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Large scale magnetic fields in galaxies are thought to be generated, by a mean field dynamo. In order to have
generated the fields observed, the dynamo would have had to have operated for a sufficiently long period of
time. However, magnetic fields of similar intensities to the one in our galaxy, are observed in high redshift
galaxies, where a mean field dynamo would not have had time to produce the observed fields. MHD turbulence
produces small scale magnetic fields at a faster rate than it does mean fields, which can diffuse toward larger
scales. If the turbulence is helical, magnetic fields generated at small scales can become correlated over large
scales. We study the evolution of magnetic field correlations in the first objects formed in the universe, due to
the action of a turbulent, helical, stochastic dynamo, for redshifts5 ≤ z ≤ 10. Ambipolar diffusion can play a
significant role in this process due to the low level of ionization of the gas in the first objects. We show that for
reasonable values of the parameters that characterize the turbulent plasma in the time interval considered, fields
can grow to high intensities (∼ µG), with large coherence lengths (∼ 2− 6 kpc).

1 Introduction

The physical processes proposed to explain the origin and
evolution of the magnetic fields detected in galaxies and
clusters of galaxies, can be divided into two main classes:
1) cosmological mechanisms and 2) local astrophysical pro-
cesses [1, 2]. Until now, neither of them has provided a
satisfactory explanation for the generation of the magnetic
fields observed.

In order to explain the fields observed in our galaxy and
in small redshift galaxies, a mean field dynamo is commonly
invoked [3]. The dynamo would have had to have operated
for a time on the order of the age of the universe to have
attained the observed intensities. However, the presence of
equally intense and coherent fields in high redshift galaxies
[4, 5], where the mean field dynamo would not have had
enough time to amplify the field to the observed values, casts
doubt on the mean field dynamo paradigm as the preferred
generation mechanism.

The incidence of star formation regions of the highest in-
tensity increases monotonically with redshift [6]. Therefore
the rate of occurrence of supernovae was also higher in the
past than at present. Supernovae shocks disturb the plasma
in which they are immersed, producing turbulent motions of
the gas. If the occurence of supernovae was much higher in
the past than at the present, the plasma of the first formed
objects must have been more turbulent than observed galac-
tic plasmas at low redshifts.These first stars that formed in
the universe began to reionize the gas. Therefore the tur-
bulence is MHD turbulence, with a degree of ionization far

from complete or homogeneous.
It is known that MHD turbulence generates stochastic

magnetic fields (magnetic noise) at a faster rate than mean
fields. If the turbulence is strongly non-helical, the fields in-
duced are confined to small scales [7, 8]. However if it is
helical, magnetic field correlations over large scales occurs
[9, 8].

In this study, we explore the hypothesis that the mag-
netic fields observed in high redshift galaxies are created
by small scale, stochastic, turbulent helical dynamos, rather
than mean field dynamos. Following Ref. [8], we take into
account the backreaction of the growing magnetic fields on
the turbulent plasma, in the form of ambipolar diffusion.
The corresponding equations for the stochastic dynamo are
therefore nonlinear in the magnetic field, producing a scale
of coherence larger than those in linear theory.

2 Our Model

We study a gas cloud that is assumed to have collapsed at
a high redshift,z > 10. At z ∼ 10, the cloud would have
had a low magnetization level and a high level of turbulence.
Thus, it would have been similar to the turbulent, low ioni-
zation molecular clouds observed in our galaxy, albeit with
a much smaller initial magnetic field and a higher level of
turbulence.

In all galaxies, the supernova rate is a direct measure of
the cosmic ray intensity [10]. Thus, we can infer that cosmic
rays were already present in considerable intensities in high
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redshift galaxies, modifying the plasma turbulence as they
do in our galaxy. We take into account phenomenologically,
the effect of cosmic rays, supernova shocks, and powerful
stellar winds from massive stars by varying the turbulent pa-
rameters over a broad range.

2.1 Magnetic field evolution equations

The evolution equation for the magnetic field is given by the
induction equation

∂B/∂t = ∇× (v ×B− η∇×B) , (1)

whereB is the magnetic field,v the velocity of the fluid and
η is the Ohmic resistivity.v (= vT + vD) is the sum of an
external stochastic field componentvT , and an ambipolar
drift componentvD, which describes the non-linear back-
reaction of the Lorentz force. This back-reaction is due to
the force that the ionized gas exerts on the neutral gas th-
rough collisions of the ions with the neutral atoms.

