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The preservation of Onsager symmetry for the effective dielectric tensor is discussed for a homogeneous plasma
immersed in a inhomogeneous magnetic field, using the unperturbed orbits correct up tosonahich is the
scalelength of the field inhomogeneity. General features of the calculation of the components of the tensor
are discussed and detailed calculations are developed forztikemponent, which is shown to satisfy the
conditions for Onsager symmetry, in agreement with previous results obtained using less precise expressions
for the unperturbed orbits.

1 Introduction neities in the magnetic field and in the plasma parameters
can of course be treated with the formalism of the effective

The effective dielectric tensor has been proposed as the cordie|e_CFriC tensor. However, .sinc'e our objectiye is to ldiscuss
rect form to be used for the description of waves in inho- specific features related to f_|eld inhomogeneity, and improve
mogeneous plasmas in the context of a local approximationth® accuracy of the calculations as compared to previous ap-
[1]. Its basic property is that it is aimed to satisfy energy proaches, we neglect inhomogeneities in the plasma para-
conservation, even in the presence of inhomogeneities. ThigNeters.
property of energy conservation is closely connected with In previous investigations of the effective dielectric ten-
the property of Onsager symmetry, since if Onsager sym-sor for the case of inhomogeneous magnetic field, we have
metry is satisfied the anti-Hermitian parts of the dielectric considered high frequency oscillations propagating in arbi-
tensor only feature resonant parts, properly describing wave4rary directions in a plasma, and we have obtained expli-
particle energy exchange. On the other hand, if Onsagercit expressions for the components of the effective dielectric
symmetry is not satisfied, non-resonant terms appear in theensor, which satisfy Onsager symmetry [4, 10]. We now
anti-Hermitian parts of the dielectric tensor, which describe return to the subject, aiming to improve the accuracy of the
the variation of the wave amplitude due to the modification calculations, in the sense that the unperturbed orbits will be
of the group velocity in an inhomogeneous medium, not true described more precisely than in previous work. We consi-
absorption or amplification [2, 3]. This point has been il- der a homogeneous plasma immersed in a inhomogeneous
lustrated with examples in Ref. [4], where results obtained magnetic field along the direction,By = By(z)e., where
from the dispersion relation with use of the effective dielec- By(z) = By (0)(1+ kpz). We also assume waves propaga-
tric tensor are compared with results obtained using otherting in an arbitrary direction relative to the ambient magne-
approaches found in the literature [2,5-8]. The Onsagertic field and to the field inhomogeneity. Using the proposed
symmetry of the effective dielectric tensor for electromag- geometry we solve the equations of movement and obtain
netic waves has also been discussed in Ref. [9], for the caséhe unperturbed orbits, correct up to order. In references
of homogeneous magnetic field and inhomogeneous plasma4, 10], where a dielectric tensor featuring Onsager symme-
parameters. try was obtained, we had used the unperturbed orbits, but
Fur the purpose of the present investigation, it is impor- Neglecting some corrections of ordeg, while keeping the
tant to remark that, although the general conception of thecorrection to the cyclotron frequenéy.o, which is neces-
effective dielectric tensor is aimed to satisfy energy conser-Sary in order to avoid secular terms, and the term proporti-
vation, the proper symmetry of the tensor may be lost due toonal th in the y/ coordlnate,_ which desc_ribes the drift of
approximations introduced in the process of actual calcula-the guiding center due to the inhomogeneity. For the present
tion of specific expressions of its components. It is therefore investigation, we keep all the other terms of orélgrin the
important to investigate limiting cases which allow detailed €Xpressions for the unperturbed orbits, re-derive the dielec-
calculation. Here we investigate the case of inhomogeneoudTic tensor, and discuss the ensuing properties of symmetry.
magnetic field, neglecting the density inhomogeneity which This work presents one example of the calculation which
occurs in order to satisfy equilibrium conditions. More re- we are developing in order to obtain an effective dielectric
alistic situations which contain simultaneously inhomoge- tensor exactly correct to ordéfz, to be used in the inves-
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tigation of waves propagating in inhomogeneous plasmas.where
We develop in detail the procedure which conducts to the

zz component of the effective dielectric tensor, in order to kg i@

le=0, Bo(z) = Bo(1+ kpx),

point out the problems which must be treated. We also ob- By dx

serve that for each component the initial approach must be a 0 0 .

little different, but the guiding line is that some expansions Wy = 0 _ T (1 + kpx + kBpl Sm(p) )
are forbidden, in the sense that they can give rise to secu- Yo Yo Moo

lar contributions; if secular contributions are introduced, the

Onsager symmetry disappears.

