
| (w—k- @) c B2 d (rBy
= €11} €pr = —€rp} Epp =1 |5 ——+ —kj——( — || ; 5
€22 = €11; € €rb; €rp =1 & e 2B g < B. > ®)
The parallel tensor component [7], that is valid fok k) Vr,
2 2 .
() Woe 1 exp(—S59) W+ ive;
€35 = 14 S.Z(S.)], Ze=— ds, S.= (6)
33 kﬁv%e \/771- S - Se \/§|k”|vT€

is used in the kinetic study wherer. = /T./m. is the
thermal velocity, andZ (S, ) is the plasma dispersion func-
tion that describes Landau damping.
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Figure 1. Plot of local Alfenkca (a), ion soundc, (b), drift
w* (c), and ion collisiorn; (d) frequencies over minor radius over
poloidal angle that is perpendicular to equatorial plane for the ty-
pical parameters of TCABR plasmas.

In earlier studies of Alfén wave heating in tokamaks
[7], it was shown that the local Alen wave resonance is ex-
cited at the radius = r 4 where the conditior; w?/c? =

kﬁ is fulfilled. In this case, a slow quasi -electrostatic

Alfvén wave (SQAW) with high refractive indexy?
(e11 — N|2|>€33/611, is excited because of the mode conver-
sion of LF field at the surface = r 4. For the low frequency
bandw, < w;, the AW resonance is defined by the sim-
plified conditionwa = |k (ra)ca(ra)l. In plasmas with
toroidal/poloidal flow, The local resonance is modified to
the condition

()

in accordance with the radial tensor component in eq.(5).
Next, we present some analytical estimations of LF field

excitation in the plasma. Expanding plasma parameters in

the Maxwell equations in Taylor seriesrat r 4, asin [13],

we obtain the solution of equation (7)at= r 4, which can

be presented as the general Airy function,

e’} t3
Eroc/ exp {(h—)] dt;
0 3

c. w2 1/3
T=(ra—r) (‘332) for r~rs (8)
e11(a—ra)cy

The collisional dissipation lengthhry;s ~ 0.6 c¢m is esti-
mated for TCABR using the conditiodn[rg;s] = 1. We
note that the components,, €21 &~ +ie;;w/we; are neglec-
ted in this analytical study because of the small Hall effect,
Wkl Wei

Near the rational magnetic surfaces &€ m/N) where
kj = 0, two local Alfven resonances may appear. The same
solution as in (8) can be used at the second mode conver-
sion pointr 4, of the resonance = |kcal. In this case,
expanding the equation for fields found by Soloviev [12] in
a Taylor series around the rational surfacewherek = 0,
the MHD solution can be found in the form [13],

w — k- (ra)l = |ky(ra)ea(ra)|
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Ey 14Tty for r > ra9;
Ts TA2 —T
Ey x 1+ (Tsaln ramr +i7r), for ra1 <r < ras;
Ts TA2 — T
Ey 1+<T‘“’_aln ran o r +217r>, for 0<r<ra (9)
Ts TA2 — T
|
From this equation we can conclude that the LF field .............................................L '
has maxima in two local Alfégn resonance points. If the 2 ReE
dissipation lengthAr 4, is larger than the distance between - L —— Im E,
these resonance points, the SQAW can change the field pro- 3 o -
file shown in eq. (9). Next, to verify the distribution shown w- :

in eq.(9), we apply the cylindrical code [7, 8] for one to- 2 i |.
roidal and poloidal wavenumbeid /N=3/1, and frequency ] ! ' |
f=12kHz. The spatial resolution &0 radial mesh points) T T e e
so that12 points are distributed in the dissipation length for 1 r

the parameters proposed in Sect.2. In Fig. 2, we show the 0.0 s s e T Toh

E,.-component of LF field forM//N = 3/1 antenna mo- = ]
des. In each numerical example, th&/N -amplitude of ST R Re E,) V[\U;\
an antenna current is taken to bd/m, which is equiva- w | ——ImE) ]
lent to thel.2 kA amplitude of the current in the EML in o \
TCABR. Generally, for high poloidal/toroidal mode num- PO aasRiaistasasnasastsnss Rantanassstasssnsans
bers (butM /N = 3) we have low dissipation (see [6]). " —

% I "~~__§_ ----- n,

e 2 SR

o <7

1 / e

0.01

rla
Figure 3. Plot of radialF,- (a) and poloidalEy (b) electric fi-
elds over radius excited by EML in TCABR witfi=12 kHz and
M/N = 3/1 (toroidal code).

