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We compare and discuss several approximations to the dispersion relation for electrostatic waves in inhomoge-
neous plasmas, either obtained directly from Poisson’s equation, or from the dielectric constant obtained using
a dielectric tensor derived using the plane wave approximation, or from the dielectric constant derived using the

effective dielectric tensor.

1 Introduction using the electrostatic approximation. The difficulty of the
conventional form of the dispersion relation in describing
Along the last few years we have conducted several investi-the LHDI had already been noticed in an earlier analysis, in
gations on waves in inhomogeneous p|asmasl using the Cona formulat.ion Wh|Ch did not use the effective dielectric ten-
cept of effective dielectric tensor, which has been proposedsor, adopting instead & hocprocedure to correct the lack
as the correct dielectric tensor for the description of dielec- of symmetry of the dielectric tensor [23]. We have therefore
tric properties of inhomogeneous p|asmas [1] Among thesederived a new form of the dispersion relation, tak|ng into ac-
investigations, we have considered cases where the magnecount in the derivation the relationship between charge den-
tic field is homogeneous and other plasma parameters aréity and electric field expressed by Gauss law, which intro-
inhomogeneous [2, 3, 4], cases where the magnetic field isduces a term featuring gradients of the inhomogeneous para
inhomogeneous and inhomogeneities in the plasma parameMeters, which is of the same order as other terms due to the
ters are neglected [5, 6], and cases where inhomogeneitie§thomogeneity which were taken into account in the deriva-
are taken into account both in the p|aSma parameters and iﬁlon of the dielectric tensor. This new form of the dlsperSIOn
the magnetic field [7] For all these cases we case Consi_rEIation was able to describe in a local apprOXimation both
dered arbitrary direction of propagation relative to the am- the LHDI and the MTSI(IWI), something which was not yet
bient magnetic field, and we have taken into account rela-available in the literature up to that moment [8].
tivistic effects. The expressions obtained for the dielectric ~ The fact that the LHDI was not described with use of
tensor for all these cases satisfy Onsager symmetry, and as &€ conventional form of the dispersion relation and requi-
consequence the anti-Hermitian part of the tensor only con-red a new form of the dispersion relation to take into account
tains resonant terms, as required for proper description ofall relevant inhomogeneity effects, and the strong electros-
the energy exchange between wave and particles. tatic character of the instability, point out to the relevance of
We have also applied the concept of effective dielectric investigating_ t_he proper electrostatic Ii_mit of the_disp_ersion
tensor to the study of instabilities in the lower hybrid range, relation. As it is known, forlelectrpstatlc flgctuatlons in h_o-
in a plasma featuring density and magnetic field inhomoge- M09eneous plasmas the dispersion relation may be written
neities [8]. In the case of this application we have verified 85! = 0, wheree, is the dielectric constant, obtained as
that the form of the dispersion relation conventionally used flOWS, o
for electromagnetic waves was able to describe the so-called g = L;ﬂ (1)
modified two stream instability (MTSI), an instability which k
occurs due to the existence of a relative drift between ionswhere thes;; are the components of the dielectric tensor and
and electrons [9-13], as well as its purely growing limit for thek; are the components of the wave vedkorAs a very
parallel propagation, known as ion Weibel instability (IWI) usual alternative, the dispersion relation for electrostatic wa-
[14, 15]. However, the conventional form of the dispersion ves may also be obtained from Poisson’s equation.
relation, along with the effective dielectric tensor, was not When considering the inhomogeneous case, it is heces-
able to describe the lower hybrid drift instability (LHDI), sary to carefully introduce all relevant inhomogeneity ef-
which is expected to occur when inhomogeneities are takenfects, and to properly describe the energy exchange betweet
into account in the description of the electron contribution waves and particles. In the present paper we address the sut
to the dispersion relation [16-23]. The LHDI is known by ject by comparing and discussing several approximations to
its strong electrostatic character, and is frequently studiedthe dispersion relation for electrostatic waves in weakly re-
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lativistic inhomogeneous plasmas, either obtained directly used to describe the fluctuating quantities in the local appro-
from Poisson’s equation, or from the dielectric constant ob- ximation. As a consequence, the dielectric tensor as given
tained using a dielectric tensor derived with the plane wave by Eq. (5) features some undesirable properties, like non-
approximation, or from the dielectric constant derived using resonant terms in the anti-Hermitian part due to the lack of
the effective dielectric tensor. Onsager symmetry of the componet@Js and therefore the
need to introduce the effective dielectric tensor, aimed to
. ) . correct the inconsistencies introduced by the local approxi-
2 The dispersion relation for the elec-  mation [2].
PR The calculation of the?. components for inhomogene-
trostatic limit ous medium, and the sub7sequent derivation of the compo-
nents of the effective dielectric tensor, which we will denote

