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Departamento de F́ısica Aplicada, Instituto de F́ısica,

Universidade de S̃ao Paulo, 05315-970, S̃ao Paulo, SP, Brazil

Received on 30 January, 2004; revised version received on 30 April, 2004

The rotating low frequency (RLF) field penetration and dissipation and the effect of ponderomotive forces
driven by Ergodic Magnetic Limiter (EML) on the poloidal/ toroidal flow in tokamak plasmas are discussed.
EML coils are represented as a sheet current expanded in Fourier series with poloidal/toroidal wave numbers
M/N depending on coil shape and feeding. The Alfvén wave mode conversion effect in the RLF range is
found responsible for wave dissipation at the rational magnetic surfacesqr = −M/N = 3 typical for EML
coil design. Analytical and numerical calculations show maximums of LF field dissipation at the local Alfvén
wave resonanceω = |k||cA| near the rational magnetic surfaceqr = 3 in Tokamak Chauffage Alfv́en Bŕesilien.
The poloidal rotation velocityU , taken into account in the dielectric tensor, can strongly modify the LF field
and dissipated power profiles. Even stationary EML fields can dissipate at the local Alfvén wave resonance
(UM/rA = k‖cA). Preliminary estimations show that the stationary EML fields can decelerate the plasma
rotation.

1 Introduction

The tokamak is a toroidal magnetic confinement system
where an equilibrium current in the toroidal direction is used
for plasma heating, as result of the Joule effect. Earlier toka-
mak experiments had been already shown an obvious neces-
sity of instability control and auxiliary heating. The Ergodic
Magnetic Limiter (EML) has been proposed [1] for effec-
tive heat exhaust, edge cooling, impurity screening, plasma
confinement, and stability control at the plasma boundary.
Some promising results were already obtained in Tore Su-
pra tokamak with stationary EML coil current [1]. Recently,
EML coils were employed in Hybtok-II tokamak [2] to ex-
perimentally investigate the penetration process of Rotating
Low Frequency (RLF) fields into tokamak plasmas. EML
coils have also been installed in the Tokamak Chauffage
Alfv én Bŕesilien (TCABR) [3] with the main goal of af-
fecting the plasma at the rational magnetic surfaceq = 3.
A theoretical analysis of stochastic effects produced by the
stationary EML coil current at the plasma boundary was
presented in Ref.[4]. A Dynamic Ergodic Divertor (DED)
with RLF fields was also installed in the TEXTOR toka-
mak [5]. In Ref.[6], it was shown that the RLF fields dri-
ven by DED can produce additional heating and plasma flow
near the rational magnetic surfaceqr = 3, in the frequency
band5− 10 kHz, at the plasma boundary in TEXTOR and
TCABR tokamaks. The RLF fields dissipate at the local
Alfv én wave resonanceω = |k|||cA whereω is frequency,
k|| = (m/r)Bθ/B0 +(n/R0)Bζ/B0 is the parallel compo-

nent of the wavevector,R0 is the tokamak major radius, and
cA = B0/

√
4πmini is Alfv én velocity.

In this paper, we analyze the penetration, dissipation,
and poloidal/toroidal flow driven by RLF fields, which are
induced by EML at the rational magnetic surfacesq =
−M/N , within a linear approximation for the wave ampli-
tude. The position of the rational surface is supposed to be
close to the plasma boundary. The coils are represented as
a sheet current atr = b, expanded in Fourier series with
poloidalM and toroidalN wave numbers. The cylindrical
model for EML coils used in calculations can be presented
in the form

~J =
∑

s,N

2M0LIL

π2R0b
cos(sM0θ)