0.005

Er (au)

3.1 Mode Conversion Effect in Kinetic Plas-
mas

~0.005 I I I I
0.8 0.85 0.9 0.95 1

a Here we develop a theoretical approach to analyze poss
Figure 2. Plot of the real and imaginary part of radial electric field ble applications of RLF fields in large tokamaks, where the
E, [VIA] over radius driven by EML in TCABR withf=12 kHz plasma is hot and stays in the weak collisional regime,
M/N = 3/1 (cylindrical code).
Vei Sw ~ kjca < kyVre, (10)

contrary to the conditions in TCABR plasmas (4). For
For the same parameters as in the cylindrical calcula-this study, we take the parallel tensor component (6) ir
tion, we calculate the distribution df,. component of the  the kinetic form. In order to avoid complex mathemati-
RLF field and the dissipated power using the ALTOK code. cal formulae for the mode conversion analysis, the simples
The results are shown in Fig. 3. We can observe that there igplasma model is considered. The Hall effect and the po:
no difference between kinetic and ALTOK codes at the ra- loidal magnetic field are assumed to be smal}, < By
tional surfaceyj=3. Comparing the sideband harmonic with andk, ~ m/r > k. ~ N/Ry, so that the diagonal form
the main harmonic dissipation, we find that the sidebands,e; = €11 = e, 0Of the dielectric tensor in Eq.(5) can be
which have no rational surfaces in plasma, only produce achosen ;2 = €21 = 0). Then, we use the simplified trape-
rather small skin layer dissipation. zoidal plasma model as in Ref.[13]. The plasma density an



Brazilian Journal of Physics, vol. 34, no. 4B, December, 2004 1681

temperature are assumed to be homogeneous along magnetherel = 2n+1 ,n = 0,1, 2, ..., and eigenvalue frequency
tic field lines and trapezoidal over radius with a small den- is

sity drop,on = no(a; — a)/L,, at the plasma boundary: (2n + 1)k, s, ( €114 > 3

Wn = VA s (15)
a;—r T's

L, '

€33,A

Ne =N, T < Tt Ne = No

Now, to solve eq.(11) between local resonanees (<
r < T42), We can also use the standard method (see, for
example, [15]) of the geometric optics (WKB). The RF fi-
wherew wall radius, L, = a1 — r; is the scale parame- eld for the waves travelling over the radial coordinate can be
ter of the plasma inhomogeneity. Further, the RF frequency presented in the form:
is assumed to be in the ABn continuum near the rational
magnetic surface, whereq = M/N, what means that .
we have two conversion pointsALA/g in the region of the Erp ) = & eXp(l/O krdr + )
plasma inhomogeneity{ < ra1 < rs < T42 < a).

In the next step, to carry out the proposed kinetic ap- where is an arbitrary phase. Substituting this form of so-
proach in the vicinity of the conversion points, we use the lution into the set of equations (11) with the kinetic parallel
approximations, ~ Ey andk, ~ m/r > kj;, which give tensor (6), we have the dispersion equation for the kinetic

Alfvén wavek? = (e w?/c? — kﬁ)e&g/eu. We note that

m<r<a<ay, a1—a<<Ly; ne=0,a<r<w;

(16)

m? 9 w? [md(rEy)  d(kj Ey) the solution (16) is not valid at the mode conversion points
[2 + (K —en 2)] By =i [Tz dr + dr 71,2 because of,. = 0.
Using (16), the general solution of eq.(13) is
1d<dEb> d<E> k|ch
r— | ®im— E~i 5 1 n
rdr dr dr \r €33w” dr E,. =& .k 2sin (/ Krdn + 1/))
(11) -V

Using Taylor expansion of the inhomogeneous coeffici-
ents of the Maxwell equations atx~ r,, the above equation = &Ky sm </ \/ f A +n)dn+ 1/,)
can be reduced to the form,

17)
Eq.(13) can be reduced to the Airy equation with general
~0 (12) solution (&, « Ai(y)) [14] at one of the mode conversion
pointsy = +v/\ (orr = 7 41,2) and the asymptotic solution
of homogeneous Airy equation is

d k” C d2 kQ _ wa € E
dT 633(4} d?" I 02 " "

wherek) ~ (k.B./By)ss(r —1s)/rs, ss = d(Ing)/d(Inr)

is the parameter of the magnetic field shear, ands taken ]
atr = r, butess is taken atr = r4. Now, the equation E, = A(2VAy) % sin [ (2VA)Ty? + ] . (18)
can be rewritten in the form of inhomogeneous "parabolic 4

cylinder” equation [14],

wherex? = 2v/ Xy, y = VA — 1. Comparing this solution

d’E, with (17), we find that) = 7 /4 and A = &,.. Integratingx,
e +(VA=n)(VA+nE, =C (13) in (17) between two reflection points,
) VA
whereC is a constanty = a(r — ) /75, n = £V/\ are the / Relk,|dn = Ir, 1 =1,2,3...
dimensionless local Alfen wave resonances, and Ny " ’ o

262 €118 W2r2 1 gives us the resonance frequency (15). In Fig. 4, we show
a= ( 2% 5) €= —, A= — ( 55 2) . the distribution ofE,. component of RLF field calculated
< €33,4 VA,s ks with the WKB approach, over the resonance layer, in com-
parison with the Hermite polynomial solution (14). We can
observe very similar behavior of these solutions.
We can also calculate the space variation of the RLF fi-
2 elds excited by external sourcernat= r 42, for a real fre-

By ) o< @ty oxp (<5 ) Ha). (14) quenoy§ —0)
|

[

ZSS

The solution of the homogeneous equation is the well known
Hermite polynomial function,

