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Remarks on Noncommutative Field Theories
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Some of the motivations and basic properties of noncommutative field models are presented. I also comment
on recent developments in the understanding of these peculiar and intriguing theories.

A basic problem, which has accompanied the develop-
ment of quantum field theory since its inception to our days,
concerns the ultraviolet divergences of the perturbative cal-
culations. Already in the thirties, it was suggested that a
possible solution for this problem could come from a detai-
led study of the short distance structure of the space-time.
The introduction of a momentum space cutoff that would
exclude the ultraviolet region from the calculations seemed
inevitable, but the implementation of this mechanism was
not and still is not an easy task. So it comes with no sur-
prise that after the success of the renormalization program
for quantum electrodynamics in the second half of the for-
ties, this idea was practically abandoned. The renormali-
zation program met a precise formulation in the works of
BPHZ and BRST, in the late sixties and beginning of the
seventies. It is fair to say that, with the exception of the
gravitation, there is a satisfactory understanding of the basic
interactions, at least as far as renormalization is concerned.

In the analysis of physical systems sometimes it is not
convenient to use a more complete theory but instead an ef-
fective model where irrelevant degrees of freedom are elimi-
nated or, more technically, are summed over. An example of
such practical attitude comes from the studies of the hydro-
gen atom: to determine the energy levels it is not necessary
to know that the proton is made of quarks; however to obtain
the hyperfine structure of the levels, one should take into ac-
count that the proton is a spin 1/2 fermion. Similarly, in the
study of the low-energy weak decays of elementary parti-
cles, the Fermi current-current model can be used instead of
theSU(2)× U(1) electroweak theory.

It is a generalized idea that all useful theories are ef-
fective models, some resulting from simplifications in more
precise theories, whereas other originate from our incom-
plete knowledge and perhaps should be obtained from more
complete theories whose precise formulations are not yet
known. Effective theories (for a recent review see [1]) are
supposed to furnish good approximations for energies below
to some typical energy scale. As the energy scale is incre-
ased new effects are discovered, new stages of knowledge
are reached and with luck the old theory is replaced by a
new one that explains the new phenomena and so has a lar-
ger validity range. We do not know how this process ends.
However, even with our limited knowledge we may wonder
what would happen at very high energies, if energies of the

same order as the Planck’s mass were attained. It has been
heuristically argued [2] that at such energy scale all measu-
rements of a particle position would loose any operational
meaning, due to the formation of a strong gravitational field
(a blackhole). Indeed, to measure a coordinate,x, let us say,
with an accuracya leads to an indeterminacy in thex com-
ponent of the momentum of the order of1/a. An energy of
the same order may then be transmitted to the system and the
corresponding energy-momentum tensor generates a gravi-
tational field which is a solution of the Einstein’s equation

Rµν − 1
2
Rgµν = 8πTµν . (1)

The more precise the measurement of the coordinates
the bigger the gravitational field coming from the referred
measurement. Whenever this field is so strong as to prevent
light or other signs to come out from the region under ob-
servation, no operational meaning can be given to the idea
of strict localization. In this case, the field interactions are
not local and infinite renormalizations which are associated
with strict locality would not appear. To investigate if such
possibility is indeed realized we can postulate the following
commutation relations among the coordinatesqµ

[qµ, qν ] = iθµν , (2)

where for simplicity theθµν matrix is assumed to be cons-
tant. Functions of the coordinates no longer commute and
therefore it is necessary to furnish rules prescribing as they
should be multiplied. Each consistent set of rules defines
a quantization scheme. In the Weyl quantization scheme a
given classical functionf(x) of the commuting coordinates
xi and the operator̂f(q) are related by

f̂(q) =
∫

dnk

(2π)n
T (k)f̃(k), (3)

wheref̃(k) =
∫

dnx eikµxµ

f(x) is the Fourier transform of
f(x) and the operatorT (k) = e−ik·q satisfies

1. T †(k) = T (−k) (4)

2. T (k)T (k′) = T (k + k′)e−
i
2 kµk′νθµν

(5)
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A very simple example of the use of this ordering is the
one associated with the product of two coordinates. In that
case, we have

f(x) = x1x2 ⇒ f̂(q) =
1
2
(q1q2 + q2q1), (6)

so that the Weyl prescription implies in the symmetrization
of the quantum operators.