[
1 + 2 cos

(
Nz

R0

)]
~ez

+
4 LIL

(πR0)2
N

s
sin(sM0θ) sin

(
Nz

R0

)
~eθ, (1)

where the cylindrical coordinates (r, θ, z are used,~eθ and~ez

are unit vectors in poloidal and axial (toroidal) directions,
M0 is the main poloidal number andL is length of the EML
coils in z direction,s = 1, 3, 5, .., andIL is current ampli-
tude of the coil in the case of stationary fields. The EML
model was also discussed in [4]. In the simplified pseudo-
toroidal model for DED [6], the coil current is presented in
the form

jθ,φ =
∑

M,N

Jθ,φ(M, N)δ(r − b) exp[i(Mθ + Nφ− ωt)],

(2)
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Here, the relation between the cylindrical (z) and pseudo-
toroidal (φ) coordinates is established asz = R0φ (R0 is
the major radius of the toroidal plasma column with minor
plasma radiusa). This model can be explored for EML coils
if we did not take into accountN=0 harmonic in eq.(1).

To analyze LF field dissipation in tokamaks, we use
analytical and numerical calculations. One dimensional nu-
merical kinetic [7, 8] (named ”cylindrical” hereafter) and
two-dimensional fluid [9] (”ALTOK” hereafter) codes were
developed for calculations of Alfv́en wave excitation and
dissipation in axisymmetric tokamaks. The cylindrical code
calculates the distribution of electromagnetic fields, dissi-
pation profiles, and the impedance of the helical antenna
for a given real frequencyω of the generator and toroidal
N = kzR0 and poloidalM wavenumbers of the antenna, in
two-ion species magnetized plasmas with circular concen-
tric magnetic surfaces. The standard plasma model inclu-
des Maxwell equations and the cylindrical kinetic dielectric
tensor in the kinetic code. The LF electromagnetic fields
are represented as sum of the poloidal Fourier harmonics
exp[i(mθ+kzz−ωt)], and the dielectric tensor [7] is calcu-
lated from the Vlasov-Boltzmann equation for each harmo-
nic taking into account electron Landau damping, electron-
ion collisions, and finite Larmor radius effect. A multi-fluid
plasma model is used in the ALTOK code [9], with two di-
mensional inhomogeneity and arbitrary cross-section of the
tokamak magnetic surface, including the Shafranov shift. In
the applications to TCABR, the fields and dissipation are
calculated on circular magnetic surfaces. Oscillating LF fi-
elds are represented as one travelling waveexp[i(Nφ−ωt)]
propagating in the toroidal direction excited by one toroi-
dal mode antenna in eq.(2). The ALTOK code includes the
natural electron-ion collision dissipation and electron iner-
tia in the parallel component of the dielectric tensor [11],
which is valid for analysis of LF dissipation in cold collisi-
onal plasmas. We note that small lettersm designate modes
that are actually excited in the plasma due to toroidal cou-
pling effect, andM designates the modes produced by the
coils. The absorbed energy density on electrons and ions is
calculated using the equationW (e,i) = (~j(e,i) · ~E) and the
helical antenna model with~5 · ~j = 0 is assumed for LF
excitation in both codes.

To calculate the ponderomotive forces that may drive
current and plasma flow, we use an approach based on avera-
ging of two fluid plasma equations over magnetic surfaces,
developed in Ref.[10]. Using dissipation profiles calcula-
ted with the codes and expressions for ponderomotive for-
ces taken from [10], we make first estimations of RLF on
poloidal and toroidal flow driven by EML in TCABR plas-
mas. The paper is organized as follows. In Section 1, we
briefly describe the collisional plasma model and its MHD
limit that is valid for calculating RLF fields at the plasma
boundary in TCABR. In Section 2, we discuss the results
for the RLF field distribution and dissipation over the toka-
mak cross-section. In Section 3, we calculate and discuss the
ponderomotive forces effect driven by EML on plasma po-
loidal and toroidal flow in TCABR. Finally, we summarize
the main results of the calculations and present our conclu-
sions.

