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Parallel permittivity elements are derived for radio-frequency waves in an axisymmetric tokamak with D-shaped
transverse cross-sections of the magnetic surfaces under arbitrary aspect ratio, arbitrary elongation and small
triangularity. The bounce resonances are taken into account for untrapped (passing or circulating) and three
groups of trapped particles. The corresponding limits for the simpler plasma models are considered. Our di-
electric characteristics are suitable to estimate the wave dissipation by electron Landau damping during the
plasma heating and current drive generation in the frequency range @nadfvd fast magnetosonic waves, for

both the large and low aspect ratio tokamaks with circular, elliptic and D-shaped magnetic surfaces. The dissi-
pated wave power is expressed by the summation of terms including the imaginary parts of both the diagonal
and non-diagonal elements of the parallel permittivity.

1 Introduction dependence on the pitch angle the plasma particles shoulc
be split in the two populations of the so-called trapped (ha-

As is well known, tokamaks represent a promising route to ving the stop-points, where their parallel velocity is equal

magnetic thermonuclear fusion. In order to achieve the bur- E?Gie;?gﬁﬂd g}ﬁnung,aepgegiﬁgrnﬁ?nssrﬁgg’ncgﬁ%'rﬁg:gtfi?,ge) Vﬁ’/ﬁﬁ"
ning conditions in these devices additional plasma heating 9 9 q 9

X . large modulated parallel velocity. Since the trajectories
must be employed. Effective schemes of heating and curren . .
S . . ; . of the trapped and untrapped particles are different, the Vla-
drive in magnetized plasmas can be realized using the colli-

sionless dissipation of radio-frequency waves (e.g., &itv sov equation should be resolved separately for each particles

fast magnetosonic and lower hybrid waves) by electron Lan-9roup- As a result, the trapped and untrapped particles give

; e - . different contributions to the dielectric tensor elements; the
dau damping, transit time magnetic pumping (TTMP), cy- Cherenkov-resonance conditions of an effective interaction
clotron and bounce wave-particle interactions etc. Usually,

these aspects of the kinetic wave theory are studied by soI—Of the trapped and untrapped particles are different, and, ac-

ving the Vlasov-Maxwell's equations. However, for toka- cordlngly, the wave dissipation by the_trapped and untrap-
maks, this problem is not simple since to solve the differen- ped pqrtlcles (mainly, electrons) are different dependmg. of
tial wave equations we should use the complicated integraltr;eﬂ:at'o ?f the v&/ave tphlas/e ;/eI?cny to tge ]Erlﬁrmalty elc;c;:]y

dielectric characteristics valid in the given frequency range of Ihe untrapped particles/electrons and ot the ratio ot the
for realistic two- or three-dimensional plasma models. The wave frequency to the bo_unce frequency of the_trapped par-
form of the dielectric tensor components,, depends subs- ticles. One of the interesting features of the toroidal plasmas

tantially on the geometry of an equilibrium magnetic field |s|éhe Cﬁnmblﬁt'ﬁn [5’6].0f 6}” Lhe spect[)urg ofthe eltcajctng f"_
and, accordingly, on the chosen geometrical coordinates. € _;Ot emt iooar”ryrlgbr/ucfg the perturbed current density:
Nonetheless, for the large aspect ratio tokamaks (Where477ji J0= 2 e B

