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We review the effect of finite amplitude circularly polarized waves on the behavior of linear ion-beam plasma
instabilities. It has been shown that left-hand polarized waves can stabilize linear right-handed instabilities [1].
It has also been shown that for beam velocities capable of destabilizing left-handed waves, left-hand polarized
large amplitude waves can also stabilize these waves. On the other hand, when the large amplitude wave is
right-hand polarized, they can either stabilize or destabilize right-handed instabilities depending on the wave
frequency and beam speed [2]. Finally, we show that the presence of large amplitude left-hand polarized waves
can also trigger electrostatic ion-acoustic instabilities by forcing the phase velocities of two ion acoutic waves
to become equal, above a threshold amplitude value.

1 Introduction

The nonlinear stability of finite amplitude circularly polari-
zed electromagnetic waves in ion beam-plasma systems has
been thoroughly studied through the years [3, 4] because of
its importance in several space plasma environments and la-
boratory plasmas [3, 4, 5, 6, 7, 8]. Parametric wave-wave
interactions of circularly polarized electromagnetic waves
in a plasma involving alpha particles drifting relative to the
proton, have been studied by [9, 10, 11]. Their nonlinear
evolution has also been studied by using drift kinetic effects
[12] and hybrid computer simulation techniques[13]. Stu-
dies have been carried out by [14, 15, 16], including the ef-
fects of dissipation and of the beam drift speed. The effect
and the evolution of the beam for right and left handed pola-
rized waves, have also been studied by using simulation ex-
periments [17]. These studies have considered linearly sta-
ble systems[9, 10, 14, 15, 16]. Proton beams observed in the
solar wind display large drift velocities which can be larger
than the necessary velocity to generate a linear beam-plasma
instability [18]. In [1], it was found that the behavior of li-
near electromagnetic right-handed polarized instabilities (r-
instabilities) in a beam-plasma system can be affected by the
presence of a finite amplitude left-handed polarized wave
(L-wave). It was also shown that r-instabilities can be stabi-
lized by L-waves in a linearly unstable proton beam-plasma
system. These results were confirmed by using computer
simulations [19], where it was also argued that the observa-
tional results of [18] could be explained by the presence of

a large amplitude L-wave.

We also show here that the presence of an L-wave trig-
gers electrostatic instabilities above a threshold amplitude.
These instabilities occurs when the phase velocities of two
sound waves are equal [9, 10, 20]. These authors have
shown that when the ion acoustic wave phase velocity of the
sound waves moving forward relative to the proton back-
ground and backward in the frame of the alpha particle be-
come equal, they trigger electrostatic instabilities between
these two modes. They also notice that the presence of a
large amplitude L-wave can partially stabilize the electros-
tatic instability [9, 10, 20]. Here we show that even if ini-
tially the ion-acoustic waves moving forward and backward
relative to the background proton core are stable, the pre-
sence of a large amplitude L-wave can force the phase velo-
cities to become equal, triggering thereby, the electrostatic
instability. In this sense the presence of the large amplitude
wave can also affect the properties of the linear electrostatic
streaming acoustic waves for an L-wave amplitude above a
threshold value.

The plan of the paper is as follows. In Section 2, we
briefly discuss the linear proton beam-plasma dispersion re-
lation in the cold plasma approximation, and a brief deriva-
tion of the nonlinear dispersion relation for L and R-waves
(finite amplitude right-hand polarized waves) will be pre-
sented. Next in Section 3, the nonlinear dispersion relation
will be studied graphically for several situations. It is shown
there that the threshold amplitude of L-waves required to
stabilize the linear r-instabilities increases with increasing
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proton-beam velocity and, for fixed drift velocity, it decre-
ases with increasing L-wave frequency. For larger beam
drift speeds, L-waves can also stabilize the left-hand pola-
rized instability (l-instability). The mechanism is more ef-
ficient for L-wave frequencies closer to the proton gyrofre-
quency. In the case when there is a R-wave in the system,
it is shown that the part of the linear unstable spectrum be-
low the wave frequency (which, depending on the beam drift
velocity, may involve right as well as left-handed instabili-
ties) can be completely stabilized for pump wave amplitudes
above a threshold value. It is also shown that the presence
of R-waves produce the same stabilization effect on the li-
near r-instabilities. We have also found that the presence
of a L-wave produces electrostatic instabilities above a th-
reshold amplitude. These instabilities occur when the phase
velocities of the forward and backward ion-acoustic sound
waves supported by the background proton population be-
come equal. The results are summarized and discussed in
Section 4.