2 Plasma Parameters and LF Fields

To model the conditions of the RLF field excitation and pon-
deromotive forces induced by EML in the frequency range
(10 − 30 kHz) in TCABR, we assume circular magne-
tic surfaces with simple fitting profiles of plasma parame-
ters, i.e., the parabolic in square temperature profileTe,i =
Te,i0 [1 − (r/a)2]2 + Te,i,a with pedestal, where the cen-
tral electron and ion temperatures are 500 and 150 eV, and
Te,a = Ti,a = 20 eV. The electron density profile is given
by ne = n0[(1−(r/a)2)]0.9 +na, with n0 = 3×1019 m−3.
Small plasma density drop (na = 3 × 1018 m−3) on the
plasma boundary is taken into account to avoid divergence
of the LF fields due to finite Larmor radius effect in the low
hybrid resonance. The ion densityni is taken to satisfy the
requirement of charge neutrality,ni = ne. ¿From Spit-
zer resistivity, we have that the current profile is given by
j = j0[1− (r/a)2]2.5, and the values of the safety factor are
q0 = 1.00, q(r=0.16) = 3, andqa = 3.46. The plasma pro-
files used in the ALTOK code are slightly different from the
cylindrical representation. The density and current distribu-
tion used in ALTOK code [9] aren = n0(1 − Ψ0.7), and
j = j0(1−Ψ0.85)1.6 whereΨ is the poloidal magnetic flux.
The calculations have been carried out assuming a circular
cross-section plasma column with the following parameters:
minor radiusa = 0.18 m, major radiusR = 0.615 m, an-
tenna radiusb = 0.2 m, vessel radiusd = 0.23 m toroidal
magnetic fieldBt = 1.1 T , and ohmic currentIp = 85 kA.
We note that the direction of the current is opposite to the
toroidal magnetic field in this tokamak.

The conditions for validity of the kinetic and ALTOK
codes are satisfied in the periphery region (”cold plasma”),
which approximately equals one third part of the minor ra-
dius, in a frequency band that is determined by the inequali-
ties valid outside the rational surfaces so thatk‖ 6= 0,

νii ≤ ω ¿ νei ¿ k‖VTe ≤ k‖cA, (3)

whereVTi,e are the ion and electron thermal velocity,νii,
νei are ion-ion and electron-ion collision frequencies, res-
pectively, andcA = Bt/(4πnimi)1/2 is Alfv én velocity. At
the rational surfacek‖ ≈ 0, inequalities (3) are modified to
the collisional MHD conditions. In general, the multi fluid
hydrodynamic code is valid within the conditions:

k‖VTi ¿ νii, ω∗, k‖VTe < ω ≈ k‖cA ¿ νei (4)

where the electron drift frequency isω∗ =
V 2

Te(m/rωce)∂(lnne)/∂r. In Fig. 1, we show the characte-
ristic dependence on radius of the parameters that appear in
eqs.(3,4) for TCABR. In this figure, we observe that at the
boundary region the ion collision frequency is of the order
of the electromagnetic field frequency and the result may be
important for determining the RLF field dissipation.

3 LF Fields Induced by EML Coils

For a qualitative understanding of the phenomena related
to energy deposition and current drive by Alfvén waves in
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tokamaks like TCABR, we simplify the tokamak geometry
with the model of the axisymmetric plasma column with an
axial current. We use linearized Maxwell equations with lo-
cally constant parameters, to describe the wave field in the

plasma. We choose the dielectric tensor components taking
into account the plasma flow with the poloidal and toroidal
componentsu0,θ,z and collisions as in Ref.[11],

c
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The parallel tensor component [7], that is valid forω < k‖VTe,

ε
(e)
33 =

ω2
pe

k2
‖v

2
Te

[1 + SeZ(Se)], Ze =
1√
π

∫
exp(−S2)
S − Se

dS, Se =
ω + iνei√
2|k‖|vTe

(6)

d

is used in the kinetic study wherevTe =
√

Te/me is the
thermal velocity, andZ(Se) is the plasma dispersion func-
tion that describes Landau damping.
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Figure 1. Plot of local Alfv́enk‖cA (a), ion soundk‖cs (b), drift
ω∗ (c), and ion collisionνii (d) frequencies over minor radius over
poloidal angle that is perpendicular to equatorial plane for the ty-
pical parameters of TCABR plasmas.