In the absence of collisions the behavior of the system is . . :
simply ase;;, can be a very cumbersome task, specially in

ruled by the Viasov-Maxwell system of equations. Consi- the case of inhomogeneous magnetic field. In order to pin-

ring small ampli fl ion h h m
dering small amplitude fluctuations such as the system can point basic features of the approximation involved in the cor-

be linearized, using the method of characteristics to solver t descrintion of the electrostatic limit for inhomogen
the Vlasov equation, and assuming plane-wave approxima- ect description of Ine electrostatic 0 omogeneous

tion, the perturbed distribution function of a plasma species plasmas, we restrict ourselves to _the_case of homogeneous
o can be given by the well known result magnetic field, with inhomogeneities in the parameters ap-

pearing in the distribution function assumed to be along the
for = —GaAa - Exo @) x dir_ection. In what follows we reproduc:_a the_ expre_ssion

© obtained for the components of the effective dielectric ten-

where sor. The details of the calculation can be found elsewhere,

A /0 6 ik R-wr) although in different notation [2].
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The perturbed distribution function is then utilized to ob-
tain the perturbed current. After a considerable amount of MaYa
algebra, it is well known that a linear relationship, possibly EL n of!

"+ . . . . o | PL *
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The components?j appearing in Eqg. (4) can be used to

define the dielectric tansor, Ther; and®; appearing in Eqg. (6) are the components

of the following vectors,

0 «— 4 ) 0

E=1+—27 . (5) 3 0%@)
w T=|—

cos ) — iJ}, (by) sin 1/)) e
If inhomogeneity effects are explicitly taken into ac-
. o 0 . 7. (b
count in the derivation of the?, components, there is an n (n (ba) §in 1+ i’ (ba) cos w)

inconsistency with the plane wave approximation which is be,
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whereb, = k1p) /(maQ), with Q. being the cyclotron

angular frequency of particles of species The quantity

X, appearing in Eq. (6) is defined ag /w?, wherew,, is

the plasma angular frequency of particles of speaieand

ne is the density of these particles. The components of the

wave vector respectively perpendicular and parallel to the

direction of the ambient magnetic field arg andk, with

1) being the angle betwedqn, and the direction of the inho-

mogeneity.

We notice in Eq. (6) the presence of the quotient
between the quantity, , which appears due to the magnetic
fluctuations introduced by Faraday’s law, and the quantity
b, Which appears in the denominator. Since the quahntity
is proportional tok, , its definition can be used to cancel
out thek, appearing in the numerator. The outcome is a
different form for the effective dielectric tensor.

+
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We examine now the last term in this expression. Since

ki sinvy ,,
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1
L*pfl/:

maQ
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where the definition of5;, can be found in Ref. [2], and
therefore the term with th&;, in Eq. (9) can be written as

Xa 1
y == /d?’pm LU

Ng Me
Xa 1
= 0iy0j- Z 7 /d3p —D| for
p o Yo

where the last step was obtained via integration by parts.
Using this result in Eq. (9),
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These expressions for the components of the effective
dielectric tensor are exactly equivalent to those obtained in
Ref. [2].