the inverse aspect ratio is a small parameigR, << 1), All these features of the large aspect ratio tokamak take
the kinetic wave theory is developed quite fully, see, for place in low aspect ratio toroidal plasmas (see, e.g., Refs.
example Refs. [1-9] and the bibliography therein. Using [10-12] for tokamaks with circular transverse cross-sections
the averaged (over magnetic surface const,i.e.,overthe  of the magnetic surfaces). In both the large and low aspect
poloidal angle?) expressions fot;;. it was possible [2,3,8,9]  ratio tokamaks with circular magnetic surfaces, the equili-
to perform a general analysis of the dispersion characteris-brium magnetic field has only one minimum (or three extre-
tics of the magnetohydrodynamic waves and to estimate themums, with respect to the poloidal angle) in an equatorial
damping rates of the Al&n and fast magnetosonic waves plane at the external part of the magnetic surfaces. Accor-
in various limiting cases. The specific toroidal effects are dingly, in such plasma models there is only one group of
connected with the fact that in tokamaks (in contrast to a trapped particles. The main feature of a toroidal plasma
cylindrical plasma confined in the straight or helical magne- with elliptic magnetic surfaces is the fact (see, e.g., Refs.
tic field) the parallel velocity of plasma particles (along the [13-16]) that the equilibrium magnetic field, in the general
equilibrium magnetic field lines) is not constant, i.e., is mo- case, can have two local minimums (or five extremums, with
dulated depending ofi for the givenp. Moreover, in their respect td ). As a result, together with the untrapped and
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usualt-trapped particles, two additional groups of the so- surface. Thus, the modulé = |H| of an equilibrium mag-
calledd-trapped (or double-trapped) particles can appear atnetic field is
such magnetic surfaces ifiwhere the corresponding criterion

is satisfied:p/ Ry < h3 (b?/a® — 1); hereb/a characterizes H2, + H3,
the elongation, andy is the poloidal component of the unit H(r,0)= +—— 4)
vector along the equilibrium magnetic field. 9(p,9)
Many present-day tokamaks, in particular the spheri- h
cal ones, have the D-shaped transverse cross-sections oynere
the magnetic surfaces. In this paper, the parallel dielectric 14 ecosf — Sesin2 0
permittivity elements are derived for radio-frequency wa- g(p,0) = ,
ves in an axisymmetric toroidal collisionless plasma with \/1 + Acos?  + 46h% cos O sin® 0
D-shaped magnetic surfaces under arbitrary aspect ratio, ar- P
bitrary elongation, and small triangularity. The drift-kinetic €= R
equation is solved separately for untrapped and three groups dp
of trapped particles as a boundary-value problem, using an b= =,
approach developed for low aspect ratio tokamaks with cir- a 9
cular [12], elliptic [16] and D-shaped [17] magnetic surfa- A = hl (b _ 1> ,
ces. The limits for the more simple plasma models are con- a?
sidered. hy — Hyg (5)

2 Plasma model and Drift-Kinetic
In this model, all magnetic surfaces are similar to each other

equatlon with the same elongation equal &da; the triangularity is

To describ i tric D-shaped tokamak theomalld/a << L
0 describe an axisymmetric b-shaped tokamak We USE e, o e the linearized drift-kinetic equation for the per-

gﬁiz:(t)?]rg;dgl ;o%r)d;r;itle%(ﬁ, ¢) connected withthe cylin- 1oy distribution functions,

f(t,e,v) = f(p,0,v),v1) exp(—iwt +ing), (6)

dp?
R = R 0 — —-sin 0 1 - .
0t pcos oz o @) we use the standard method of switching to new variables
¢ = o, associated with conservation integrals of enev@yr vi =
7 7§p8m9’ @) const , and magnetic momgnt;i/QH = const . In-
a troducing the variables (particle energy) ang (squared

whereR, is the radius of the magnetic axisandb are, res-  Pitch angle or non-dimensional magnetic moment) in velo-
pectively, the minor and major semiaxes of the cross-sectionCity space instead of the paralle|, , and perpendiculat;

of the external magnetic surface. In the {)-coordinates, . components of the particle velocity:
the initial D-shaped cross-sections are transformed to the )
circles with the corresponding radipsn 0 < p < a; and 2 _ 2 2 _ v
the cylindrical components of an equilibrium magnetic field Y UL K vﬁ + vig(p ) )
H are
Ro the drift-kinetic equation for harmonicg§,
H¢ = H¢0E,
Ry . d 2 f(P»QaUH;’UL) = fs(paevvvﬂ)a (8)
Hp = HgoRosmG(l—&—cgcosH), 821
H, = Hgobﬁ cos . (3) in the zeroth order over the magnetization parameter, after
a averaging over the gyrophase angle in velocity space, can be