2 Dispersion Relation

The linear plasma dispersion relation for circularly polari-
zed electromagnetic waves propagating in the direction of an
external magnetic field in a system consisting of electrons, a
proton core, and a proton beam, is given by [21, 22, 23, 24],

y2
0 =

x2
0

1− x0
+

η(x0 − y0U)2

1− (x0 − y0U)
, (1)

where x0 = ω0/Ωp, y0 = k0vA/Ωp, vA =
B0/(4πnpMp)1/2 is the Alfvén speed,U = V/vA is the
normalized beam velocity,η = nb/nc is the beam density
relative to the core density,Ωp = qB0/cMp is the proton
gyrofrequency.

The dispersion relation, Eq. (1), is valid in a current-free
plasma and in the reference frame where the proton core is at
rest [22]. For an alpha particle beam the dispersion relation
was first derived by using kinetic theory in the semi-cold ap-
proximation [22], and later on by using fluid theory [9]. The
dispersion relation for an arbitrary ion beam can be found in
[21].

We now derive very briefly the nonlinear dispersion re-

lation. To this end we use a fluid description of the plasma.
We assume the plasma to be composed by electrons, back-
ground protons, proton beam, and an L-wave propagating
along the external background magnetic field. Each plasma
component satisfies the following fluid equation of motion,

(
∂

∂t
+ ~u · ~∇

)
~u =

ql

ml

(
~E +

1
c
~u× ~B

)
−

~∇p

nlml
, (2)

where~u is the bulk velocity,ql the electric charge,ml the
mass,~E and ~B the electric and magnetic field respectively,
and p the pressure.

As pointed out before, the dispersion relation given by
Eq. (1) was first derived by linearizing Vlasov’s equation
[22], and using the semi-cold approximation. Later on,
it was derived by using first order perturbation theory on
the fluid Eqs. (2) for zero temperature[9]. Finally, it was
also shown to be an exact solution of Eqs. (2) for zero
pressure[11].

In order to derive the nonlinear dispersion relation, we
follow a similar procedure to [9, 11]. Thus, we perturb the
fluid Eqs. (2) including the left-hand polarized electromag-
netic wave moving in the direction of the external magnetic
field along the x-axis, as follows,

δux = Re[u exp(ikx− iωt)],
δEx = Re[εexp(ikx− iωt)],

δnp = n0Re[
uk

ω − kV0x
exp(ikx− iωt)], (3)

whereV0x = V is the beam speed.
For quantities perpendicular to the external magnetic fi-

eld we write,

δu⊥ = u+ exp(ik+x− iω+t) + u− exp(ik−x− iω−t),
δB⊥ = b+ exp(ik+x− iω+t) + b− exp(ik−x− iω−t),
δj⊥ = j+ exp(ik+x− iω+t) + j− exp(ik−x− iω−t), (4)

whereu⊥ = uy + iuz, and similarly forB⊥ andj⊥. On the
other hand,k± = k0 ± k andω± = ω0 ± ω, wherek0 and
ω0 are the frequency and wavenumber of the pump wave,
which satisfies the dispersion relation in Fig. 1.
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Figure 1. Nonlinear dispersion relation, Eq. (5),x vs. y, for η = 0.2, U = 2.3, βi = 0.001, x0 = 0.1, for (a)A = 0, and (b)A = 0.81.
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L+L−D + L+R−B−cc + L+R−bB−ccb + L−R+B+ + L−R+bB+b

+(B−ccB+b −B−ccbB+)(R−R+b −R−bR+)/D = 0. (5)

d

In the last equation,
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βl = 4πnpγKTl/B2
0 (l = e, c, b)

xb = x− yU

x0b = x0 − y0U

A = (
B

B0
)2

r(b) = ψ0(b)ψ+(b)ψ−(b)

ψ0 = 1− x0

ψ0b = 1− x0b

ψ± = 1− x±
ψ±b = 1− x±b

x± = x0 ± x

y± = y0 ± y

x±b = x± − y±U

β′e = βey
2/(1 + η).

