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2Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Maracanã, 20550-900, Rio de Janeiro, RJ, Brazil
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Parallel permittivity elements are derived for radio-frequency waves in an axisymmetric tokamak with D-shaped
transverse cross-sections of the magnetic surfaces under arbitrary aspect ratio, arbitrary elongation and small
triangularity. The bounce resonances are taken into account for untrapped (passing or circulating) and three
groups of trapped particles. The corresponding limits for the simpler plasma models are considered. Our di-
electric characteristics are suitable to estimate the wave dissipation by electron Landau damping during the
plasma heating and current drive generation in the frequency range of Alfvén and fast magnetosonic waves, for
both the large and low aspect ratio tokamaks with circular, elliptic and D-shaped magnetic surfaces. The dissi-
pated wave power is expressed by the summation of terms including the imaginary parts of both the diagonal
and non-diagonal elements of the parallel permittivity.

1 Introduction

As is well known, tokamaks represent a promising route to
magnetic thermonuclear fusion. In order to achieve the bur-
ning conditions in these devices additional plasma heating
must be employed. Effective schemes of heating and current
drive in magnetized plasmas can be realized using the colli-
sionless dissipation of radio-frequency waves (e.g., Alfvén,
fast magnetosonic and lower hybrid waves) by electron Lan-
dau damping, transit time magnetic pumping (TTMP), cy-
clotron and bounce wave-particle interactions etc. Usually,
these aspects of the kinetic wave theory are studied by sol-
ving the Vlasov-Maxwell’s equations. However, for toka-
maks, this problem is not simple since to solve the differen-
tial wave equations we should use the complicated integral
dielectric characteristics valid in the given frequency range
for realistic two- or three-dimensional plasma models. The
form of the dielectric tensor components,εik, depends subs-
tantially on the geometry of an equilibrium magnetic field
and, accordingly, on the chosen geometrical coordinates.

Nonetheless, for the large aspect ratio tokamaks (where
the inverse aspect ratio is a small parameter,ρ/R0 << 1),
the kinetic wave theory is developed quite fully, see, for
example Refs. [1-9] and the bibliography therein. Using
the averaged (over magnetic surfaceρ = const, i.e., over the
poloidal angleθ) expressions forεik it was possible [2,3,8,9]
to perform a general analysis of the dispersion characteris-
tics of the magnetohydrodynamic waves and to estimate the
damping rates of the Alfv́en and fast magnetosonic waves
in various limiting cases. The specific toroidal effects are
connected with the fact that in tokamaks (in contrast to a
cylindrical plasma confined in the straight or helical magne-
tic field) the parallel velocity of plasma particles (along the
equilibrium magnetic field lines) is not constant, i.e., is mo-
dulated depending onθ for the givenρ. Moreover, in their

dependence on the pitch angle the plasma particles should
be split in the two populations of the so-called trapped (ha-
ving the stop-points, where their parallel velocity is equal
to zero) and the untrapped (or passing, or circulating) parti-
cles moving along the equilibrium magnetic field line with
a large modulated parallel velocity. Since the trajectories
of the trapped and untrapped particles are different, the Vla-
sov equation should be resolved separately for each particles
group. As a result, the trapped and untrapped particles give
different contributions to the dielectric tensor elements; the
Cherenkov-resonance conditions of an effective interaction
of the trapped and untrapped particles are different; and, ac-
cordingly, the wave dissipation by the trapped and untrap-
ped particles (mainly, electrons) are different depending of
the ratio of the wave phase velocity to the thermal velocity
of the untrapped particles/electrons and of the ratio of the
wave frequency to the bounce frequency of the trapped par-
ticles. One of the interesting features of the toroidal plasmas
is the contribution [5,6] of all the spectrum of the electric fi-
eld to them-th harmonic of the perturbed current density:
4πjm

i /ω =
∑±∞

m′ εm,m′

ik Em′
k .

All these features of the large aspect ratio tokamak take
place in low aspect ratio toroidal plasmas (see, e.g., Refs.
[10-12] for tokamaks with circular transverse cross-sections
of the magnetic surfaces). In both the large and low aspect
ratio tokamaks with circular magnetic surfaces, the equili-
brium magnetic field has only one minimum (or three extre-
mums, with respect to the poloidal angle) in an equatorial
plane at the external part of the magnetic surfaces. Accor-
dingly, in such plasma models there is only one group of
trapped particles. The main feature of a toroidal plasma
with elliptic magnetic surfaces is the fact (see, e.g., Refs.
[13-16]) that the equilibrium magnetic field, in the general
case, can have two local minimums (or five extremums, with
respect toθ ). As a result, together with the untrapped and
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usual t-trapped particles, two additional groups of the so-
calledd-trapped (or double-trapped) particles can appear at
such magnetic surfaces if/where the corresponding criterion
is satisfied:ρ/R0 < h2

θ

(
b2/a2 − 1

)
; hereb/a characterizes

the elongation, andhθ is the poloidal component of the unit
vector along the equilibrium magnetic field.