We takeB to be a homogeneous, isotropic, Gaussian
random field with a negligible mean value. Therefore, we
take the equal time, two point correlation of the magnetic
field as

〈
Bi (x, t)Bj (y, t)

〉
= M ij (r, t), where

M ij = MN

[
δij −

(
rirj

r2

)]
+ ML

(
rirj

r2

)
+ Hεijkrk,

(2)
andr = |x− y|. The symbol〈〉denotes a double ensem-
ble average over both the stochastic velocity and stochastic
B fields. ML (r, t) andMN (r, t) are the longitudinal and
transverse correlation functions respectively, of the magne-
tic field. H (r, t) is the helical term of the correlations. The
induction equation can be converted into evolution equati-
ons forML andH [8]:

∂ML

∂t
(r, t) =

2
r4

∂

∂r

(
r4κN (r, t)

∂ML (r, t)
∂r

)

+ GML (r, t) + 4αNH (r, t) , (3)
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1
r4

∂

∂r
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r4 ∂

∂r
[2κN (r, t)H (r, t)

− αN (r, t)ML (r, t)]] , (4)

where

κN (r, t) = η + TLL (0)− TLL (r) + 2aML (0, t) , (5)

αN (r, t) = 2C (0)− 2C (r)− 4aH (0, t) , (6)

and

G (r) = −4
{

d

dr

[
TNN (r)

r

]
+

1
r2

d

dr
[rTLL (r)]

}
. (7)

The velocityvT is assumed to be an isotropic, homogene-
ous, Gaussian random field, with a zero mean value and a
delta function correlation in time (Markovian approxima-
tion). Its two point correlation function is formlly identi-
cal to the one for the magnetic field (3), withML replaced
by TLL, MN by TNN andH by C. The velocityvD =

a [(∇×B)×B], wherea = τ/4πρi, τ is the characteristic
response time, andρi is the ion density.η is the microscopic
diffusion coefficient. TLL (0) − TLL (r) are the scale de-
pendent turbulent diffusion coefficients.2aML (0, t) is the
correction due to ambipolar diffusion.2C (0) − 2C (r) is
the scale-dependentα effect (responsible for inducing mag-
netic fields correlated on scales larger thanLc). 4aH (0, t)
is the nonlinear decrement of theα effect due to ambipolar
diffusion. Finally,G (r) is a term which allows for the ra-
pid generation of magnetic fluctuations due to velocity shear
and the existence of the small-scale dynamo.

We are interested in the evolution ofML, since this func-
tion provides information about the coherence of the indu-
ced large scale field. A positive value of this function over
a given length indicates that the magnetic field is coherent
in this region. Therefore this length will be taken as the
coherence scale of the induced field. The maximum scale
of coherence attained in each case can be estimated as the
region aboutr = 0, within which ML is positive. ML is
the tensor product of parallel field vectors, evaluated at two
points separated by a distancer. We can estimate the indu-
ced magnetic field intensity at all points whereML > 0 as
B ∼ ML (r) /M

1/2
L (0).

2.2 Characterizing the high redshift plasma

We considered a cloud atz ∼ 10 and followed the evolution
of the magnetic correlations untilz ∼ 5 (∼ 10 9 years).
The value taken for the cut-off scale of the turbulence,
lc ∼ 1 AU, is similar to that for present objects [2]. As-
sumingLc À lc, we studied the range of values10 pc .
Lc . 100 pc. We assumed that the heighth of the turbu-
lent eddies of the high redshift object is of the same or-
der of magnitude asLc. In order to estimate the correla-
tion velocity Vc on the scaleLc, we used the expression
V 2

c (Vc/Lc) ∼ ε, whereε is the turbulent energy dissipated
per unit mass per unit time. This expression assumes that
the energy is dissipated on the order of a single rotation of
the eddies of sizeLc at the angular frequencyΩ ∼ Vc /Lc.

We then haveVc ∼ (εLc)
1/ 3

. Supernova explosions are
a major contributor to the galactic turbulent energy. The
energy associated with a supernova remnant in our galaxy
is about3× 10 50 erg, with about one third transformed into
kinetic energy of the ambient gas. Larger values for the su-
pernova remnant energy and the mass of the gas involved in
the explosions, will produce higher turbulent velocities. We
assumed that at redshifts 5-10,f explosions occurred every
5 years and that the mass of the gas involved was10 10M¯
[2]. As noted above, the star formation and supernova rates
were very high in the past. The indicated star formation rate
from observations increased by a factor of∼ 50, in going
from z ∼ 0 to z ∼ 8 (see e.g., fig. 4 in Lanzetta et al.
[6]). The expected values forf are then1 < f . 10. A
value off ∼ 0.1 corresponds to the present supernova rate
in our galaxy. We, thus, haveε ' 0.3× f cm 2 s−3. For the
considered values ofLc, the expected range of values for
Vc is 9.59 km s−1 . Vc . 96.5 km s−1. These values are
3 - 10 times larger than those in our galaxy [2]. Assuming
that the largest velocity corresponds to the largest eddy, we
haveΩ ∼ 10−13 s−1. We estimated that the baryon density
is ρn (z) = ρn (0) (1 + z) 3