The inverse of (3) is most easily obtained after the in-
troduction of the traceTr, a cyclic operation which maps
products of operators in classical functions. We choose it to
be normalized such that

Tr[T (k)] = (2π)nδ(k). (7)

We then haveTrf̂ = f̃(0) =
∫

dnxf(x), Tr[f̂T †(k)] =
f̃(k) and therefore

f(x) =
∫

dnk

(2π)n
e−ikxTr[f̂T †(k)] (8)

We can now determine the classical function associa-
ted to a product of two operatorŝf(q) e ĝ(q), the so called
Moyal product off andg:

f(x) ∗ g(x) =
∫

dnk

(2π)n
e−ikxTr[f̂ ĝT †(k)]

=
∫

dk

(2π)n

∫
dk1

(2π)n

∫
dk2

(2π)n
e−ikx− i

2 kµ
1 Θµνkν

2

× Tr[T (k1 + k2)T †(k)]f̃(k1)g̃(k2)

=
∫

dk1

(2π)n

dk2

(2π)n
ẽ−i(k1+k2)x− i

2 kµ
1 Θµνkν

2

× f̃(k1)g̃(k2) = lim
y→x

e
i
2Θµν ∂

∂yµ
∂

∂xν f(y)g(x). (9)

In particular,

[x1, x2]∗ ≡ x1 ∗ x2 − x2 ∗ x1 = iθ12 and

x1 ∗ x2 + x2 ∗ x1 = 2x1x2. (10)

We can also verify that

f(x) ∗ g(x) ∗ h(x) = e
i
2Θµν [ ∂2

∂xµ∂yν + ∂2
∂xµ∂zν + ∂2

∂yµ∂zν ]

×f(x)g(y)h(z)|y=z=x, (11)

from which a generalization for the product ofn operators
is straightforward.

During the recent years noncommutative field theories,
obtained by replacing the ordinary pointwise product of fi-
elds by the Moyal product, have been under intensive study
(see [3] for reviews). This interest was greatly motivated
by the fact that noncommutative theories emerge as the low
energy limit of the open superstring in the presence of an
antisymmetric background field [4]. Nevertheless, nowa-
days noncommutative theories are interesting in their own

right. In the sequel we are going to describe some of their
intriguing properties.

From the above expressions it is clear that one should
proceed carefully when computing time ordered functions
of a Moyal product of fields as exponentials containing time
derivatives do not commute with the time ordering opera-
tion. By forgetting momentarily this problem and writing
the mentioned exponentials on the left of the time orde-
ring symbol, one is led to the calculation of graphs topo-
logically similar to those occurring in the commutative si-
tuation but with additional phases at the vertices. In mo-
mentum space, such phases may turn convergent some of
the integrals because they provide strong oscillations in the
integrands. However, in certain circumstances some of the
phases cancel producing integrals as divergent as in the com-
mutative cases. Whenever the phases are canceled out, the
contribution is called planar; otherwise it is said to be non-
planar.

There are two points of concern when considering mo-
dels defined by replacing the ordinary (pointwise) product of
fields by the Moyal one. Firstly, if the noncommutativity in-
volves the time coordinate, i.e. ifθ0i 6= 0 then unitarity and
causality are in jeopardy [5]. Let us illustrate this by consi-
dering the lowest order correction to the two point function
in a theory of a self-interacting scalar field [6] whose action
is given by

Sint =
∫

d4x[
1
2
∂µφ∂µφ +

m

2
φ2 + gφ ∗ φ ∗ ∗φ]. (12)

The corresponding amplitude is proportional to (see Fig. 1)

p−k

k

p p

Figure 1. Lowest order contribution to the self-energy of theφ field
in the model (12).