Here Hyo and Hyo are, respectively, the toroidal and poloi- reduced to the first order differential equation with respect
dal magnetic field amplitudes at the given (Bymagnetic to poloidal angl&:

J
1+)\00829+45h3005051n20 80 1+ ecosf — desin? 6
EF

vhe T hg 9(p,0)’
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where guish the perturbed distribution functiong, with positive
9 and negative values of the parallel (relativeHpvelocity,
N v 2T
F=——expl|——F), vr=1/-— (10)
7-‘-1.51]3 ,02

M )

T T o
= 1———. 11
E) = E - his the parallel th=H/H perturbed electric field U= s \ g(p,0) (11)
component; the steady-state distribution functiois given
as a Maxwellian with the particle densily, temperaturé’, After solving Eq. (9), the contribution of the unspeci-
chargee and mass\/. The index of particle species (ions fied kind of particles to the parallel (td) component of the
and electrons) is omitted in Eq. (9). By= +1 we distin- perturbed current densityy = j - h, can be expressed as
|
o (p,0)
) e 3 [
ap,0) = —= 5/ v / fs(p, 0,0, p)dpdv, (12)
10:9) 9(p.0) S:Zi:l 0 0 ( )

where the perturbed distribution function is integrated over all the phase volume of plasma particles in velocity space.

In this paper we solve Eq. (9) in the case when untrapped and three groups of trapped particles can exist in the D-st
elongated tokamak. In this case, analyzing the conditigfig, #) = 0, the phase volume of plasma particles should be split
in the phase volumes of untrappedrapped and two groups of thiktrapped particles by the following inequalities:

0 << piy —r<O6<mw — for untrapped particles (13)
P < i< pg -0, <0<6, — for t-trapped particles (14)
e < pn < g -0, <0< -0 — ford-trapped particles (15)
e < < pg 0, <0<0, — for d-trapped patrticles (16)

where the reflection points and forandd-trapped particles  particles (respectivelyt?, f¢ and %) as
can be defined by solving the equatigfp, ) = u. The N
= 7(9)

parameterg.,,, 11;, anduy are defined as u u .
fr=> "t exp |i2n(p + ng) T

p u

— inqﬁ_(@)] , (18)

+oo
1—e¢ t t { T . }

u - 7:l: == 9 S - s 2 - b 6 9 3 19

me = o = S 1= 2 e 2 i) 19)
]. + € +

- ,0) = , 0 _ _
it 1(p,0) T fé= Zfip exp {igﬂpT(e)TT(ed) _ mqg(g)] . (20)
pa = p(p, Ebmin), (17) P ¢

wherep is the number of the bounce resonances;

where+#,,;, are the poloidal angles where the equilibrium
magnetic field has two possible minimums satisfying the L e+0(1-V1-€) /9 1 +ecosn—edsin®p
0

T n
glpsm/1 = p/g(psn)
(21)

equationdg(p, 8)/d6 = 0. It should be noted, that recen- - V/I—e
tly the more general case, when the additional so-cajled

trapped particles can exist in the D-shaped tokamak, wasis the new time-like variable (instead of the poloidal angle
considered in Ref. [17]. However, under the usual tokamak ) to describe the bounce-periodic motion of untrapped,
conditions (small triangularity << a and moderate elon-  andd-trapped particles along the magnetic field line with the

gationb/a < 2.5) these particles are absent in the plasma corresponding bounce periods proportional, respectively, to
volume.