In earlier studies of Alfv́en wave heating in tokamaks
[7], it was shown that the local Alfv́en wave resonance is ex-
cited at the radiusr = rA where the conditionε11ω2/c2 =

k2
‖ is fulfilled. In this case, a slow quasi -electrostatic

Alfv én wave (SQAW) with high refractive index,N2
r =

(ε11 − N2
||)ε33/ε11, is excited because of the mode conver-

sion of LF field at the surfacer = rA. For the low frequency
bandωA ¿ ωci, the AW resonance is defined by the sim-
plified conditionωA = |k‖(rA)cA(rA)|. In plasmas with
toroidal/poloidal flow, The local resonance is modified to
the condition

|ω − ~k · ~u(rA)| = |k‖(rA)cA(rA)| (7)

in accordance with the radial tensor component in eq.(5).
Next, we present some analytical estimations of LF field

excitation in the plasma. Expanding plasma parameters in
the Maxwell equations in Taylor series atr = rA, as in [13],
we obtain the solution of equation (7) atr = rA, which can
be presented as the general Airy function,

Er ∝
∫ ∞

0

exp
[(

tτ − t3

3

)]
dt ;

τ = (rA − r)
(

ε33ω
2

ε11(a− rA)c2
A

)1/3

for r ≈ rA (8)

The collisional dissipation length∆rdis ≈ 0.6 cm is esti-
mated for TCABR using the condition,Im[τdis] = 1. We
note that the componentsε12, ε21 ≈ ±iε11ω/ωci are neglec-
ted in this analytical study because of the small Hall effect,
ω ∼ ~k · ~u ¿ ωci.

Near the rational magnetic surfaces (qt = m/N ) where
k|| = 0, two local Alfvén resonances may appear. The same
solution as in (8) can be used at the second mode conver-
sion pointrA2 of the resonanceω = |k‖cA|. In this case,
expanding the equation for fields found by Soloviev [12] in
a Taylor series around the rational surfacers, wherek‖ = 0,
the MHD solution can be found in the form [13],
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Eθ ∝ 1 +
rs − a

rs
ln

∣∣∣∣
rA1 − r
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ln
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rA2 − r

∣∣∣∣ + 2iπ
)

, for 0 < r < rA1 (9)

d

From this equation we can conclude that the LF field
has maxima in two local Alfv́en resonance points. If the
dissipation length∆rdis is larger than the distance between
these resonance points, the SQAW can change the field pro-
file shown in eq. (9). Next, to verify the distribution shown
in eq.(9), we apply the cylindrical code [7, 8] for one to-
roidal and poloidal wavenumbersM/N=3/1, and frequency
f=12kHz. The spatial resolution is700 radial mesh points)
so that12 points are distributed in the dissipation length for
the parameters proposed in Sect.2. In Fig. 2, we show the
Er-component of LF field forM/N = 3/1 antenna mo-
des. In each numerical example, theM/N -amplitude of
an antenna current is taken to be1A/m, which is equiva-
lent to the1.2 kA amplitude of the current in the EML in
TCABR. Generally, for high poloidal/toroidal mode num-
bers (butM/N = 3) we have low dissipation (see [6]).
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Figure 2. Plot of the real and imaginary part of radial electric field
Er [V/A] over radius driven by EML in TCABR withf=12 kHz
M/N = 3/1 (cylindrical code).

For the same parameters as in the cylindrical calcula-
tion, we calculate the distribution ofEr component of the
RLF field and the dissipated power using the ALTOK code.
The results are shown in Fig. 3. We can observe that there is
no difference between kinetic and ALTOK codes at the ra-
tional surfaceq=3. Comparing the sideband harmonic with
the main harmonic dissipation, we find that the sidebands,
which have no rational surfaces in plasma, only produce a
rather small skin layer dissipation.
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Figure 3. Plot of radialEr (a) and poloidalEθ (b) electric fi-
elds over radius excited by EML in TCABR withf=12 kHz and
M/N = 3/1 (toroidal code).