∫
d4k

(2π)4
1 + cos(p ∧ k)

[(p− k)2 −m2 + iε](k2 −m2 + iε)
. (13)

wherep ∧ k = θµνpµkν . In coordinate space, redefining
θµν → 2θµν , we have

∆F (x)∆F (x) + ∆F (x) ∗∆F (x). (14)

It is clear that the first term in the above expression respects
unitarity:

∆2
F + ∆2

F = ∆2
− + ∆2

+ (15)

where∆+ (∆−) is the positive (negative) frequency part of
the Pauli-Jordan commutator function,∆, and the bar ups-
tairs indicates complex conjugation. The second term, on
the other hand, furnishes
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∆F (x) ∗∆F (x) + ∆F (x) ∗∆F (x)
= ∆+ ∗∆+ + ∆− ∗∆−

+∆ret ∗∆av + ∆av ∗∆ret, (16)

where∆av and∆ret designate the advanced and retarded
Green functions of the free scalar field theory. The bre-
akdown of unitarity is a direct consequence of the nonva-
nishing of the last two terms. However, if the noncommu-
tativity does not affect the time, i.e., ifθ0i = 0 (h ≡ h(x0)
represents the Heaviside step function)

∆ret ∗∆av ≈ [h(1− h)]∆ ∗∆ = 0. (17)

It has been argued that the unitarity problem can be over-
come by firstly calculating the Moyal product and then ap-
plying the time ordering prescription [6, 7]. For the case of
the Fig. 1, this means that the corresponding amplitude now
involves objects of the type

h∆+ ∗∆+ + (1− h)∆− ∗∆−. (18)

But,

h∆+ ∗∆+ + (1− h)∆− ∗∆− + h∆+ ∗∆+

+(1− h)∆− ∗∆− = ∆+ ∗∆+ + ∆− ∗∆− (19)

and thus unitarity holds since the last expression also arises
in the product of two tree graphs. The procedure just des-
cribed leads to much more complicated and laborious com-
putations than in the ordinary Feynman graph calculations.
Further studies are needed since recent developments indi-
cate that in noncommutative gauge theories unitarity may
still be broken insofar as the Ward identities which enforce
the cancellation of unphysical degrees of freedom are not
satisfied [8].

Another problem characteristic of noncommutative the-
ories is the ultraviolet-infrared (UV-IR) mixing. The no-
menclature indicates a mixture of scales typical of nonlocal
models. We recall that in the usual situation of commuta-
tive theories, the ultraviolet behavior of Feynman integrals
is unrelated to the infrared one. By contrast, in the noncom-
mutative setting, the nonplanar part of the integrals contain
trigonometric factors which imply in the ultraviolet finite-
ness but lead to results that are singular at small momenta.
An illustrative example is provided by the tadpole graph of
theϕ4 model, depicted in the Fig. 2. The nonplanar part of
that graph is given by

k

p p
Figure 2. A tadpole graph of the noncommutativeϕ4 model.

∫
d4k

(2π)4
cos(k ∧ p)
k2 −m2

(20)

and, thanks the oscillations of the cosine, the integral turns
out to be convergent. However, for small momenta it beha-
ves as ζ

p̃2 wherep̃µ ≡ θµνpν andζ is a numerical constant.
This is a troublesome result as multiple insertions of the tad-
pole graph into a larger diagram produce nonintegrable sin-
gularities implicating in the breakdown of the perturbative
expansion. Besides, it is clear that the presence of these
infrared singularities may also lead to a violation of unita-
rity [9].

In the usual commutative theories, the existence of infra-
red divergences signalizes that nonperturbative effects must
be incorporated. One may try resummations, rearranging
the perturbative series to obtain a better behaved expansion.
A difficulty in such procedure is the identification of a per-
turbative parameter to control the resummed series. Another
possibility is to increase the model by adding new degrees
of freedom that hopefully cancel the singularities. In this as-
pect supersymmetry may play a decisive role since, at least
in the commutative situation, many cancellations of ultra-
violet divergences occur in supersymmetric models. A first
concrete example in this direction was given by the non-
commutative Wess-Zumino model where renormalizability
was proven to all loop orders [10]. Gauge invariance brings
some additional complications and no general statement, va-
lid to all orders, exist. Actually, up to one-loop, in the case
of supersymmetric QED4, by employing the formalism of
components fields, it was shown that the contributions to the
gauge field two and three point functions are free of dange-
rous (i.e., quadratic or linear) infrared divergences [11]. By
using powerful superfield techniques, this analysis has been
improved [12, 13]. Indeed, by working in an arbitrary co-
variant gauge it was proven that the cancellation of the qua-
dratic infrared divergences also hold for extended supersym-
metry. For the case of the three point function of the gauge
superfield where the infrared divergences are at most linear,
the dangerous linear infrared divergences turn out to be a
gauge artifact disappearing in a particular gauge.