Many present-day tokamaks, in particular the spheri-
cal ones, have the D-shaped transverse cross-sections of
the magnetic surfaces. In this paper, the parallel dielectric
permittivity elements are derived for radio-frequency wa-
ves in an axisymmetric toroidal collisionless plasma with
D-shaped magnetic surfaces under arbitrary aspect ratio, ar-
bitrary elongation, and small triangularity. The drift-kinetic
equation is solved separately for untrapped and three groups
of trapped particles as a boundary-value problem, using an
approach developed for low aspect ratio tokamaks with cir-
cular [12], elliptic [16] and D-shaped [17] magnetic surfa-
ces. The limits for the more simple plasma models are con-
sidered.

2 Plasma model and Drift-Kinetic
equation

To describe an axisymmetric D-shaped tokamak we use the
quasi-toroidal coordinates (ρ, θ, φ) connected with the cylin-
drical ones (R, φ, Z) as [17]

R = R0 + ρ cos θ − dρ2

a2
sin2 θ, (1)

φ = φ,

Z = − b

a
ρ sin θ, (2)

whereR0 is the radius of the magnetic axis;a andb are, res-
pectively, the minor and major semiaxes of the cross-section
of the external magnetic surface. In the (ρ, θ)-coordinates,
the initial D-shaped cross-sections are transformed to the
circles with the corresponding radiusρ in 0 ≤ ρ ≤ a; and
the cylindrical components of an equilibrium magnetic field
H are

Hφ = Hφ0
R0

R
,

HR = Hθ0
R0

R
sin θ

(
1 +

dρ2

a2
cos θ

)
,

HZ = Hθ0
bR0

aR
cos θ. (3)

HereHφ0 andHθ0 are, respectively, the toroidal and poloi-
dal magnetic field amplitudes at the given (byρ) magnetic

surface. Thus, the moduleH = |H| of an equilibrium mag-
netic field is

H(r, θ) =

√
H2

φ0 + H2
θ0

g(ρ, θ)
, (4)

where

g(ρ, θ) =
1 + ε cos θ − δε sin2 θ√

1 + λ cos2 θ + 4δh2
θ cos θ sin2 θ

,

ε =
ρ

R
,

δ =
dρ

a2
,

λ = h2
θ

(
b2

a2
− 1

)
,

hθ =
Hθ0√

H2
φ0 + H2

θ0

. (5)

In this model, all magnetic surfaces are similar to each other
with the same elongation equal tob/a; the triangularity is
smalld/a << 1.

To solve the linearized drift-kinetic equation for the per-
turbed distribution functions,

f(t, r,v) = f(ρ, θ, v‖, v⊥) exp(−iωt + inφ), (6)

we use the standard method of switching to new variables
associated with conservation integrals of energy,v2

‖ + v2
⊥ =

const , and magnetic moment,v2
⊥/2H = const . In-

troducing the variablesv (particle energy) andµ (squared
pitch angle or non-dimensional magnetic moment) in velo-
city space instead of the parallel,v‖ , and perpendicular,v⊥
, components of the particle velocity:

v2 = v2
‖ + v2

⊥, µ =
v2
⊥

v2
‖ + v2

⊥
g(ρ, θ), (7)

the drift-kinetic equation for harmonicsfs,

f(ρ, θ, v‖, v⊥) =
∑

s=±1

fs(ρ, θ, v, µ), (8)

in the zeroth order over the magnetization parameter, after
averaging over the gyrophase angle in velocity space, can be
reduced to the first order differential equation with respect
to poloidal angleθ:

c
√

1− µ/g(ρ, θ)
1 + λ cos2 θ + 4δh2

θ cos θ sin2 θ

(
∂fs

∂θ
+

inεhφfs/hθ

1 + ε cos θ − δε sin2 θ

)
−

−is
ρω

vhθ
fs =

eρE‖F
T hθ

√
1− µ

g(ρ, θ)
, (9)
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where

F =
N

π1.5v3
T

exp
(
− v2

v2
T

)
, vT =

√
2T

M
, (10)

E‖ = E · h is the parallel toh=H/H perturbed electric field
component; the steady-state distribution functionF is given
as a Maxwellian with the particle densityN , temperatureT ,
chargee and massM . The index of particle species (ions
and electrons) is omitted in Eq. (9). Bys = ±1 we distin-

guish the perturbed distribution functions,fs, with positive
and negative values of the parallel (relative toH) velocity,

v‖ = sv

√
1− µ

g(ρ, θ)
. (11)