TABLE 1. Characterization of the various modes appearing in Eq. (5). The + (-) sign refers to the upper (lower) sideband waves, and lh
(rh)left-hand (right-hand) polarization. F refers to the branch of the pump wave, and b to the branch due to the beam.

+ (-) F lh (rh) forward propagating
+ (-) B rh (lh) backward propagating
+ (-) b lh (rh) forward propagating
+ (-) s ion-acoustic forward (backward) propagation
+ (-) sb beam ion-acoustic forward (backward) propagation

The finite amplitude wave is characterized by the coordi-
natesx0 andy0, and it is at the origin of the (x, y) coordinate
system. For zero pump intensity,A = 0, Eq. (5) reduces to
L+L−D = 0. The solutionL± = 0, corresponds to the
dispersion relation of the upper and lower side band waves,
respectively. The other solutionD = 0, corresponds to the
sound waves present in the system which, forη ¿ 1, are
given by,

x ' ±(βe + βp)1/2y, (6)

(x− yU) ' ±(βb)1/2y, (7)

Eq. (6) corresponds to the ordinary ion-acoustic wa-
ves propagating forward and backward relative to the pro-

ton core in the directon of the magnetic field, and Eq. (7)
corresponds to ion-acoustic waves supported mainly by the
proton beam. They move forward and backward relative
to the beam, along the external magnetic field. The solu-
tions of L± = 0 give the various branches of the disper-
sion relation. The crossings between the solutions give the
position and nature of the possible wave couplings of the
system. The solutions of the nonlinear dispersion relation,
Eq. (5), are invariant under a rotation through an angle of
180o. Therefore, it is sufficient to analyze the solutions in
the upper halfω − k plane [9, 10, 20, 14, 15, 16]. Note
that forA = 0, only the ion-acoustic modes depend on the
temperature. Note also that the cold plasma dispersion re-
lation for electromagnetic modes is a good approximation
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in those regions of space whereβ‖i = (vth.‖i/vA)2 ¿ 1
(vth.‖i =

√
2KT‖i/Mi) is the thermal velocity of spe-

cies i). This may happen either for small temperatures -and
also for not so small temperatures[27, 21]- or for very large
Alfv én velocity relative to the thermal velocity, like e.g., in
coronal holes [28, 29]. Eq. (5) corresponds to the disper-
sion relation for L-waves. The dispersion relation for R-
waves can be obtained by replacing (x, y) by (-x, -y) and
(x0, y0) by (−x0,−y0). Alternatively, one can simply take
(−x0,−y0) for the frequency and wavenumber of the R-
wave and leave the rest unchanged. This is so because the
(x, y) plane is invariant under rotations through an angle of
180o.

3 Graphical Analysis of the Nonli-
near Dispersion Relation

In order to study the nonlinear dispersion relation Eq. (5)
we use a graphical method first used by [30].