T, = 27(7), T, = 47(0;), T, = 2(7(6;) — 7(04)); (22
The solution of Eg. (9) should be found by the speci- m(m, T (%) (r(6r) =7(0a); (22)

fic boundary conditions of the untrapped and trapped parti-

cles. For untrapped particles, we use the periodicityof ao) — 2(e + ) arct \Ft 0
over . Whe_reas,_ the boun(_JIar_y condition for theandd_— 0 = e+o(1—VIi-e) 9l V1 Te 95
trapped particles is the continuity @f at the corresponding
stop-points+6, and+6,. As a result, we seek the pertur- _ SVl —¢é < __esinf ) (23)
bed distribution functions of the untrappedandd-trapped e+0 (1 —V1- 62) 1+ ecosf
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is the new poloidal angle where the magnetic field lines are o
straight; and = Z E[" (p) explim/6(0)]. (26)

Eh (5 ’
g= —=2— (14~ (1 - \/@) (24) As a result, the whole spectrum of electric field]* by
hov'1 — €2 € . . . . "
> .0 IS present in the givem-th harmonlcjﬁ” of the cur-
is the tokamak safety factor. The Fourier harmonf¢s, rent density:

f;p and fgp for untrappedi- andd-trapped particles can be
readily derived after the corresponding bounce-averaging.

47 =
= ;en ’
3 Collisionless wave dissipation

To evaluate the dielectric tensor elements we use the Fourier = E ( L g em ) E™ 27)
; . o €llu Il . I.d I

expansions of the perturbed current density and electric field

over the poloidal anglé:

m7m m,m

/ - B
whereeH i a”dfuéz are the separate contributions

9(0 25 of u_ntrappedt trapped ar)dl-trappeq .particles to the Iongi-.
@ Z]” p) explimb(9)], (25) tudinal (parallel) dielectric permittivity elements, respecti-
vely. Here we have taken into account that the two groups

By(0) (1+ ecosf — edsin’ )2 of thed-trapped particles are symmetric in the phase volume
I g(p,0) and give the same Contributionet?’m . As aresult, the ele-
| mentSeH M mm ﬁ"dm can be expressed as
m,m _ wL/O o Am m
€I = 2minzE zp:/ Bt e’ nq 1+ 20l + 2iv/mud W (uy) ] dp, (28)
m,m’ wLp = e Tt 2 . 3
i = 72ﬂ_3hsz Z/ —B"‘Bm [1 4 202 + 2i/7T W (v,)] dps, (29)
P
m,m wLp2 = - Td m ~m’ m ym 2 - 3
eH’d = 7r3h2 5 C’ C)' +D,'Dy ) (14 2z + 2i/mz) W (2p)] dp, (30)
where the following definitions are used:
4 Ne? wpV1 —€e27( 1)
7= = - - 1 V1—e 31
“EL M p = ‘holp + nglorm nq|vT7T < € ¢ ) (31)
b — 2wpv1 — €27(6;) Y = pv1-— 62[ (0:) — 7(0a)] (32)
b hgva7r(1—|—g(1—\/@))7 b hngTﬂ'(l—Fg( —vV1—c¢ ))
V1 — ¢ ™ cos [(m +nq)0(n) — (p+ ma)r ]
AT = / . dn, (33)
e+d(1-vV1—¢) Jo 1+ ecosn — edsin? 7
o _ ev/1 — €2 /Gt cos {(m + RQ)é(n) - p;:—((e'z))} J (34)
P ( 1—62) 0 1+€cosn—e§sin2n T
B = A;” + (—1)p—1B["‘p, W(z) = exp(—=z [1 + —/ exp(t dt] (35)
- Vi—e& 0. sin [(m + nq)d(n)] cos [pﬂ%]
oy = dn, (36)
e+6(1-vV1—¢€) Jo, 1+ ecosn — edsin®n
. /1 —e2 0, sin [(m + ng)f(n)] sin {pwif(((z))::((%‘;))}
Dy = —5 dn. (37)
e+6(1—-vV1—e) Jo, 1+ €ecosn —edsin’n
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Note that the Egs. (28-30) describe the contribution ons,W (u,), W (v,) andW (z,). It should be noted that the
of any kind of untrapped and trapped particles to the die- drift-kinetic equation, Eq. (9), and the dielectric characte-
lectric tensor elements. The corresponding expressions foristics, Egs. (28-30), are derived neglecting the drift effects
plasma electrons and ions can be obtained from (28-30) re-and the finite particle-orbit widths. These effects (as well
placingT, N, M, e by the electronT,, N., m., e. and ion as the finite pressure and Larmor radius corrections) can be
T;, N;, M;, e; parameters, respectively. To obtain the total accounted for in the next order(s) of perturbations over the
expressions of the permittivity elements, as usual, it is ne- magnetization parameter. The expressions (28-30) have ¢
cessary to sum over all species of plasma particles. Thenatural limit to the corresponding results for tokamaks with
same comments should be addressed to calculate the corelliptic magnetic surfaces (section IV)df= 0, and circular
tribution of ions and electrons to the total current density magnetic surfaces (section V)lif= ¢ and\ — 0.
components using Eq. (12).