After solving Eq. (9), the contribution of the unspeci-
fied kind of particles to the parallel (toH) component of the
perturbed current density,j‖ = j · h , can be expressed as

c

j‖(ρ, θ) =
π e

g(ρ, θ)

∑
s=±1

s

∫ ∞

0

v3

∫ g(ρ,θ)

0

fs(ρ, θ, v, µ)dµdv, (12)

where the perturbed distribution function is integrated over all the phase volume of plasma particles in velocity space.
In this paper we solve Eq. (9) in the case when untrapped and three groups of trapped particles can exist in the D-shaped

elongated tokamak. In this case, analyzing the conditionsv‖(µ, θ) = 0, the phase volume of plasma particles should be split
in the phase volumes of untrapped,t-trapped and two groups of thed-trapped particles by the following inequalities:

0 ≤ µ ≤ µu − π ≤ θ ≤ π − for untrapped particles (13)

µu ≤ µ ≤ µt − θt ≤ θ ≤ θt − for t-trapped particles (14)

µt ≤ µ ≤ µd − θt ≤ θ ≤ −θd − for d-trapped particles (15)

µt ≤ µ ≤ µd θd ≤ θ ≤ θt − for d-trapped particles (16)

d

where the reflection points and fort- andd-trapped particles
can be defined by solving the equationg(ρ, θ) = µ. The
parametersµu, µt, andµd are defined as

µu = µ(ρ,±π) =
1− ε√
1 + λ

,

µt = µ(ρ, 0) =
1 + ε√
1 + λ

,

µd = µ(ρ,±θmin), (17)

where±θmin are the poloidal angles where the equilibrium
magnetic field has two possible minimums satisfying the
equationdg(ρ, θ)/dθ = 0. It should be noted, that recen-
tly the more general case, when the additional so-calledg-
trapped particles can exist in the D-shaped tokamak, was
considered in Ref. [17]. However, under the usual tokamak
conditions (small triangularityd << a and moderate elon-
gationb/a < 2.5) these particles are absent in the plasma
volume.

The solution of Eq. (9) should be found by the speci-
fic boundary conditions of the untrapped and trapped parti-
cles. For untrapped particles, we use the periodicity offs

over θ. Whereas, the boundary condition for thet- andd-
trapped particles is the continuity offs at the corresponding
stop-points±θt and±θd. As a result, we seek the pertur-
bed distribution functions of the untrapped,t- andd-trapped

particles (respectively,fu
s , f t

s andfd
s ) as

fu
s =

±∞∑
p

fu
s,p exp

[
i2π(p + nq)

τ(θ)
Tu

− inqθ̄(θ)
]

, (18)

f t
s =

±∞∑
p

f t
s,p exp

[
i2πp

τ(θ)
Tt

− inqθ̄(θ)
]

, (19)

fd
s =

±∞∑
p

fd
s,p exp

[
i2πp

τ(θ)− τ(θd)
Td

− inqθ̄(θ)
]

, (20)

wherep is the number of the bounce resonances;

τ(θ) =
ε + δ

(
1−√1− ε2

)

ε
√

1− ε2

∫ θ

0

1 + ε cos η − εδ sin2 η

g(ρ, η)
√

1− µ/g(ρ, η)
dη

(21)
is the new time-like variable (instead of the poloidal angle
θ) to describe the bounce-periodic motion of untrapped,t-
andd-trapped particles along the magnetic field line with the
corresponding bounce periods proportional, respectively, to

Tu = 2τ(π), Tt = 4τ(θt), Tu = 2(τ(θt)− τ(θd)); (22)

θ̄(θ) =
2(ε + δ)

ε + δ
(
1−√1− ε2

)arctg

(√
1− ε

1 + ε
tg

θ

2

)
−

− δ
√

1− ε2

ε + δ
(
1−√1− ε2

)
(

θ − ε sin θ

1 + ε cos θ

)
(23)
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is the new poloidal angle where the magnetic field lines are
straight; and

q =
εhφ

hθ

√
1− ε2

(
1 +

δ

ε

(
1−

√
1− ε2

))
(24)

is the tokamak safety factor. The Fourier harmonicsfu
s,p,

f t
s,p andfd

s,p for untrapped,t- andd-trapped particles can be
readily derived after the corresponding bounce-averaging.