At first glance one could think that the dangerous effects
of the UV-IR mixing should be absent in theories whose
commutative counterparts is characterized by cancellations
of the quadratic and linear ultraviolet divergences. This
is not correct because the noncommutativity modifies the
counterterm structure. Examples where such situation oc-
curs are the (2+1) dimensional Gross-Neveu model [14] and
the four dimensional linear sigma model [15]. A characte-
ristic feature of these models is the fact that the renormaliza-
tion of the coupling constant plays a dual role: it eliminates
tadpoles and also the leading ultraviolet divergences of some
two point functions (the two point function of the auxiliary
field in the three-dimensional Gross-Neveu model, the two
point function of the pion field in the four dimensional linear
sigma model). In the four dimensional linear sigma model
it has been proved that spontaneous breakdown may occur
for theU(N) but not for theO(N) if N 6= 2 [15, 16]. Even
though the Goldstone theorem holds only if the field orde-
ring in the quartic Moyal product is consistent with local
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symmetry. In 2+1 dimensions the situation concerning the
Goldstone theories is more favorable: In a model of com-
plex scalar fields coupled to a combination of quartic and
sextuple self-interactions, there is a class of field orderings
for which no UV-IR mixing occurs and massless excitati-
ons appear. Unlike the four dimensional case this does not
require gauge invariant couplings [17].

Recent developments in 2+1 dimensions unveiled other
interesting properties: as it happens in its commutative ver-
sion, the noncommutative CPN−1 model, with the basic
fields belonging to the fundamental representation of the
gauge group, turns out to be renormalizable up to the next
to leading order of1/N . This is true in spite of the fact
that, due to the lack of charge conjugation [18], new UV di-
vergent graphs appear whereas some amplitudes that in the
commutative version were divergent gained oscillatory fac-
tors and become finite [19]. In contrast, if the basic field
belongs to the adjoint representation dangerous infrared sin-
gularities are present in the two point function of the gauge
field and also in the leading correction to the self energy of
the scalar field. These singularities still persist if fermions
are minimally coupled to the gauge field but disappear under
supersymmetrization.

The existence of the UV-IR mixing implies in a mo-
dification of the dispersion relation. For example in the
case of the self-interacting scalar theory defined by (12) the
usual dispersion relationp2

0 = ~p2 + m2 is deformed to
p2
0 = ~p2 + m2 + ζ/p̃2. This fact may have relevant im-

plications in astrophysical observations involving particles
of very high energy [20].

Another surprising aspect is the appearance of noncom-
mutative solitons in theories which do not allow them if the
setting were commutative. In fact, in ordinary scalar theo-
ries Derrick’s theorem [21] prevents the occurrence of soli-
tons if the spacetime dimension is bigger than two. Howe-
ver, it has been shown that for large values of the noncom-
mutativity parameter solitons exist even in scalar models
[22] (see also [23]).

In 1+1 dimensions noncommutative soliton solutions
have, of course, the same analytic expression as the com-
mutative ones. A distinctive feature of noncommutativity in
these models arises from the fact that the noncommutative
solitons lead to the creation of new bound states or even to
an infinite tower of bound states; this property has been ex-
plicitly verified in theφ4 and sine-Gordon models [24].

We have seen that the introduction of noncommutative
spaces in field theory produced an avenue with many inte-
resting new constructions. Nevertheless, if they are theoreti-
cal inspirations that could lead to a consistent picture of the
world at very small scale is yet to be seen.

Acknowledgments

This work was partially supported by Fundação de Am-
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