3.1 Linear Instabilities in the presence of L-
waves

We start by studying the effect of varying proton-beam ve-
locity on the stabilization of the linear r-instability due to
the presence of an L-wave. In [1] it was shown that for
βi = 0.001, η = 0.2, U = 2, an L-wave of frequency
x0 = 0.1 stabilizes the linear r-instability forA = 0.16. As
U increases,At is expected to increase too. In Fig. 1a we
illustrate the situation forU = 2.3 andA = 0. The gap
between the two curves denoted by -F and -b corresponds to
the linear r-instability [1]. The lines denoted by -F and -b
are lower R sideband waves propagating in the direction of
the external magnetic field [1]. In Fig. 1b,A = 0.81 and the
gap between -F and -b has disappeared showing, thereby,
complete stabilization of the linear r-instability. Thus, the
threshold amplitude is nowAt = 0.81, instead ofAt = 0.16
for U = 2 as expected,At increases with increasingU [1].
In Fig. 2a we have takenx0 = 0.5, andA = 0. The other
parameters are the same as in the previous figure. In Fig.
2b, we have takenAt = 0.7, and the instability is comple-
tely stabilized. Thus, as the L-wave frequency increases, the
thresholdAt-value decreases [1]. In general, for fixedU , the
instability threshold continues to decrease as the L-wave fre-
quency approaches the proton gyrofrequency. The effect is
very pronounced for frequencies very close to the resonance.
For example, forU = 3, andx0 = 0.3, At = 2.5. However,
for the same drift velocity but forx0 = 0.95, At = 0.47.
Finally, in Fig. 3 we consider the caseU = 2.8. In this
case there are both r and l-instabilities. In Fig. 3a we have
plotted the nonlinear dispersion relation forx0 = 0.9, and
A = 0. The arrow shows the linear instability region. In
Fig. 3b,A = 0.63. The linear instability is completely sta-
bilized. including the l-instability region corresponding to

Alfv én waves. It is simple to show that the l-instability is
the first to be stabilized asA increases.

3.2 Linear Instabilities in the presence of R-
waves

We shall now study the effect of an R-wave on the linear
instability. To do this, as explained above, one can simply
choosex0 to be negative and leave the rest unchanged. Thus,
we take an R-wave of frequencyx0 = −0.1. The other pa-
rameters are the same as in Fig. 1. In Fig. 4a we illustrate
the linear instability forA = 0 andU = 2. This corres-
ponds to the gap involving -F and -b. Note that these two
roots correspond now to upper sideband waves while for an
L-wave they correspond to lower sideband waves [1]. In
Fig. 4b, At has been raised toA = 0.146. The gap has
disappeared altogether indicating complete stabilization of
the linear r-instability. This is a similar situation to [1], but
now the stabilization is due to the presence of an R-wave.
We shall now increase the beam drift velocity toU = 4.
As shown in Fig. 5a, there are several linear instability re-
gions, r/l-instabilities. The region between B and C, and D
and O are r-instabilities, while the region between O and
G is l-instability. In the following we study the effect of a
R-wave on these instability regions. To this end, we take
x0 = −0.1025, with correspondingy0 = −0.1. As it fol-
lows from Fig. 5a, in this case the pump wave is unstable.
In Fig. 5b we show the nonlinear dispersion relation, Eq.
(5), forA = 0. The other parameters are like in the previous
figures. There are two right-hand polarized instability regi-
ons. One going from the origin to the point denoted by D,
and the other from the C to B. The other two instability regi-
ons cover the gap between the origin and the point denoted
by G. In Fig. 5c, we have raised the pump wave amplitude
to A = 0.1, and we see that, except for the region between
the points D and C, the whole right hand branch has been
destabilized. In Fig. 5d we have raised the pump wave am-
plitude further toA = 0.21, and one can see that even the
small stable region between D and C is now unstable. In
other words, for a R-wave withA ≥ 0.21 the branch of the
dispersion relation above the pump wave frequency is com-
pletely destabilized. In this case the pump wave acts in the
opposite direction than the left hand pump, i. e., it helps the
destabilization of the this branch. For the same parameters
of Fig. 5b, in Fig. 6a we show again the dispersion rela-
tion x vs. y, and concentrate on the gap between the origin
and the point denoted by G in Fig. 5a. This region invol-
ves an r-instability which goes from the origin to the point
x = 0.1025 andy = 0.1, and a l-instability going from this
point to G. In Fig. 6b, the wave amplitude has been raised to
A = 0.8. From this figure it follows that the point G is now
closer to the origin, showing stabilization of the l-instability.
In Fig. 6c, we have raisedA = 1.35 in order to show that
the whole region is now stable.
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Figure 2. Same as Fig. 1, butx0 = 0.5 for (a)A = 0, and (b)A = 0.7.
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Figure 3. Nonlinear dispersion reltion, Eq. (3),x vs. y, for η = 0.2, U = 2.8, βi = 0.001, x0 = 0.9, for (a)A = 0, and (b)A = 0.63.
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Figure 4. Same as Fig. 1, but for a right-hand polarized pump of frequencyx0 = 0.1 andU = 2, for (a)A = 0, and (b)A = 0146.
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Figure 5. (a) Linear dispersion relationx0 vs. y0 for a right-hand polarized pump wave withη = 0.2 andU = 4. (b) Nonlinear dispersion
relationx vs. y for a right-hand polarized pump wave of linearly unstable frequencyx0 = 0.1025, with η = 0.2, βi = 0.001, U = 4 and
A = 0, (c) A = 0.1, and (d)A = 0.21.