3 Collisionless wave dissipation

To evaluate the dielectric tensor elements we use the Fourier
expansions of the perturbed current density and electric field
over the poloidal anglēθ:

j‖(θ)g(ρ, θ) =
±∞∑
m

jm
‖ (ρ) exp[imθ̄(θ)], (25)

E‖(θ)
(1 + ε cos θ − εδ sin2 θ)2

g(ρ, θ)

=
±∞∑

m′
Em′
‖ (ρ) exp[im′θ̄(θ)]. (26)

As a result, the whole spectrum of electric field,Em′
‖ by∑

m′ , is present in the givenm-th harmonicjm
‖ of the cur-

rent density:

4πi

ω
jm
‖ =

±∞∑

m′
εm,m′

‖ Em′
‖

=
±∞∑

m′

(
εm,m′

‖,u + εm,m′

‖,t + εm,m′

‖,d
)

Em′
‖ , (27)

whereεm,m′

‖,u , εm,m′

‖,t andεm,m′

‖,d are the separate contributions
of untrapped,t-trapped andd-trapped particles to the longi-
tudinal (parallel) dielectric permittivity elements, respecti-
vely. Here we have taken into account that the two groups
of thed-trapped particles are symmetric in the phase volume
and give the same contribution toεm,m′

‖ . As a result, the ele-

mentsεm,m′

‖,u , εm,m′

‖,t , εm,m′

‖,d can be expressed asc

εm,m′

‖,u =
ω2

Lρ2

2π3h2
θv

2
T

±∞∑
p

∫ µu

0

TuAm
p Am′

p

(p + nq)2
[
1 + 2u2

p + 2i
√

πu3
pW (up)

]
dµ, (28)

εm,m′

‖,t =
ω2

Lρ2

2π3h2
θv

2
T

±∞∑
p

∫ µt

µu

Tt

p2
Bm

p Bm′
p

[
1 + 2v2

p + 2i
√

πv3
pW (vp)

]
dµ, (29)

εm,m′

‖,d =
ω2

Lρ2

π3h2
θv

2
T

±∞∑
p

∫ µd

µt

Td

p2

(
Cm

p Cm′
p + Dm

p Dm′
p

) [
1 + 2z2

p + 2i
√

πz3
pW (zp)

]
dµ, (30)

where the following definitions are used:

ω2
L =

4πNe2

M
, up =

ωρ
√

1− ε2τ(π)
hθ|p + nq|vT π

(
1− δ

ε

(
1−

√
1− ε2

))
, (31)

vp =
2ωρ

√
1− ε2τ(θt)

hθpvT π
(
1 + δ

ε

(
1−√1− ε2

)) , zp =
ωρ
√

1− ε2[τ(θt)− τ(θd)]
hθpvT π

(
1 + δ

ε

(
1−√1− ε2

)) , (32)

Am
p =

ε
√

1− ε2

ε + δ
(
1−√1− ε2

)
∫ π

0

cos
[
(m + nq)θ̄(η)− (p + mq)π τ(η)

τ(π)

]

1 + ε cos η − εδ sin2 η
dη, (33)

B̂m
p =

ε
√

1− ε2

ε + δ
(
1−√1− ε2

)
∫ θt

0

cos
[
(m + nq)θ̄(η)− p πτ(η)

2τ(θt)

]

1 + ε cos η − εδ sin2 η
dη, (34)

Bm
p = B̂m

p + (−1)p−1B̂m
−p, W (z) = exp(−z2)

[
1 +

2i√
π

∫ z

0

exp(t2)dt

]
, (35)

Cm
p =

ε
√

1− ε2

ε + δ
(
1−√1− ε2

)
∫ θt

θd

sin
[
(m + nq)θ̄(η)

]
cos

[
pπ τ(η)−τ(θd)

τ(θt)−τ(θd)

]

1 + ε cos η − εδ sin2 η
dη, (36)

Dm
p =

ε
√

1− ε2

ε + δ
(
1−√1− ε2

)
∫ θt

θd

sin
[
(m + nq)θ̄(η)

]
sin

[
pπ τ(η)−τ(θd)

τ(θt)−τ(θd)

]

1 + ε cos η − εδ sin2 η
dη. (37)
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Note that the Eqs. (28-30) describe the contribution
of any kind of untrapped and trapped particles to the die-
lectric tensor elements. The corresponding expressions for
plasma electrons and ions can be obtained from (28-30) re-
placingT , N , M , e by the electronTe, Ne,me, ee and ion
Ti, Ni,Mi, ei parameters, respectively. To obtain the total
expressions of the permittivity elements, as usual, it is ne-
cessary to sum over all species of plasma particles. The
same comments should be addressed to calculate the con-
tribution of ions and electrons to the total current density
components using Eq. (12).