3.1 Mode Conversion Effect in Kinetic Plas-
mas

Here we develop a theoretical approach to analyze possi-
ble applications of RLF fields in large tokamaks, where the
plasma is hot and stays in the weak collisional regime,

νei ≤ ω ∼ k‖cA ¿ k‖VTe, (10)

contrary to the conditions in TCABR plasmas (4). For
this study, we take the parallel tensor component (6) in
the kinetic form. In order to avoid complex mathemati-
cal formulae for the mode conversion analysis, the simplest
plasma model is considered. The Hall effect and the po-
loidal magnetic field are assumed to be small,Bθ ¿ B0

andkb ≈ m/r À kz ≈ N/R0, so that the diagonal form
ε⊥ = ε11 = εbb of the dielectric tensor in Eq.(5) can be
chosen (ε12 = ε21 = 0). Then, we use the simplified trape-
zoidal plasma model as in Ref.[13]. The plasma density and
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temperature are assumed to be homogeneous along magne-
tic field lines and trapezoidal over radius with a small den-
sity drop,δn = n0(a1 − a)/Lr, at the plasma boundary:

ne = n0, r < rt; ne = n0
a1 − r

Lr
,

rt < r < a < a1, a1 − a ¿ Lr; ne = 0, a < r < w ;

wherew wall radius,Lr = a1 − rt is the scale parame-
ter of the plasma inhomogeneity. Further, the RF frequency
is assumed to be in the Alfvén continuum near the rational
magnetic surfacers, whereq = M/N , what means that
we have two conversion pointsrA1,A2 in the region of the
plasma inhomogeneity (rt < rA1 < rs < rA2 < a).

In the next step, to carry out the proposed kinetic ap-
proach in the vicinity of the conversion points, we use the
approximations:Eb ≈ Eθ andkb ≈ m/r À k‖, which give

[
m2

r2 + (k2
‖ − ε11

ω2

c2 )
]

Er = −i
[

m

r2

d(rEb)
d r

+
d (k‖E‖)

d r

]

1
r

d

d r

(
r
dEb

d r

)
≈ im

d

d r

(
Er

r

)
, E‖ ≈ i

k‖c2

ε33ω
2

dEr

dr
(11)

Using Taylor expansion of the inhomogeneous coeffici-
ents of the Maxwell equations atr ≈ rs, the above equation
can be reduced to the form,

d

d r

[
k2
‖ c2

ε33 ω2

d2Er

d r2 −
(

k2
‖ −

ω2

c2 ε11

)
Er

]
≈ 0 (12)

wherek‖ ≈ (kzBz/B0)ss(r− rs)/rs, ss = d(ln q)/d(ln r)
is the parameter of the magnetic field shear, andε11 is taken
at r = rs but ε33 is taken atr = rA. Now, the equation
can be rewritten in the form of inhomogeneous ”parabolic
cylinder” equation [14],

d2Er

dη2 + (
√

λ− η)(
√

λ + η)Er = C (13)

whereC is a constant,η = α(r− rs)/rs, η = ±
√

λ are the
dimensionless local Alfv́en wave resonances, and
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(

k2
zs2
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) 1
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) 1
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The solution of the homogeneous equation is the well known
Hermite polynomial function,

Ern(η) ∝ (2nn!
√

π)−
1
2 exp

(
−η2

2

)
Hn(η), (14)

whereλ = 2n+1 , n = 0, 1, 2, ..., and eigenvalue frequency
is

ωn = vA,s

√
(2n + 1)kzss

rs

(
ε11,s

ε33,A

) 1
4

. (15)

Now, to solve eq.(11) between local resonances (rA1 <
r < rA2), we can also use the standard method (see, for
example, [15]) of the geometric optics (WKB). The RF fi-
eld for the waves travelling over the radial coordinate can be
presented in the form:

Er,b,‖ = Er,b,‖ exp(i
∫ r

0

krdr + ψ) (16)

whereψ is an arbitrary phase. Substituting this form of so-
lution into the set of equations (11) with the kinetic parallel
tensor (6), we have the dispersion equation for the kinetic
Alfv én wavek2

r = (ε11ω2/c2 − k2
‖)ε33/ε11. We note that

the solution (16) is not valid at the mode conversion points
rA1,2 because ofkr = 0.