As an |mportant feature of the permittivity elements, Our dielectric characteristics can be applied for both
Egs. (28 30), is the fact that, since the phase coefficientslarge and low aspect ratio tokamaks with D-shaped mag-
ALY, , Cpr and D" are independent of the wave fre- netic surfaces to study the wave processes with a regular

quencyw and the particle energy, the analytical Landau ~ frequency such as the wave propagation and wave dissipa
integration of the perturbed distribution functions of both the tion during the plasma heating and current drive generation;
trapped and untrapped particles in velocity space is possiblewhen the wave frequency is specified, e.g., by the antenna-
As a result, the parallel permittivity elements are written by generator parameters. As was mentioned above, one of the
the summation of bounce-resonant terms including the well main mechanisms of the radio-frequency plasma heating is
known plasma dispersion functidii (z), i.e, by the proba-  the electron Landau damping of radio-frequency waves due
bility integral of complex argument, Eq. (35). After this, the 1o the Cherenkov-resonance interactiortgfwith the trap-
numerical estimations of both the real and imaginary parts ped and untrapped electrons. As a result, after averaging in
of the parallel permittivity elements become simpler, and time and poloidal angle, the wave power absorbed due to the
their dependence on the wave frequency is defined only bytrapped and untrapped electrols= Re(E) - jj) , can be

the arguments,,, v, andz, of the plasma dispersion functi-  estimated by the expression

]
w +oo oo , , ,
=) (|meH’;L +Ime™™ + Ime]™ ) {ReEH ReE[” + ImE["ImE]" (38)
where In‘cH ImeH ) and Irrtl"” dm are, respectively, the contributions of untrappey {- andd-trapped electrons to the
imaginary part of the paraIIeI permittivity elements:
WLP Hu T AmAm 5
ImeH u T g2 5h2 2 Z/ (p + 1q) p pexp( )d,lh (39)
imer = L TthBm ; d 40
e = e Z vp exp (—vp) di, (40)
m,m’ 2wLp e Td m ym’ m ym’ 3 2
Ime) 4 ) T25hZu2, Z/# C Cp' +Dp' Dy ) #, exp (—2,) dp. (41)

Thus, we see that for the same wave frequaenagnd genmodes [18] (TAES), describing the coupling of only two
the same electric field amplitudes the wave power absorbedharmonics withn, andm, — 1, the terms withm,, m, — 1
P = P, + P, + P, is defined by the different contributi- should be accounted for in Eq. (38) to estimate the TAEs
ons of the untrapped;trapped, andi-trapped electrons to  absorption by the trapped and untrapped electrons. As a re-
the imaginary part of the parallel permittivity elements, Egs. sult, the dissipated power of TAEs by the electron Landau