As an important feature of the permittivity elements,
Eqs. (28-30), is the fact that, since the phase coefficients
Am

p , Bm
p , Cm

p and Dm
p are independent of the wave fre-

quencyω and the particle energyv, the analytical Landau
integration of the perturbed distribution functions of both the
trapped and untrapped particles in velocity space is possible.
As a result, the parallel permittivity elements are written by
the summation of bounce-resonant terms including the well
known plasma dispersion functionW (z), i.e, by the proba-
bility integral of complex argument, Eq. (35). After this, the
numerical estimations of both the real and imaginary parts
of the parallel permittivity elements become simpler, and
their dependence on the wave frequency is defined only by
the argumentsup, vp andzp of the plasma dispersion functi-

ons,W (up), W (vp) andW (zp). It should be noted that the
drift-kinetic equation, Eq. (9), and the dielectric characte-
ristics, Eqs. (28-30), are derived neglecting the drift effects
and the finite particle-orbit widths. These effects (as well
as the finite pressure and Larmor radius corrections) can be
accounted for in the next order(s) of perturbations over the
magnetization parameter. The expressions (28-30) have a
natural limit to the corresponding results for tokamaks with
elliptic magnetic surfaces (section IV) ifd = 0, and circular
magnetic surfaces (section V) ifb = a andλ → 0.

Our dielectric characteristics can be applied for both
large and low aspect ratio tokamaks with D-shaped mag-
netic surfaces to study the wave processes with a regular
frequency such as the wave propagation and wave dissipa-
tion during the plasma heating and current drive generation;
when the wave frequency is specified, e.g., by the antenna-
generator parameters. As was mentioned above, one of the
main mechanisms of the radio-frequency plasma heating is
the electron Landau damping of radio-frequency waves due
to the Cherenkov-resonance interaction ofE‖ with the trap-
ped and untrapped electrons. As a result, after averaging in
time and poloidal angle, the wave power absorbed due to the
trapped and untrapped electrons,P = Re(E‖ · j∗‖) , can be
estimated by the expression

c

P‖ =
ω

8π

±∞∑
m

±∞∑

m′

(
Imεm,m′

‖,u + Imεm,m′

‖,t + Imεm,m′

‖,d
) [

ReEm
‖ ReEm′

‖ + ImEm
‖ ImEm′

‖
]

(38)

where Imεm,m′

‖,u , Imεm,m′

‖,t , and Imεm,m′

‖,d are, respectively, the contributions of untrapped (u), t- andd-trapped electrons to the
imaginary part of the parallel permittivity elements:

Imεm,m′

‖,u =
ω2

Lρ2

π2.5h2
θv

2
T

±∞∑
p

∫ µu

0

TuAm
p Am′

p

(p + nq)2
u3

p exp
(−u2

p

)
dµ, (39)

Imεm,m′

‖,t =
ω2

Lρ2

π2.5h2
θv

2
T

±∞∑
p

∫ µt

µu

Tt

p2
Bm

p Bm′
p v3

p exp
(−v2

p

)
dµ, (40)

Imεm,m′

‖,d =
2ω2

Lρ2

π2.5h2
θv

2
T

±∞∑
p

∫ µd

µt

Td

p2

(
Cm

p Cm′
p + Dm

p Dm′
p

)
z3
p exp

(−z2
p

)
dµ. (41)

d

Thus, we see that for the same wave frequencyω and
the same electric field amplitudes the wave power absorbed,
P = Pu + Pt + Pd, is defined by the different contributi-
ons of the untrapped,t-trapped, andd-trapped electrons to
the imaginary part of the parallel permittivity elements, Eqs.
(38-41).

In the simplest case of Toroidicity-induced Alfvén Ei-

genmodes [18] (TAEs), describing the coupling of only two
harmonics withmo andmo − 1, the terms withmo, mo − 1
should be accounted for in Eq. (38) to estimate the TAEs
absorption by the trapped and untrapped electrons. As a re-
sult, the dissipated power of TAEs by the electron Landau
damping is expressed as

c

P‖ =
ω

8π

mo∑
m=mo−1

Imεm,m
‖ |Em

‖ |2 +
ω

8π
Imεmo,mo−1

‖
(

ReEmo

‖ ReEmo−1
‖ + ImEmo

‖ ImEmo−1
‖

)
(42)
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where|Em
‖ |2 =

(
ReEm

‖
)2

+
(

ImEm
‖

)2

is the squared mo-

dule of them-th electric field harmonic. Of course, our die-
lectric characteristics in Eqs. (28-30) and Eqs. (39-41), can
be applied as well to study, e.g., the excitation/dissipation
of the Ellipticity-induced Alfv́en Eigenmodes [19] (EAEs)
in elongated tokamaks when the (mo ± 2)-harmonics of
the electric field and the permittivity elements Imεmo,mo±2