b, whereρn (0) is the present
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baryon density andb is a compression factor, which can be
much greater than∼ 200 (virial collapse). In our galaxy,
the particle density is∼ 1 cm−3 or ρn ∼ 10−24 g cm−3.
The average baryon density in the universe today is∼
10−30 g cm−3. Thus, for our galaxy, the compression factor
is b ∼ 10 6. We assumed that the cloud that we are studying
in the interval5 ≤ z ≤ 10, collapsed virially at a high
redshift, creating a largeb. Reasonable values forb are, then,
in the range200 ≤ b ≤ 10 7. Takingρn (0) ∼ 0.05 ρc (0) ,
whereρc (0) ' 0.9 × 10−29 g cm−3 is the present critical
density (assuming a fiducial factor,h ∼ 0.7, for the Hub-
ble constant), we obtain4 × 10−26 g cm−3 . ρn (z =
10) . 2.3 × 10−21 g cm−3 for the baryon density in our
high redshift cloud. We estimated the ion mass density as
ρi ∼ gρn, with 0.001 . g . 1, which gives an ion density
in the range4× 10−29g cm−3 . ρi . 2.3× 10−21 g cm−3.
At z ∼ 10, the cosmic microwave radiation temperature was
(1 + z) T0 ∼ 30K. For 5 . z . 10, we considered plasma
cloud temperatures in the interval30K . T . 10 3 K.
Using these values and estimating the thermal velocity of the
ions asvn = (3kBT/mp)1/2, we obtained10 4 cm s−1 .
vn . 10 5 cm s−1. Comparing these values withVc, we see
that we are dealing with mildly supersonic turbulence. Due
to the the relatively low temperatures of the plasma, the ion-
neutral collision cross section isσin ' 10−15 cm 2 [13].
The ion-neutral collision frequency isνin = σin nn vth, gi-
ving 10−16 s−1 . νin . 10−10s−1. The electrical resis-
tivity can be estimated asη =

(
c 2/4π

) (
me νen/e 2 ne

)
,

wherene is the electron number density,me the electron
mass, andνen = 〈σen ve 〉nn is the electron-neutral col-
lision frequency. Takingne = ni (charge neutrality),
Te ∼ Ti, and usingve ∼ (3kBTe/me)

1/2
, we obtain

η ∼ 5× 10 3 cm 2 s−1, which is extremely small. The mag-
netic Reynolds number isRm = LcVc /η ∼ 10 23 − 10 24,
which means that at high redshifts, plasma turbulence was
the main mechanism for diffusion and dissipation. Thus the
first term in equation (5) can be neglected. Since the ion-
neutral collision was the dominant interaction in the plas-
mas considered, we took the characteristic response time as
τ ∼ ν−1

in . The coefficient“a” in the non-linear terms in
equations (3) and (4) can then assume values in the interval
4.3× 10 30 g−1 cm3 s . a . 2.5× 10 44 g−1 cm3 s.

2.3 Characterizing the turbulence

In studying turbulence, it is usually assumed that the fluid
is incompressible (∇.v = 0). The functionsTNN andTLL

are, then, related in the way described by Subramanian [8].
For compressible fluids, (∇ × vT = 0) these functions are
related byTLL = TNN + rdTNN/dr [11]. Adopting the
above relation betweenTNN andTLL, since astrophysical
plasmas are compressible, the fluid flow correlation functi-
ons can be written as

2C (r) =
ΩL2

c

h

[
1−

(
r

Lc

)q]
0 < r < Lc (8)

TNN (r) = AN

[
1−

(
r

Lc

)p]
lc < r < Lc (9)

TNN (r) = 0 r > Lc (10)

with AN = VcLc/3 [12]. (In our study,lc is much smaller
than the numerical resolution used. We therefore considered
ML (0) = ML (lc)).