1.1 . n T
E, = BO\-—1n? Tsind = |mv/A —n2 + Asin + — 5 X
(A=n7) {2[1\/ n o 1

eaﬁp{igel {nm—i—)\sm (Iﬁﬂ} (19)
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o6 damping/growth rates of eigenmodes, for Ini[.| = 0,

rA2 Im[€33}

62 a1 Re[€33]

A/ = - TA2
2Re [w] / Re[Ggg]dT

JTAL

Re[k?]dr

T

0.4

0.2+

4 Ponderomotive Forces Driven by
EML

Using the approach developed in Ref [10] and taking into
account wave dissipation, we calculate the ponderomotive
forces driven by EML. The ponderomotive forces on each
plasma speciesvEe,i) are derived in cylindrical geometry
using a two fluid plasma model. The forces are represented
as a sum of contributions from fluid dynamic, electromag-

netic, and viscous stresses

Er (au) 0

—0.2

—0.4

[e% X/ ‘(o
F}(«“L%,e,g = *V<ma”av(a)va(,g)>v
U T TR R o
(o (@) - = J"xB (o) (@)
Figure 4. Comparison of RE, eigenmode fields calculated fortra- ~ Fyy g = (€afiaE + V0.0 Fyge=—(Vsm i),
pezoidal plasma model (Hermite polynomial solution) and WKB (20)
solution of equation (11) for TCABR plasma, with very weak ki hare averaging over poloidal and toroidal angles is used.

netic dissipatiorVre > ca atr = r.. The electromagnetic force that is properly combined with
the fluid dynamic stress is splitin a pd?&, which depends
explicitly on gradients of oscillating amplitudes of the elec-
/ﬁ tric fields, and a momentum transfer fordé, = PE/w,

which depends on the density of dissipated poweand
/‘ \ on the relative poloidal/toroidal phase velocity of the RLF

‘ fields. The gradient force depends strongly on the finite Lar-
067 / ‘ mor radius, which is very small at the plasma boundary. For
’ \ this reason, we analyze only the effect of the momentum
’ ‘ transfer force. Two cases, large phase velocity of RLF fi-

0.8

0.4 \
/ \‘ elds,w/ky > up, and slow phase velocity) /ky < ug,
\ ;’ \ can be easily analyzed. In the first case, the ponderomotive
0.2 \\ | ‘\ force drives the plasma flow in the direction of the phase
Br (au) (‘ \ velocity of RLF fields and, in the second case, the pondero-
ol \ 3’ motive force produces a slowing down effect. The rotation
| velocity is a very important parameter in tokamaks because,

\\ / for example, poloidal rotation can strongly affect stability
-0.21 | in tokamaks [16]. Balancing the momentum transfer force
\ / driven by RLF fields (20 kHz frequency) with collisional
\ | magnetic pumping damping (rotation from high field side to

-0.4 . g .
\ / low magnetic field side), we have
061 \/ P 3 v,
= m;n;XeuUg, X0 = 3 2
; ; ; , — — 2 vy
7 3 1 " rsw/m — Uy — ug vii R?
(r-rs)/L i . )
whereUy is the residual plasma rotation caused, for exam-

Figure 5. Plot of R, field distribution calculated from the WKB  ple, by the ion temperature gradient. Additional poloidal
splution of equation (11), for TCABR plasma with kinetic dissipa- rgtation with local maximumug .. ~4km/s can be dri-
tion Vre = Zca atr =rs. ven by 2 kW absorption at the rational surface= 3. The
stationary EML fields can also excite local A wave re-
In Fig.5, we present the distribution of ti# componentof ~ sonances in rotating plasmas. The toroidal rotation velocity
the RLF field, taking into account electron Landau damping. measured in TCABR [17] is about 1 km/s and the poloidal
If the parallel component of the dielectric tensor is com- velocity is about 4 km/s, which is equivalent to 12 kHz fre-
plex but the imaginary part is small (b33 <Recss), the quency form = 3, N = 1. Inthe TCABR experiments with
WKB method [15] can allows also the calculation of the EML [3], the stationary EML fields with 2 kW absorption



at the rational surfaceg = 3,3/2 can produce a slowing
down effect on the plasma rotation with the slowing down
time about 7 ms.

5 Conclusions

The main conclusions of the work are the following:

e the LF fields induced by EML coils effectively dissi-
pate at the local Alfen resonance near rational mag-
netic surfaces;

e the stationary EML fields can also dissipate at the lo-
cal Alfvén resonance in the case of plasma rotation;

e the most effective dissipation is produced at the g=3
rational surface by theM=3, N=1 mode of the
EML coil and the dissipation of sideband harmonics
(M/N = 3/2 and M/N = 2/1 modes) is rather
small at the respective rational surfaces;

e preliminary estimations of ponderomotive forces ge-
nerated by EML fields with 20 kHz frequency and
2 kW of absorption can effectively drive local flow
around 4 km/s but the stationary EML fields can damp
poloidal plasma rotation in TCABR plasmas at the
q =3/2, 3 rational surfaces.
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