2 The Unperturbed Orbits
The complete set of unperturbed orbits, given in [4] is

Po(7) = p. cos(p — waT)

These orbit equations satisfy all the necessary condi-
tions. They satisfy the initial conditions, they are self-
consistent and, up to ordész, they satisfy the constants
of motion.

3 The zz Component of the Effective
Dielectric Tensor

kpp? To obtain the effective dielectric tensor it is necessary to start
+ L _[2cos psin(@ — waT) —sin2(¢ —waT)], (1) . . A . :
2ma Qo with the calculation of the tensef, which is obtained using
- the usual expressions obtained with plane wave approxima-
p’y(T) = py sin(p — waT) + 275”6 tion, but incorporating effects due to the inhomogeneity:
I RPR e 1y P
k 2 0_ _ e} /d3 e Aa 7
— 27:]?2_ [2cos @ cos(p — waT) — cos2(p —waT)], (2) e=1— z@: WM, p Yo ’ ™
/ — 3 0
p.(T)=p|, (3 AL :/ 4r O, el —r)—or] @©
2(r)—z= p;_z [sin p — sin(¢ — waT)] , e
Ma3fad o =(1- kp/ 8fa0+(k'vpl)fa0p/. (9)
kBpi “ YaMaW ap/ YaMaW
+2 P [2cos pcos(p — waT) ) ) ] ]
Mgiia As mentioned in the Introduction, for the present appli-
1 1 cation we calculate only thez component of the tensor. In
—5 cos 2(p — waT) — 5 cos 20— 1] , 4) order to simplify the analysis we consider propagation inthe
r — z plane. Therk = ke, + k|je,. In this case we can
DL kpp? write as follows thezz component of the effective tensor
Yy (r)—y = [cos(g@—waT)—cosgo]-i-72l ,
Maao 27,m2 1 [Feo +o0
) £..(n, kW) = —/ dk’l/ dn
kpp? 9 . 2 J_ o oo
+2m2 07 [2 cos psin(p — waT)
, X e (z + g Kk, w)elEL—kom (10)
——sin2(¢ —waT) — =sin2¢| , 5 o L .
g S (p = wa) g S ew ©) We note that some quantities appearing in the integrand
P of 2., zz component of the tensor obtained with the plane
1) —2z= A , (6) wave approximation, can be written as follows:
YaMa
|
1. of 0
Oaz = 20 + ibOcL faO COS(P — W T
TR (fa0) cos( )
Qa : .
+mbuL(fa0)na [2 cos psin(p — waT) —sin2(p — Woﬂ')] ) (11)
where
0 0
- p1LOpL  Op
b = kipy _ 1 kpps

)
Ma Sl

«= 2maQo
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) , k
eilk (v’ —r)—wr] _ Fi(p,7)Fa2(p) exp [Z (,Yljjll - w) 7—:| ) (12)

where q
Fi(p,7) = exp {—ibaﬂa sin(p — waT)
a0

1
+ibaNa {2 cos  cos(p — waT) — 5 cos 2(p — war)} } ,

Qq 1
Fg(gp)—exp{ib Q. sin ¢ + by [005290—1—1}}

a0

Aa. = Fy(p) /O dr exp {z (k'p' w) } (%’;‘lo iL(£a°>§T> Fi(p,7), (13)

— o YaTao

which can be cast in the form

0
Aaow = @) 2L e() [ exp fi (2L )| Ry - 20 14)

YaMa

where

k k
5(1 ||P|) 0 kL 0

YaMaw ) Op1  YaMaw Op|

We observe thak,,o depends o and, because at some ><Il(2ibana)e‘i”9°ei(l+’L)“aT

moment it will be necessary to perform the integration in this
variable, we must explicitly show this dependence. To this and

end we approximate
p _ .
O 1 g Ay = Zj“F( ZL2(fao) § " Jn(bady = ana;—z)
a ~ — 2Nq SN ,
Qoo 14+ Ekpr+2n,sing r " ¥ l,n=—00

where we define

oo L(f,
0 =1+ kpx. xIl(Qz'bana)e_m“’/ drePutmaT _ g (fao) , (A7)
0 w

Then, we can write

where the resonance term is defined by
Fi(p,7) =exp [—iba(S; sin(¢ — waT)
; _ kipg Qo oy ,
7%%% €052(p — war) + 2ibane COS(%T)] (15) Dna = Yo — o n;(% + 21y sinp) .