‖,u ,

Imεmo,mo±2
‖,t , and Imεmo,mo±2

‖,d should be involved. Note

that the non-diagonal elementsεm,m′

‖ are characteristic of
a toroidal plasma model. For the one-mode (cylindrical) ap-
proximations, whenm = m′ = mo, the non-diagonal ele-
ments vanish, i.e. Imεm,m′

‖,u |m 6=m′ = 0, and Eqs. (38) and
(42) can be reduced to the well-known expression

P‖ =
ω

8π
Imεm,m

‖ |Em
‖ |2. (43)

On the other hand, the diagonal parallel permittivity ele-
ment (as well as other dielectric tensor components, res-
pectively) corresponds to the parallel dielectric permittivity
averaged over the magnetic surface and can be used to esti-
mate the damping rates of the radio-frequency waves with
the help of the dispersion relations (or the eikonal equa-
tions) as was made in Refs. [2,3,8] for individual modes
∼ exp

[
i
(∫

kρdρ + mθ + nφ− ωt
)]

in a large aspect ratio
tokamak with concentric circular magnetic surfaces.

4 Tokamak with elliptic magnetic
surfaces

In this section, let us consider a tokamak plasma model with
elliptic magnetic surfaces. As in a D-shaped tokamak, in the
general case, the module of the equilibrium magnetic field,
H(ρ, θ), can have two local minimums with respect to the
poloidal angleθ. In this case, the existence criterion of the
d-trapped particles can be rewritten as

ε < λ or
b

a
>

√
1 + ε + q2

1− ε2

ε
. (44)

Otherwise, ifε > λ, the equilibrium magnetic field has only
one minimum and thed-trapped particles are absent at the
given magnetic surface (as it is in tokamaks with circular

magnetic surfaces whereb = a, λ = 0 and, accordingly,
λ < ε).

The separate contribution of untrapped,t-trapped and
d-trapped particles to the parallel permittivity elements
(εm,m′

‖,u , εm,m′

‖,t and εm,m′

‖,d ) can be described by Eqs. (28-
30), where using the limitd → 0, the phase coefficients and
the arguments of the plasma dispersion functions should be
rewritten as

Am
p =

∫ π

0

cos
[
(m + nq)η − (p + nq)π

τ(η)
τ(π)

]
dη, (45)

Bm
p =

∫ θt

0

cos
[
(m + nq)η − p

πτ(η)
2τ(θt)

]
dη+

+(−1)p−1

∫ θt

0

cos
[
(m + nq)η + p

πτ(η)
2τ(θt)

]
dη, (46)

Cm
p =

∫ θt

θd

sin [(m + nq)η] cos
[
pπ

τ(η)− τ(θd)
τ(θt)− τ(θd)

]
dη,

(47)

Dm
p =

∫ θt

θd

sin [(m + nq)η] sin
[
pπ

τ(η)− τ(θd)
τ(θt)− τ(θd)

]
dη,

(48)

τ(θ̄) =
∫ θ̄

0

(1− ε2)G(ρ, η) dη

(1− ε cos η)2
√

1− µG(ρ, η)
, (49)

G(ρ, θ̄) =
1

g(ρ, θ)
=

√
(1− ε cos θ̄)2 + λ(ε− cos θ̄)2

1− ε2
,

(50)

θ̄(θ) = 2arctg

[√
1− ε

1 + ε
tg

(
1
2

arctg
(a

b
tgθ

))]
, (51)

c

θt = arccos





ε(1 + λ)
λ + ε2

−
√√√√ε2(1 + λ)2

(λ + ε2)2
− 1

λ + ε2

[
1 + ε2λ−

(
1− ε2

µ

)2
]

 , (52)

θd = arccos





ε(1 + λ)
λ + ε2

+

√√√√ε2(1 + λ)2

(λ + ε2)2
− 1

λ + ε2

[
1 + ε2λ−

(
1− ε2

µ

)2
]

 , (53)

Tu = 2τ(π), Tt = 4τ(θt), Tu = 2(τ(θt)− τ(θd)), (54)

µu =
1− ε√
1 + λ

, µt =
1 + ε√
1 + λ

, µd =

√
1 +

ε2

λ
, (55)
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up =
ωρ
√

1− ε2Tu

2πhθ|p + nq|vT
, vp =

ωρ
√

1− ε2Tt

2πhθpvT
, zp =

ωρ
√

1− ε2Td

2πhθpvT
. (56)

d

The more detailed evaluation of theεm,m′

‖,u , εm,m′

‖,t and

εm,m′

‖,d dielectric tensor elements in a tokamak with elliptic
magnetic surfaces has been done in Ref. [16].