Using (16), the general solution of eq.(13) is

Er = Erκ
− 1

2
r sin

(∫ η

−
√

λ

κrdη + ψ

)

= Erκ
− 1

2
r sin

(∫ η

−
√

λ

√
(
√

λ− η)(
√

λ + η) dη + ψ

)

(17)
Eq.(13) can be reduced to the Airy equation with general

solution (Er ∝ Ai(y)) [14] at one of the mode conversion
pointsη = ±

√
λ (or r = rA1,2) and the asymptotic solution

of homogeneous Airy equation is

Er = A(2
√

λ y)−
1
4 sin

[
2
3
(2
√

λ)
1
2 y

3
2 +

π

4

]
, (18)

whereκ2
r = 2

√
λ y, y =

√
λ− η. Comparing this solution

with (17), we find thatψ = π/4 andA = Er. Integratingκr

in (17) between two reflection points,

∫ √
λ

−
√

λ

Re[κr]dη = lπ, l = 1, 2, 3...

gives us the resonance frequency (15). In Fig. 4, we show
the distribution ofEr component of RLF field calculated
with the WKB approach, over the resonance layer, in com-
parison with the Hermite polynomial solution (14). We can
observe very similar behavior of these solutions.

We can also calculate the space variation of the RLF fi-
elds excited by external source atr = rA2, for a real fre-
quency (γ = 0),

c
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1
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. (19)
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Figure 4. Comparison of ReEr eigenmode fields calculated for tra-
pezoidal plasma model (Hermite polynomial solution) and WKB
solution of equation (11) for TCABR plasma, with very weak ki-
netic dissipationVTe À cA atr = rs.
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Figure 5. Plot of ReEr field distribution calculated from the WKB
solution of equation (11), for TCABR plasma with kinetic dissipa-
tion VTe = 2cA atr = rs.

In Fig.5, we present the distribution of theEr component of
the RLF field, taking into account electron Landau damping.

If the parallel component of the dielectric tensor is com-
plex but the imaginary part is small (Imε33 ¿Reε33), the
WKB method [15] can allows also the calculation of the

damping/growth ratesγ of eigenmodes, for Im[kr] = 0,

γ = − c2

2Re[ω]

∫ rA2

rA1

Im[ε33]
Re[ε33]

Re[k2
r ]dr

∫ rA2

rA1

Re[ε33]dr

4 Ponderomotive Forces Driven by
EML

Using the approach developed in Ref [10] and taking into
account wave dissipation, we calculate the ponderomotive
forces driven by EML. The ponderomotive forces on each
plasma species (α=e,i) are derived in cylindrical geometry
using a two fluid plasma model. The forces are represented
as a sum of contributions from fluid dynamic, electromag-
netic, and viscous stresses