Once we have the proper dielectric tensor, let us examine
the dispersion relation. In the electrostatic approximation,
B; ~ 0, and Gauss’s law can be used to obtain the disper-
sion relation. Using it along with continuity’s equation, and
using plane wave approximation for the electric field, we
obtain the following

47

ik - E——T{(V-F)-E—i—ik?-E] :

where we have used the relationship between the effective

dielectric tensor and the effective conductivity,

41
Eij = 5ij + T«J Oij

UsingE = —V¢ = —ike, we obtain the following dis-
persion relation,
ke — ik - (V- ‘E) ~0. (12)

The general form of this dispersion relation can be found
in well known textbooks [24]. However, we point out that

the dielectric tensor to be used in Eq. (12) is the effective di-

electric tensor, which is free from the inconsistencies arising

there is no resonant denominator, the following property canfrom the use of the local approximation for inhomogeneous

be used,
+o0 +oo diz+1
% p 1p
> (@it = 3 (W) sn M,
n=-—00 n=-—00o pL b

(10)

plasmas. Using the effective dielectric tensor as given by
Eq. (6), we obtain

+oo
k2 Z ma Z /d3p—J2

n=—oo

€L =
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Details about this calculation can be found in Appendix
A. It is important to notice that all thé; components ori-

ginated from the magnetic fluctuations have been cancelled

out in the derivation of Eq. (13), so that the dielectric cons-
tant is the same as it would be obtained if we had started
assuming electrostatic fluctuations when deriving the com-
ponents of the dielectric tensor.

By taking into account that the inhomogeneities are
along thex direction, evaluating the derivatives of the com-
ponents of the dielectric tensor as given by Eq. (6), and
using Eq. (13), the dispersion relation (12) can be written as
follows,

IR 2 S [ap A [

n=—oo

n of,
b Op.

of.
k @
l ap)

nJ?, . ;.
X b—’cosqp—l-zjnln siny | +¢,=0. (14)

3 Other approximations to the dis-
persion relation

As we have pointed out, the so-called BGI procedure has
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This expression is the counterpart of Eq. (6), prior the
BGI procedure. Using theO components with Eqg. (1), and
following procedures S|m|lar to those utilized in Appendix
Ato derive the effective dielectric constant, we obtain a die-
lectric constant which do not describe adequately the energy
exchange between waves and patrticles, and which will be
denoted as?,
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By comparing Egs. (13) and (16) it is easy to show the
following result

played an essential role in correcting inconsistencies arising

from the use of a plane wave approximation in an inhomoge-
neous plasma. However, it may be illuminating to compare
the dispersion relation obtained using the effective dielectric
tensor, Eq. (14), with the corresponding dispersion relation
obtained using the dielectric tensor derived with use of the
plane wave approximation, with componeaijs The com-
ponents of this tensor can be given as follows,
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n=—oo
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Eq. (17) shows that the dielectric constants originated
from the effective and from the plane wave tensors are in ge-
neral different, even in the simple case considered here, of
homogeneous magnetic field and gradients of plasma para-
meters pointing along a direction perpendicular to the mag-
netic field. These two forms of the dielectric constant are
clearly equal only in the case of waves propagating perpen-
dicularly to the direction of the inhomogeneity. This con-
clusion can also be extended to the dispersion relation itself,
since it is trivial to show that the dispersion relation using
plane wave approximation would be the same as Eq. (14)
with €? replacinge;. Of course, this dispersion relation fe-
aturing the plane wave tensor instead of the effective die-
lectric tensor is not appropriate to describe the electrostatic
oscillations, since it would not describe properly the energy
exchange between waves and particles.
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Another approach to the dispersion relation is largely o of k 5f’ (19)
used in the treatment of electrostatic waves in inhomoge- bo Op1 8p” '
neous media, and can be summarized as follows. Star-

ting from Gauss's law, using the electrostatic approximation  ysjng this expression along with the dispersion relation

E; = —V¢,, and assuming plane wave approximation, wWe given by Eq. (14), it is seen that the dispersion relation may
obtain be written as follows,

Bo=ar3au [ o,
where the (Fourier-transformed) distribution function can COWZ Z / PPLY

n=—oo

be obtained from Vlasov equation according to Eq. (2).