3.3 Electrostatic Instabilities in the presence
of L-waves

We now study the ordinary ion-acoustic waves given by Eqs.
(6-7) in the presence of an L-wave. In Fig. 7a we show
the nonlinear dispersion relation forx0 = 0.3 with corres-
pondingy0 = 0.4033 for βi = 0.01 andA = 0, in this
case there is no instability regions associated with the ion-
acoustic waves. In Fig. 7b we have raised the L-wave am-
plitude toA = 0.293 and the arrow in the figure indicates
how the phase velocities of the ordinary ion-sound waves
approach each other. In Fig. 7c we have raisedA = 0.3, the
arrow in the figure shows it has appeared an instability re-
gion that correspond to an interaction between these sound
waves. This instability is electrostatic in origin and does
not correspond to parametric decays of the large amplitude
wave, because it does not involve modes associated with the
band waves. The free energy source of this instability is de-
rived from the kinetic energy of the proton beam. In general
we have found that this instability appears for L-wave am-
plitudes above a threshold amplitude.

4 Summary and Conclusions

By solving graphically the nonlinear dispersion relation Eq.
(5) [30], we have shown the following properties of a system
containing a finite amplitude circularly polarized wave pro-

pagating in a linearly unstable beam-plasma system. First,
we assumed an L-wave and we showed that as the beam
velocity increases the thresholdAt-value also increases. On
the other hand, for fixed drift velocity, the threshold required
to stabilize the linear r-instability decreases with increasing
pump wave frequency. In Fig. 8. the results are extended
to various values ofβi and L-wave frequencies forU = 2.2
andU = 2.3. As it follows from Fig. 8,At increases with
increasing drift velocity, and decreases with increasing wave
frequency for fixed drift velocity.

These results may have important applications. For
example, [17] using hybrid simulations for a solar wind type
plasma showed that the ion beam instability leads to a pro-
ton beam anisotropyΓb = T⊥/T‖ > 1 [see Figs. 2a and
4a]. This result is consistent with previous similar studies
for other space environments [3]. However, these results
are in contradiction with the observations performed by [31]
which show the opposite tendency, i. e.,Γb ≤ 1. One pos-
sible explanation for the discrepancy is the absence of large
amplitude waves (see Figs. 2b-2c, and Fig. 3, and also Figs.
4b-4c, and Fig. 5).

Moreover, there seem to be contradictory observations
from Helios [18] and Ulysses [32], concerning the pro-
ton/proton drift velocity. [18] found that more than 20% of
the observations were apparently above the linear threshold
for instability, while further away from the Sun, at 3 AU,
[32] found that most of the events lie below the linear insta-
bility threshold. On the other hand, according to quasi linear
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Figure 6. Same as Fig. 5b for (a)A = 0, (b) A = 0.8, and (c)
A = 1.35.