5 Tokamak with circular magnetic
surfaces

Note that Eqs. (28-37) have been written in the quite gene-
ral form where the ellipticity and triangularity are accounted
for implicitly by the functionsλ(ρ), g(ρ, θ) andτ(ρ, θ). As
for tokamaks with circular magnetic surfaces, whered = 0
andλ = 0, the expressionsεm,m′

‖,u andεm,m′

‖,t (as well as the
corresponding phase coefficientsAm

p , Bm
p , and other defi-

nitions) can be simplified substantially because theτ(ρ, θ)
functions for the trapped and untrapped particles, see Eqs.
(21, 49), can be reduced to i) the third kind elliptic integrals
in low (ε < 1) aspect ratio tokamaks [12], or ii) the first kind
elliptic integrals in large (ε << 1) aspect ratio tokamaks
[9] As was mentioned above, thed-trapped particles are ab-
sent in a tokamak with circular magnetic surfaces, therefore
εm,m′

‖,d = 0 . As a result, in tokamaks with circular magnetic
surfaces, e.g., such as TCABR (Tokamak Chauffage Alfvén
Brésilien) at the S̃ao Paulo University, the expressions (24)-
(26), (34)-(36) can be reduced to the corresponding results
in Ref. [12]. In particular, ifb = a andλ → 0, d → 0,
the contribution of untrapped andt-trapped particles to the
parallel permittivity elements are

c

εm,m′

‖,u =
2ω2

Lρ2√κo(1 + ε)
π3 h2

θ v2
T (1− epsilon)

±∞∑
p

∫ 1

0

Π(κo, κ, π/2) Am
p Am′

p

(p + nq)2(κo + κ)1.5

[
1 + 2u2

p + 2i
√

πu3
pW (up)

]
dκ, (57)

εm,m′

‖,t =
4ω2

Lρ2√κo(1 + ε)
π3 h2

θ v2
T (1− ε)

∞∑
p=1

∫ 1

0

Π(κoκ̂, κ̂, π/2)Bm
p Bm′

p

p2 (1 + κoκ̂)1.5

[
1 + 2v2

p + 2i
√

πv3
pW (vp)

]
dκ̂, (58)

where

Am
p (κ) =

∫ π

0

cos
[
(m + nq) η − π (p + nq)

Π(κo, κ, η/2)
Π(κo, κ, π/2)

]
dη, (59)

Bm
p (κ̂) =

∫ θt

0

cos


(m + nq) η − πp

Π(κoκ̂, κ̂, arcsin(
√

1
κ̂ sin η

2 )

2 Π(κoκ̂, κ̂, π/2)


 dη +

+(−1)p−1

∫ θt

0

cos


(m + nq) η + πp

Π(κoκ̂, κ̂, arcsin(
√

1
κ̂ sin η

2 )

2 Π(κoκ̂, κ̂, π/2)


 dη, (60)

κo =
2ε

1− ε
, κ =

2εµ

(1− ε)(1 + ε− µ)
, κ̂ =

1
κ

, (61)

θt(κ̂) = 2 arcsin(
√

κ̂), Π (κo, κ, η) =
∫ η

0

dα

(1 + κo sin2 α)
√

1− κ sin2 α
, (62)

up(κ) =
ωρ

√
2(1 + ε)(κo + κ)

|p + nq| πhθ vT
√

ε
Π

(
κo, κ,

π

2

)
, (63)

vp(κ̂) =
2ωρ

√
2(1 + ε)(1 + κoκ̂)

p π hθ vT
√

ε
Π

(
κoκ̂, κ̂,

π

2

)
. (64)

d

Introduction of the third kind elliptic integrals,Π(α, β, γ),
instead of theτ(θ) variable and the bounce periods of un-
trapped and trapped particles, is convenient for computati-

ons since the complete and incomplete elliptic integrals can
be used as the standard elementary functions in such advan-
ced mathematical programs as Mathematica, Mathcad and
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Maple. In particular, for the untrapped particles as follows
from Eqs. (49, 50) ifa = b

τ(θ̄) =

√
2(κo + κ)
ε(1− ε)

Π
(

κo, κ,
θ̄

2

)
. (65)

Moreover, the phase coefficientsAm
p andBm

p can also
be calculated by using the Jacobi elliptic functions. In parti-
cular, after introducing the new variablew(κ, θ) as the first
kind incomplete elliptic integral

w(κ, θ) =
∫ θ

0

dη√
1− κ sin2 η

, (66)

the so-calledw-amplitude function is defined as the inverse
transformation, i.e.,θ = am(κ,w), and the Jacobi elliptic
functions are

sn(κ,w) = sin(θ) = sin(am(κ,w)), (67)

cn(κ,w) = cos(θ) = cos(am(κ,w)), (68)

dn(κ,w) =
√

1− κ sin2(θ) =
√

1− κsn2(κ,w). (69)