. . .
Fa(¢) = exp |ibads sing + ibana €08 20 — 2ibaTle | - _ In order_ to obtaire?, the Iast step is to perform the
2 integration in the momentum integration:
(16)
Using one of the definitions of the Generalized Bessel

27
_ —1 iDitn)aT
Functions introduced in references [11, 12, 13] 1, = /0 dpFa(p)e™ "7 e T

oo
eiia: sin ¢Fiy cos2¢ _ Z €iin¢Jn(£L',y; :tl) which giveS
n=-—oo
and - ILp = 27T61D(L+n>a‘r6721bana Jn(boz(S; — AT, §bana; Z) 5
+ircosa __ Z zloz
e = I;(Lix)e
oo where . 0
we can write Dpa = Yo — i Ll I n—=§t
WM w
Z Tn(bady 5 ana;—z‘) 2
Qp = 2NN — -

l,n=—o0
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Finally we obtain

2 f>
0o _ . 47rQOc
€ =1—1 o
« “ In=—o0

oo
- R T
0

]
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1 1
X JIp(bad, — QupnT, 51)@17@; i) Jp (bady , 51)@77&; —1)

4rq? P
- [y f0). (18)
o Wia Ve
whereH;(z) = e *I;(z).

In order to perform the BGI correction in this component
of the tensor, we write equation (10) as

4
.. (2, k,w) _1—2 Amgs /d3 p”Lfao)

—i 47% Z/ d’r/d3

where

0)ePutme@ T (19)

+oo +oo
IBcr E/ dkl/ dnei[kL7l€L*(l+n)kBQa7/2w]nHl(2ib;na)

— 00 — 00

1
/] c— / . / o / . y
(ba6x+y]/2 Ql4nT, ibanoﬂ ) (ba5x+n/27 2b(x77a7 _Z) .

Now we use in this expression the integral representation

of the Generalized Bessel Functions, given by

2m

Jn (CC, v :tl) _ ﬂ d¢ 6:I:iac sin ¢+iy cos 2¢Fing ]
0

We obtain
1 27 27 “+oco
7 = — d d dk' 200’ N,
BGI (QW)Q/O ¢1/0 P2 [m L Hi(2iby )
X exp {i(b;é; — QynT)Singy + %b’ana cos 2¢; — inqﬁl}

X exp [ b0, singg — — ana cos 2¢9 + mgzﬁg]

+oo
% / dn 6i{[lfnw(sin ¢1—sin @)k’ —k 1 —(I4n)kpQaT/2w}n )

Performing the; integration

27 27 1

1
Ipar = o doy doo
™ Jo 0

1 — 1o (sin @1 — sin ¢)

+oo
7 w

— 00

X exp {i(b’ 0, — QuynT)singy + bana cos 2¢1 — mqbl}

X exp [ ibl,0; sin ¢g — § bl N cOS 202 + m@]

s (b; _ bo + QuynT/2 ) .

1 — 9 (sin @y — sin ¢)

Performing the/, integration

1
1 — N (sin gy — sin ¢o)

1 27 27
Ipar = 2*/ d¢r doa
™ Jo 0

. bo + QpynT/2
2
i ( = N (sin g1 — Sin¢2)na

. b + Oél+7LT/2

0y

X &xp {Z (1 — N (sing; —singy) *
1 ba + al-‘rnT/Q

21 — N (sin ¢y — sin ¢

al-‘rnT) sin ¢y

)Ua cos 2¢1 — in¢1}

X exp |—1 bo + Qu4nT/2

P 1 — Ny (sin g — sin ¢o)
i b + al+n7—/2
21 — na(sin ¢g — sin ¢o)

We now expand the different factors of this expression,
maintaining all terms up to ordés; then

) 0, sin ¢

Ne COS 2¢02 + in(bg} .

1 27 27 ] ]
Ipar ™~ o / doy / dpa [1 4 na(sin ¢y — sin ¢g)]
™ Jo 0
XHl(27;bana)

X exp [z (ﬁ;(“rn) + bana(sin @ — sin ¢2)> sin ¢
+%bana cos 2¢1 — in¢1]

X exp [—i (ﬂ;r(l-;-n) + bana(sin ¢ — sin ¢2)) sin ¢
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_%bana 08 26 + ings| | We also use, keeping only terms linearip

Hl(2ibana) = (1 - ibana)él,O =+ ib(xnaém,l )
where
ﬂfn =ba0, T a,7/2. which, after some trigonometric manipulations gives

]

1 . .
Ipar ~ %[(1 — ibaTa)01,0 + 1baTad)i) 1]

27 27
X / dor / doo [1 + N (sin @1 — sin ¢g) — 2iby 7y Sin @1 sin Py — 1by Ny, COS 2¢>g]
0 0

X exp |:i6¢;(l+n) sin ¢1 — inq&l} exp {_iﬁ:(urn) sin ¢g + ingbg} .