(38-41). damping is expressed as
In the simplest case of Toroidicity-induced Aém Ei-
]
w <
_ 2 Meo,Mo—1 me me—1 me me—1
Pl=o > ImeIERE + Sime] (Rez"Remj> " + ImEImE ") (42)

m=m,—1
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where|Em 2 _ ReE” |mEﬁn) is the squared mo- Tagn)etic surfaces whete= a, A = 0 and, accordingly,
< €).

dule of them th electric field harmonic. Of course, our die- Th ¢ tributi f unt aelr d and
lectric characteristics in Egs. (28-30) and Egs. (39-41), can € separate contribution of untrappeelyapped an
d- trapped pamcles to the parallel permittivity elements

be applied as well to study, e.g., the excitation/dissipation = "" .
of the Ellipticity-induced Alf\én Eigenmodes [19] (EAEs) (| - €i  ande’y ") can be described by Egs. (28-

in elongated tokamaks when thex{ + 2)-harmonics of ~ 30), where using the Timit — 0, the phase coefficients and
the electric field and the permittivity elementsd MoE2 the arguments of the plasma dispersion functions should be

rewritten as

Mo, MoE2 ’mo,'rnoi2

It
that the non- dlagonal elemenst are characteristic of .

a toroidal plasma model. For the one-mode (cylindrical) ap- Am :/ cos [(eran)T] (p+ng)m 7(n )} iy, (45)
proximations, Whenn = m = m,, the non-diagonal ele- 0 ()

ments vanish, i.e. Vo \m;ém, = 0, and Egs. (38) and

(42) can be reduced to the well-known expression

Ime , and Irre should be involved. Note

!
,m

o (1)
w Bm:/ cos[m—i—n —TFTn}d—&-
P = g Ime" " || (43) " a1 = Por gy )
On the other hand, the diagonal parallel permittivity ele- . 0: w7 (n)
ment (as well as other dielectric tensor components, res- +(—1)" A cos {(m +nq)n +p27(9t)} dn, (46)

pectively) corresponds to the parallel dielectric permittivity
averaged over the magnetic surface and can be used to esti-
mate the damping rates of the radio-frequency waves with O

the help of the dispersion relations (or the eikonal equa- “» :/9 sin [(m + ng)n] cos p”m dn,
tions) as was made in Refs. [2,3,8] for individual modes ¢ i ' (47)
~ exp [i ([ kpdp + mb + ng — wt)] in alarge aspect ratio
tokamak Wlth concentric circular magnetic surfaces.

0, - B q
Dyt = / sin [(m + ng)n] sin |pm 77——((;7)) 77'—((99(1)) dn,
4 Tokamak with elliptic magnetic a - “ s
surfaces
In this section, let us consider a tokamak plasma model with (8) = /9 (1—€>)G(p,n) dn (49)
elliptic magnetic surfaces. As in a D-shaped tokamak, in the o (1—ecosn)?\/1—puG(p,n) ’

general case, the module of the equilibrium magnetic field,
H(p, ), can have two local minimums with respect to the
poloidal angled. In this case, the existence criterion of the ~ 1 V(1 —€ecos0)2 + (e — cos 0)2
d-trapped particles can be rewritten as Glp.0) = - ’

g(pae) 1— e
(50)
b 1—¢€2
€< A or —>/14+e+q¢2——. (44)
a €

Otherwise, ife > A, the equilibrium magnetic field has only () = 2arctg [,/ 1= tg ( arctg( tga))] ,  (51)
one minimum and thd-trapped particles are absent at the 1+
given magnetic surface (as it is in tokamaks with circular

]

0. — arccos eI+  |e@+r) 1
b A+ €2 A+e2)2 A+e

1+62A—(1;€2ﬂ}, (52)
1+62/\—(1;€2>2]}7 (53)

1 2(1 2 1
Gd:arccos{e( +/\)+J€( +2) —

A+ €2 (A +€2)? A+ €2
Tu = 2T(7T'), Tt = 47—(9t)7 Tu = Z(T(et) - T(ed))7 (54)
1—c¢ 1+e¢ €2
My = ) Mt = ) Ha = 1+ N (55)