Following procedures similar to those employed to derive

the €. components, after some reasonable amount of al- / / 2
ij ) ) ) y ) n Of afl, nJ ,

gebraic manipulation we obtain the relationship between kJ_b 3 13 — —JnJ, | =0. (20)

charge density and fluctuating electric field, and therefore pL Pl

obtain the dispersion relation as follows,

From this expression, we conclude that for propagation

Xoma 2 perpendicular to the inhomogeneity & 7/2), the disper-
oY 3 2 . . . . y . .
ef k2 Z Z /d g5 sion rel_atlor_1 obtained from Poisson’s equation, Wltho_ut BGI
n=-—oo Dan correction, is exactly the same as the correct dispersion rela-
tion which has incorporated all the relevant inhomogeneity
AL Ifa i Ofa effects and which has been corrected using the BGI proce-
Lb OpL I dp| dure, namely Eq. (14). For general directions of propaga-
tion, however, these two forms of the dispersion relation do
2 not in general coincide.
-I-% sin ¢ za: Y /d3 g
n n Of! of! 1 .
X {b (kJ_b 8;: + kK 8Jpj|> + kJ_mfclx] 4 Conclusions
) w? o - 1 , We have investigated the electrostatic limit of the disper-
-t Cosd’ﬁ Z nQ Z /d pPiDiJan sion relation for weakly inhomogeneous media, by compa-
a 4% n=-oco o ring and discussing several approximations to the disper-
n of! af sion relation. We have started by deriving the dispersion
(h ba Op. I ap| ) 0 (18) relation using Gauss’s law, taking into account the equation

of charge continuity to relate charge and current densities,
It is important to remark that in this approach inhomo- and expressing the relationship between current density anc
geneity effects have been included in the dispersion relationelectric field by means of the effective conductivity, which
along with a plane wave approximation to describe the fluc- is derived using the so called BGI procedure in order to gua-
tuating quantities. As we know, this approximation genera- rantee proper description of the energy exchange betweer
tes inconsistencies. However, in the derivation of Eq. (18) waves and particles. We have seen that another form of the
no correction along the lines of the BGI procedure employed dispersion relation derived with a conductivity tensor which
to derive the effective dielectric tensor has been applied, andhas not been corrected using the BGI procedure in general
therefore the dispersion relation as given by Eq. (18) may does not correspond to the correct form of the dispersion
not describe adequately the energy exchange between wava®lation, except for propagation perpendicular to the direc-
and particles, as it is also the case of the dispersion relationtion of inhomogeneity. This result is not surprising, since
obtained using the?j components. it is known that for this particular direction the uncorrected
By comparing the dielectric constant Eq. (18) obtained tensor corresponds to the effective conductivity tensor.
with use of Poisson’s equation with the effective dielectric We have also derived the dispersion relation using Pois-
constant given by Eq. (13), we obtain the following son’s equation and direct evaluation of charge density, ta-
king into account inhomogeneity effects. For propagation
e =¢f — blnﬂjz Z /dgpm perpendicular to the direction of inhomogeneity, the equa-

!
‘] In tion obtained following this procedure is the same as the

el correct equation derived using the effective dielectric tensor.
n af’ af Eor gene.ral dirgctions of propagation, howevc_er, the equa-
{Iﬁ ky } tion obtained differs from the correct dispersion relation,
ba Op1 p) which is not surprising, since in the derivation starting from
2 x too Poisson’s equat.ion no BGI correction has been gp]_olied, and
ticosp—= Z = Z / d?’pm T, therefore there is no guarantee of correct description of the
k nafda £ Dan wave-particle interaction.
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A The derivation of the effective die- Since the quantity;; is real,
lectric constant 1 . .
5 [(k-@*) (k~7?)+c.c.] = (k- 7) (k~Re<I>> .
Using Eqg. (1) with the components of the effective dielectric ] o
tensor as given by Eq. (6), we use the following resullts, Using the definition of theb;,
n?Jy  Jn JNT .
Z k‘léljk‘] = Zkzkl = ]432, (21) Z k;lRe@l = k]_ l: bi - ? - bajl SID(Q’L/J) COS’(/)
17 % %
Jo [0, J. T ,
%:k 10i:0j:kj = kok. = kf, (22) +ky {2 - [ i bJ cos(zzp)} sin ¢
ppn -
> ki(Siy 0z + 0jy0i2)k; = 2ky k. i "p1 b b JnsinY
ij /
—Rep* (1 P g
= Qkukl Sind) 5 (23) N Re(pz (kL pH b + kl) kL ba SlIll/)
and obtain after some algebraic manipulations, Therefore,
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We also need the following quantity, ~ {b" J? (
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