Using the following integral representations of the usual Bessel functions and its derivatives

27
27TJn(Z) :/ d¢ eiizsin¢¥in¢
0

27
F2imd;,(2) = /0 d¢ sin ¢ e=i=sm OFIne

2 / 2w
o0 |:2 <7742 . ].> Jn(z) B 2Jn(2):| _ / d¢ coS 2¢ ej:izsindﬂiinqﬁ ,
z 2 z 0

we obtain, maintaining in the coefficients of the Bessel functions and its derivative terms up tégrder

Ipgr = 2mdi0 {Jn(ﬁ;(l+n))‘]”(ﬁ;r(l+n)) ~ [J;L(B;(l+n))‘]"<ﬁ;r(l+n)) = Ju(8, (l+n))J/ (5a(l+n))”

. _ . n2
*27”5[,0 {QZbanaJ;n(ﬂa(l_;,_n))J, ( a(l+n)) + QZbana b2 JIn (/Ba(l+n))<] (6(1(1_;,_”))}

+27Tiba77a5\l|,1Jn(ﬁ;(z+n))Jn(6a(z+n)) .

Using
+oo
— iD naT
Z Z Jn(ﬁa(l_t,_n) (ﬁ(x(l-‘rﬂ)) ()
n=—oo [l==+1
+oo )
= Z [Jnfl(ﬂ;n)‘]nfl(ﬂ;n) + Jn+1(ﬁ;n)=]n+1( in)] elD"uT )
we can obtain
1 “+o0 +oo
iDinyaT — -+

= n;wzm,e (T = n;m {In(Ba) In(B2,)

—ina [T (B T (BE) — Tn(Bon) T ( ;rn)]}eiD,,mr ,

which gives for thezz component of the effective dielectric tensor

A7 thz / 3 I I
ez, kyw) =1— E — [ d°p—L(fa
( ) ) p%l (f 0)

. 4 (8] 'L naT
—Qirza:w;iaz:/ dr/d3p L(fa0)e™

1 { I (B2) Tn(B2) = inal T (B Tn(B) = Tn(Ba) TH (B - (20)
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4 The Onsager Symmetry

For thezz component of the dielectric tensor the symmetry
condition to be verified is

Ezz(ka wy B(]a {fao(PiPH)})

= <C-‘zz(_ka Wi _B07 {fa()(pia _p\l)}) . (21)

What we must do in the expressions here obtained, in
order to construct the right-hand side of the symmetry con-

dition, is to make the substitutions
Qo — —Q4q,

kp — kg,

ba — ba

Na = —Na

+ +
0p = 0z

A(l4n) = A(14n)

+ +
L— L,
i} k o | kpL 9
£—>£:<1+ L] ) 1pL 9
YaMMaW 8PJ_ YaMMaW apH

_ k P N
D(l+n)a - D(H—n)a = Yo + % + (l + n)jé;f .

«

We also need to change the dummy variables+ —py,
n — —n andl — —[, which produces

fao 1, —p) — fao(P.—p))

Q(l4n) = —X+n) »
Bam = Ban
L——L,
L— L,
D(Hn)a - D(lJrn)a
It is trivial to see that thezz component of the effec-

tive dielectric tensor satisfies the required Onsager's sym- g

metry. Thezz component of the dielectric tensor without
the BGI correction doesn’t feature this symmetry, since af-
ter the substitutions described above it transforms into

0 4l RES l
szz—>l—z'§ 5 @ E (-1)
— Wi Lo

2
3, P . > i T
X /ddp pTH_E(faO(piap\l))Hl(*%baﬁa)/O dr etPa+n)a

_ 1 . _ 1 .
XJn(ba&x + QunT, iboﬂ]a; _1)Jn(ba6x y §ba7]oc; Z)

R. S. Schneidest al.

dmq?

/ d3p%L(fao(pi»Pn))

za: w2my,
which is not the same as the expression given by equation
(18).

These calculations show that the component of the
effective dielectric tensor in the case of magnetic field with
inhomogeneity perpendicular to the direction of the field sa-
tisfies Onsager symmetry, when all terms of the order of the
inhomogeneity parameter are kept in the expressions for the
unperturbed orbits of the particles. As we have seen, the de-
rivation of the dielectric tensor in this case requires a large
amount of mathematical manipulations, considerably more
than in the case of more approximated orbits. They certainly
require much heavier load of algebraic manipulations than
the homogeneous case. Similar calculations must be now
developed for the other components of the effective dielec-
tric tensor, in order to verify if Onsager symmetry is indeed
satisfied by the tensor, as demonstrated in the case of simple
expressions for the unperturbed orbits [4, 10], as well as in
the case of homogeneous field and inhomogeneous plasm:
parameters [14].
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