14+
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wpV1 — 2T, wpV1 — 2T, wpV1 — 2Ty
Up = ——————, Vp = ————, Zp = —————. (56)
2mhg|p + nglor 2whgpur 2whgpur

The more detailed evaluation of thﬁb i ’lﬁm and nitions) can be simplified substantially because the 6)
H o " dielectric tensor elements in a tokamak with elliptic f;rictdlrc;ns for Lhe trgppegtandtrl:nttr;pg)iq garl':!cltes: stee Elqs.
magnetic surfaces has been done in Ref. [16]. ( , 49), can be re uce 0 1) the third kin eliplic Integra’s
in low (e < 1) aspect ratio tokamaks [12], or ii) the first kind
elliptic integrals in larged << 1) aspect ratio tokamaks

5 Tokamak with circular mag netic [9] As was mentioned above, tliktrapped particles are ab-
sent in a tokamak with circular magnetic surfaces, therefore

surfaces I’lndm = 0. As aresult, in tokamaks with circular magnetic

Note that Egs. (28-37) have been written in the quite gene-SUTfaces, €.g., such as TCABR (Tokamak Chauffageghifv

ral form where the ellipticity and triangularity are accounted Brésilien) at the &o Paulo University, the expressions (24)-
for implicitly by the functions\(p), ¢(p, §) andr(p, §). As (26), (34)-(36) can be reduced to the corresponding results

for tokamaks with circular magnetic surfaces, whére 0 m Ref. t[:'LbZ]t' In p:lrtlctular 'fg _rle;l and)a - (t) Id _t) Oth
and\ = 0, the expressm ’ ande (as well as the € contribution ot untrapped artdrapped particies fo the

corresponding phase coefhmenzﬂg‘ }a’;,” and other defi- parallel permittivity elements are

771, m, m

]
mom! QWLP \/>1+e 1H Iio,lﬁ 7T/2 AmAm 9 ) 3
€l 3 h2 (1 — epsilon) Z/ (p 4+ nq)?(ko + )1 5 [ +2u, + Z‘/EUPW(UP)] dk, (87)
mom! 4w? p? \/% (1+e€ Holi R,m/2) B’”Bm ) .
. e Z/ DT mA)is Lt 20 + 20T W (w,)] df, (58)
where
" (Ko, k,1/2)
A (k) = 3 - _—
p (F) /0 cos {(m +ng)n—m(p+ng) Mo, 7/2) dn, (59)
X 0 (kok, R, arcsin(\/%sin 7)
By (k) = /o cos | (m+ng)n—mp S T(roi o /2) dn +
L[ (kok, Kk, arcsin(\/%sin 2)
_1)P- i
+(—-1) /0 cos |(m+ng)n+mp S T (roho, 7 7/2) dn, (60)
2¢ 2€elL 1
= = A = - 1
fo= 1 ¢ " (1—e)(1+e—p)’ A (61)
. . - 1 da
0,(<) = 2arcsin(V7), I (Ko, K,m) = , (62)
0 (14 kosin?a)y/1— rsin®«
wp/2(1 + €) (ko + k) ™
= H —_
ul)(’i) |p 4 nq‘ 7Th9 UT\/E ("@)7 R, 2) ) (63)
. 2wp/2(1 + €)(1 + Kok) LT
= II —. 4
UP(KJ> P hg vr \/E (K/OH7 R, 2) (6 )
|
Introduction of the third kind elliptic integrald](«, 3, 7), ons since the complete and incomplete elliptic integrals can

instead of ther(6) variable and the bounce periods of un- be used as the standard elementary functions in such advan
trapped and trapped particles, is convenient for computati-ced mathematical programs as Mathematica, Mathcad anc
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Maple. In particular, for the untrapped particles as follows the so-calledv-amplitude function is defined as the inverse