3 Results and conclusions

The magnetic correlations that result from the evolution of
the turbulent kinematical dynamo are found to be indepen-
dent of the initial field correlations. The resulting intensity
of the magnetic field is very sensitive to the value of bothVc

and the degree of ionization of the plasma, while the final
correlation lengthLM of the magnetic field is found to be
very sensitive to the values ofVc andΩ. Larger values ofp
and/or ofq produce larger values ofML.

To illustrate the dependence of varying the parameters,
we investigated the following turbulent cases:

• Lc = 33 pc, Vc = 45 km s−1 andΩ = 4.5 × 10−13

s −1. We obtained an average magnetic fieldB ∼
1.1×10−6 G and a final correlation length,LM ' 1.7
kpc.

• Lc = 80 pc, Vc = 96 km s−1 andΩ = 9.6 × 10−13

s −1. We obtained an average magnetic fieldB ∼
1.4×10−6 G and a final correlation length,LM ∼ 5.4
kpc.

In both cases we tookp = 4/3, q = 2, η ∼ 103 cm2

s−1, anda ' 9.76× 1039 cm3 s g−1.
In Fig. 1 we plot the finalML, for different values of

a. We show the finalML for different values ofVc in Fig.2.
The growth ofML as a function of time for various initial
conditions is shown in Fig. 3.
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Figure 1. Final magnetic longitudinal correlations,ML (G2) as
a function of r (pc), for q = 2, p = 1.333, Lc = 83 pc,
Ω = 0.98 × 10−13 s−1 andVc = 98 km/s. Three different va-
lues fora are shown,a = 3.2 × 1039 cm3 s g−1 (dashed line),
9.7 × 1039 cm3 s g−1 (dash-dotted line) and2.43 × 1040 cm3 s
g−1 (dash-doubledotted line). We see that the smaller the value of
a, the larger are the magnetic field intensities. The coherence scale
remains practically unchanged.

Figure 3 shows the rapid saturation (∼ 5 × 106 years)
for small scales,r ∼ 112 pc. This is in agreement with the
analysis of Kulsrud and Anderson [14]. Larger scales take a
longer time to saturate. For the distancer ∼ 2000−4000 pc,
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Figure 2. Final magnetic longitudinal correlations,ML (G2) as
a function ofr (in pc), for q = 2, p = 1.33, Lc = 83 pc and
a = 3.2×1039 cm3 s g−1. Three different values forVc are shown,
Vc = 30 km.s−1 (dash-doubledotted line),45 km s−1 (dash-dotted
line) and96 km s−1 (dashed line), with corresponding values of
Ω = 0.3× 10−13 s−1, 0.45× 10−13 s−1 and0.96× 10−13 s−1.
We see that for larger values ofVc, larger field intensities and cohe-
rence scales are obtained.
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Figure 3. Magnetic longitudinal correlation,ML (G2) as a func-
tion of t (yrs), forr0 = 112 pc and for three different initial values,
ML (r0, t = 0) = 1.5× 10−38 G2 (dashed line),1.5× 10−47 G2

(dash-dotted line) and1.5 × 10−55 G2 (dash-doubledotted line).
We usedp = 1.11, q = 2, Lc = 81 pc, Ω = 0.75 × 10−13 s−1,
Vc = 98 km s−1, a = 9.76 × 1038 cm3 s g−1. We see that in-
dependent of the initial values ofML, saturation occurs at a time
t ∼ 5× 106 years whenM1/2

L ∼ 10−6 G.

shown in Figs. 1 and 2, we require the entire time interval
5 < z < 10 for longitudinal correlations to develope.

The age of the universe atz = 10 is 4.7× 108 years. A
galaxy at this redshift has already been observed [15]. The
star formation rate in this galaxy is observed to be extre-
mely high. A high level of turbulence produced by super-
novae and star formation can then be assumed to exist al-
ready atz ∼ 10 and, thus, throughout the redshift interval
5 < z < 10.

In summary, we found that for a reasonable set of tur-
bulent, astrophysical parameters, magnetic fields on the or-

der of10−6 G, as are observed in high redshift objects are
generated in less than about109 years (the time elapsed
betweenz ∼ 10 andz ∼ 5). They are coherent on scales of
LM ' 3.5− 5.4 kpc.

Our model for the generation and evolution of magne-
tic correlations is relatively simple. Our results, which are
preliminary due to the simple evolution equations used, sug-
gest that the reionization process of the universe, involving
the formation of the first stars, played an important role in
determining the features of the magnetic fields detected in
high redshift objects.
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