As a result,Am
p andBm

p can be rewritten as

c

Am
p (κ) =

∫ K(κ)

−K(κ)

cos

[
(m + nq)am(κ, w)− π (p + nq)

Π̂(κo, κ, η/2)
Π̂(κo, κ, π/2)

]
dn(κ,w)dw, (70)

Bm
p (κ) =

√
κ

∫ 2K(κ)

−2K(κ)

cos
[
(m + nq) arcsin(

√
κsn(κ, w))− p

0.5πΠ(κoκ, κ, w)
Π(κoκ, κ, K(κ))

]
cn(κ,w)dw (71)

where

d

K(κ) =
∫ π/2

0

dη√
1− κ sin2 η

,

Π̂ (κo, κ, w) =
∫ w

0

du

(1 + κosn2(κ, u)
(72)

and the new variablesw have been introduced instead of the
poloidal anglēθ as

w(κ, θ̄) =
∫ θ̄/2

0

dη√
1− κ sin2 η

(73)

for the untrapped particles, and

w(κ, θ̄) =
∫ arcsin(

√
1/κ̂ sin(θ̄/2))

0

dη√
1− κ̂ sin2 η

(74)

for the t-trapped particles. It should be noted that the um-
bral ’hat’-symbol is omitted in Eq. (71) and can be omitted
as well in Eqs. (58, 60). The imaginary parts of the paral-
lel permittivity elementsεm,m′

‖,u andεm,m′

‖,t , Eqs. (57, 58), for
radio-frequency waves in a toroidal plasma with the TCABR
tokamak parameters, was analyzed numerically in Ref. [20].

6 Conclusion

The parallel permittivity elements, Eqs. (28-30), have been
derived for radio-frequency waves by solving the drift-
kinetic equation for untrapped,t-trapped andd-trapped par-
ticles in an axisymmetric toroidal plasma with D-shaped

magnetic surfaces and arbitrary aspect ratio, arbitrary elon-
gation and small triangularity. These dielectric charac-
teristics are expressed by the summation of the bounce-
resonant terms, which include the double integration in ve-
locity space, the phase coefficients, the standard elementary
and quasi-elliptic functions. It is shown that analytical Lan-
dau integration can be carried out by introducing the plasma
dispersion function, or the probability integral of complex
argument.

The imaginary parts of the parallel permittivity ele-
ments, Eqs. (39-41), are important to estimate the wave
power absorbed by electron Landau damping (e.g., during
the plasma heating and current drive generation) in the fre-
quency range much less than the ion cyclotron frequency.
The dissipated wave power is expressed, Eq. (38), by the
summation of terms including the separate contributions of
untrapped,t-trapped andd-trapped particles to the imagi-
nary parts of both the diagonal and non-diagonal elements
of the dielectric permittivity. The parallel permittivity ele-
ments evaluated in the paper are suitable for both the large
(ε << 1) and low (ε < 1) aspect ratio D-shaped tokamaks
and valid in a wide range of wave frequencies, mode num-
bers, and plasma parameters. The expressions (28-30) and
(39-41) have a natural limit to the corresponding results for
toroidal plasmas with elliptic magnetic surfaces ifd = 0,
and with circular magnetic surfaces ifb = a or λ → 0.
Since the drift-kinetic equation is solved as a boundary-
value problem, the parallel permittivity elements (28-30, 57,
58) can be applied to study the wave processes with a regu-
lar frequency such as the wave propagation and wave dissi-
pation during the plasma heating and current drive genera-
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tion, when the wave frequency is specified by the antenna-
generator system. Of course, the best application of our die-
lectric characteristics is to develop a numerical code to solve
the two-dimensional Maxwell’s equations in elongated D-
shaped tokamaks for electromagnetic fields in the frequency
range of Alfv́en and fast magnetosonic waves. On the other
hand, they can be analyzed independently of the solution of
Maxwell’s equations.

Note that in analyzing the collisionless wave dissipation
by plasma electrons in D-shaped tokamaks one should also
take into account other kinetic mechanisms of the wave-
particle interactions, such as the TTMP (Transit Time Mag-
netic Pumping) and/or the cyclotron resonance damping.
The corresponding information about these Cherenkov-
resonance wave-particle interactions is included in the trans-
verse and cross-off dielectric permittivity elements. Thus,
to describe these effects in our two-dimensional plasma mo-
dels all the nine dielectric tensor components should be de-
rived accounting for the finitebeta and finite Larmor radius
corrections. However, this is a topic of additional investiga-
tion.
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