F
(α)
FD,θ,ζ =−∇〈mαnαṼ(α)Ṽ

(α)
θ,ζ 〉,

F
(α)
EM,θ,ζ = 〈eαñαẼ +

j̃α × B̃
c

〉θ,ζ , F
(α)
V,θ,ζ =−〈∇sπ

(α)
s ζ,θ〉,

(20)
where averaging over poloidal and toroidal angles is used.
The electromagnetic force that is properly combined with
the fluid dynamic stress is split in a part~F∇, which depends
explicitly on gradients of oscillating amplitudes of the elec-
tric fields, and a momentum transfer force,~FP = P~k/ω,
which depends on the density of dissipated powerP and
on the relative poloidal/toroidal phase velocity of the RLF
fields. The gradient force depends strongly on the finite Lar-
mor radius, which is very small at the plasma boundary. For
this reason, we analyze only the effect of the momentum
transfer force. Two cases, large phase velocity of RLF fi-
elds,ω/kθ À uθ, and slow phase velocity,ω/kθ ¿ uθ,
can be easily analyzed. In the first case, the ponderomotive
force drives the plasma flow in the direction of the phase
velocity of RLF fields and, in the second case, the pondero-
motive force produces a slowing down effect. The rotation
velocity is a very important parameter in tokamaks because,
for example, poloidal rotation can strongly affect stability
in tokamaks [16]. Balancing the momentum transfer force
driven by RLF fields (20 kHz frequency) with collisional
magnetic pumping damping (rotation from high field side to
low magnetic field side), we have

P

rsω/m− Uθ − uθ
= miniχθuθ, χθ =

3
2

v2
Ti

νiiR2
0

,

whereUθ is the residual plasma rotation caused, for exam-
ple, by the ion temperature gradient. Additional poloidal
rotation with local maximumuθ,max ≈4km/s can be dri-
ven by 2 kW absorption at the rational surfaceq = 3. The
stationary EML fields can also excite local Alfvén wave re-
sonances in rotating plasmas. The toroidal rotation velocity
measured in TCABR [17] is about 1 km/s and the poloidal
velocity is about 4 km/s, which is equivalent to 12 kHz fre-
quency form = 3, N = 1. In the TCABR experiments with
EML [3], the stationary EML fields with 2 kW absorption
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at the rational surfacesq = 3, 3/2 can produce a slowing
down effect on the plasma rotation with the slowing down
time about 7 ms.

5 Conclusions

The main conclusions of the work are the following:

• the LF fields induced by EML coils effectively dissi-
pate at the local Alfv́en resonance near rational mag-
netic surfaces;

• the stationary EML fields can also dissipate at the lo-
cal Alfvén resonance in the case of plasma rotation;

• the most effective dissipation is produced at the q=3
rational surface by theM=3, N=1 mode of the
EML coil and the dissipation of sideband harmonics
(M/N = 3/2 and M/N = 2/1 modes) is rather
small at the respective rational surfaces;

• preliminary estimations of ponderomotive forces ge-
nerated by EML fields with 20 kHz frequency and
2 kW of absorption can effectively drive local flow
around 4 km/s but the stationary EML fields can damp
poloidal plasma rotation in TCABR plasmas at the
q =3/2, 3 rational surfaces.
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Plasma Phys. and Contr. Fusion, 17-21 june 2002, Montrex,
Switzerland, ECA, Vol. B26, P-4.108 (2002).

[7] D. W. Ross, G. L. Chen and, S. M. Mahajan Phys. Fluids,
25, 652 (1982).

[8] A. G. Elfimov, J. A. Tataronis, and N. Hershkowitz, Phys.
Plasmas1, 2637 (1994).

[9] S. A. Galkin, A. A. Ivanov, S. Yu. Medvedev, and A. G. Elfi-
mov, Comp. Phys. Communications,143, 29-47, (2002).

[10] A. G. Elfimov, V. Petrzilka, and J. A. Tataronis, Phys. Plas-
mas,1, 2637 (1994).

[11] V. L. Ginsburg, Propagation of Electromagnetic Waves in
Plasmas(Gordon and Breach, New York, 1961).

[12] L. S.
Soloviev,Reviews of Plasma Physics, ed. M.A.Leontovich,
6, 239 (New York: Consultants Bureau, 1975).

[13] A. G. Elfimov, Comments on Plasma Phys. and Contr. Nucl.
Fusion17, 145 (1996).

[14] M. Abramowitz, I. A. Stegun,Handbook of mathematical
functions(Dover Publication Inc., New York, 1972).

[15] A. B. Mikhailovskii, Reviews of Plasma Physics, ed. M. A.
Leontovich,3 p.159 (New York: Consultants Bureau, 1967).

[16] K. H. Burrell, Phys. Plasmas,4, 1499 (1997).

[17] J. H. Severoet al.,Nucl. Fusion,43, 1047 (2003).