linear theory [4] and simulation experiments [17], the insta-
bility must lead to a decrease of the drift velocity below the
threshold value, and to an increase in the thermal anisotropy
of the proton beam, i. e.,Γb > 1. However, at least in the
case of Helios, some of the observations of the drift velocity
lie above the instability threshold,2 ≤U≤ 4. The persis-
tence of these unstable distribution has been a problem awai-
ting resolution [17]. In addition proton beams do not show
a clear increase in the thermal anisotropy,Γb > 1, [31]. If,
however, large amplitude left-handed waves are present in
the system, the threshold beam drift velocity for linear ins-
tability increases (relative to the threshold in the absence of
large amplitude waves) rendering the system linearly stable
[1].
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Figure 7. Dispersion Relation, Eq.(5), showing the ion acoustic
waves (−S,+S) for U = 2.0, βi = 0.01, x0 = 0.3, y0 = 0.4033,
(a)A = 0, (b)A = 0.293, the arrow in the figure indicates that the
phase velocities of the ordinary ion-sound waves approach each
other. (c)A = 0.3, the arrow in the figure shows the instability
region corresponding to the electrostatic instability.

Next, we studied the effect of an R-wave on l/r-linear
beam-plasma instabilities. We considered the case when the
frequency of the R-wave is in a region where the system is
linearly stable, and second in a region where the system is
linearly unstable [2]. We showed that the presence of the R-
wave can stabilize the linear instability. This is illustrated in
Fig. 4. In Table 2., these results are generalized for various
frequencies and values ofβi. As it follows from Table 2,
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TABLE 2. Threshold R-wave amplitude,At, for various pump
wave frequencies, andβi

η U x0 y0 βi At

0.2 2.0 0.001 0.00116 0.001 0.153
0.01 0.151
0.1 0.135
1.0 0.100

0.01 0.011581 0.001 0.151
0.01 0.150
0.1 0.134
1.0 0.110

0.1 0.112560 0.001 0.144
0.01 0.142
0.1 0.123
1.0 0.100

At increases with decreasingβ. This behavior is similar
to the one encountered in the case of a L finite amplitude
wave. On the other hand, the presence of the wave stabi-
lizes the region between the pump wave frequency and O,
and the region between O and G, forA ≥ At (see Fig. 6). In
this case, the finite amplitude wave can be triggered by the

linear instability itself, and if its amplitude can grow until
A = At, the linear instability can be saturated by the same
wave triggered by the instability.

Thus, we have shown that a finite amplitude L/R-wave
can act as a saturation mechanism for r/l hand polarized ins-
tabilities. Another way of looking at these results is the fol-
lowing. Linear beam-plasma electromagnetic instabilities
behave in a different way in the presence of a finite ampli-
tude L/R wave. For example, in the linear theory and in the
absence of a finite amplitude wave, in order to trigger the r-
instability, the drift velocity of a proton beam withη = 0.2
moving in the direction of an external magnetic field, must
have a drift velocityU ≥ 1.95 [24, 33]. However, the pre-
sence of a finite amplitude polarized wave can stabilize the
linear instability when the amplitude satisfiesA ≥ At. For
the particular case whenU = 2.0 with the other parameters
like in Fig. 1, the system is completely stabilized in the pre-
sence of a L-wave withAt ' 0.16 [1]. This result is shown
in Fig. 9a. This means that in the presence of the L-wave
with A = 0.16, a larger beam drift velocity is required to
trigger the r-instability. In fact, in Fig. 9b we have increased
from U = 2.0 to U = 2.1 in order to show that the insta-
bility has reappeared. Of course ifA À At, a much larger
drift velocity is required to trigger the instability.
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Figure 8. (a) Threshold L-wave amplitude,At, vs. βi, for fixedx0 = 0.001 and severalU values:U = 2.0 (dashed line),U = 2.2 (dotted
line), andU = 2.3 (full line). (b) Threshold L-wave amplitude,At, vs. frequency,x0, for fixed βi = 0.01, andU = 2 (full line), and
threshold R-wave amplitude for complete destabilization of the r-instability for the sameβi butU = 4 (dashed line).
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Figure 9. Same as Fig. 1, but for (a)U = 2.0 andAt = 0.16, showing the stabilization of the linear right-hand instability, and (b)U = 2.1
andAt = 0.16, showing the destabilization of the linear instability.
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Finally, in Fig. 7. we have shown the presence of an
L-wave can trigger electrostatic instabilities. These insta-
bilities occur when the phase velocities of two ion-acoustic
waves become equal.
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