from Egs. (49, 50) i = b transformation, i.e.¢§ = am(x,w), and the Jacobi elliptic
~ functions are
_ 2(ko + K) 0
=4 ——7—II — .
w0 =t (). 69
- . sn(k, w) = sin(f) = sin(am(k, w)), (67)
Moreover, the phase coefficientg] and B;* can also en(s, w) = cos(6) = cos(am(x, w)), (68)

be calculated by using the Jacobi elliptic functions. In parti-

cular, after introducing the new variablg, 6) as the first dn(s, w) = /1 — ksin?(0) = /1 — ksr®(k, w). (69)

kind incomplete elliptic integral

-0
d .
w(k,0) = / 777, (66) As aresult, A" and B can be rewritten as
01— rksin?y
]
K(x) 11 2
AY (k) = / cos | (m + ng)am(k, w) — 7 (p + nq) M dn(k, w)dw, (70)
—K (k) (o, k,m/2)
2K () 0.571I
B (k) = \/E/_QK(K) cos {(m + ngq) arcsin(y/kSN(k, w)) — p H(ZO,{(’H;Z’:(:;)))} cn(k, w)dw (71)
where
|
magnetic surfaces and arbitrary aspect ratio, arbitrary elon-
) gation and small triangularity. These dielectric charac-
i dn teristics are expr d by th ti f the b -
K(k) = ’ pressed by the summation of the bounce
Jo /1 —ksin®n resonant terms, which include the double integration in ve-
. w du locity space, the phase coefficients, the standard elementary
I (Ko, ki, w) = /0 (1+ roSTP(k, 1) (72) and quasi-elliptic functions. It is shown that analytical Lan-

dau integration can be carried out by introducing the plasma
and the new variables have been introduced instead of the dispersion function, or the probability integral of complex

poloidal angle) as argument.
_ 0/2 dn The imaginary parts of the parallel permittivity ele-
w(r,0) = o m (73) ments, Egs. (39-41), are important to estimate the wave
" power absorbed by electron Landau damping (e.g., during
for the untrapped particles, and the plasma heating and current drive generation) in the fre-
quency range much less than the ion cyclotron frequency.
(5.9) /arcsin<\/1/'%sin(§/2)> dn (74 The dissipated wave power is expressed, Eq. (38), by the
w(k,G) = X i . o
o T ksinn summation of terms including the separate contributions of

untrappedt-trapped andi-trapped particles to the imagi-

for the t-trapped particles. It should be noted that the um- nary parts of both the diagonal and non-diagonal elements
bral "hat'-symbol is omitted in Eq. (71) and can be omitted Of the dielectric permittivity. The parallel permittivity ele-
as well in Egs. (58, 60). The imaginary parts of the paral- ments evaluated in the paper are suitable for both the large
lel permittivity elements "™ andemt”"/, Egs. (57,58), for (¢ << 1)andlow ¢ < 1) aspect ratio D-shaped tokamaks
radio-frequency waves in a toroidal plasma with the TCABR @nd valid in a wide range of wave frequencies, mode num-

tokamak parameters, was analyzed numerically in Ref. [20]. P€rS, and plasma parameters. The expressions (28-30) and
(89-41) have a natural limit to the corresponding results for

toroidal plasmas with elliptic magnetic surfaceslif= 0,
6 Conclusion and with circular magnetic surfacestif= a or A\ — 0.
Since the drift-kinetic equation is solved as a boundary-
The parallel permittivity elements, Egs. (28-30), have been value problem, the parallel permittivity elements (28-30, 57,
derived for radio-frequency waves by solving the drift- 58) can be applied to study the wave processes with a regu-
kinetic equation for untrappetttrapped andi-trapped par-  lar frequency such as the wave propagation and wave dissi-
ticles in an axisymmetric toroidal plasma with D-shaped pation during the plasma heating and current drive genera-
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