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The procedures used to obtain general expressions for the components of the effective dielectric tensor for elec-
tromagnetic waves in inhomogeneous magnetized plasmas are briefly reviewed, and the relationship between
these expressions and their counterparts which can be obtained assuming electrostatic fluctuations is discussed.
Itis argued that a general formulation formerly available in the literature, which do not satisfy Onsager symme-
try in the case of electrostatic fluctuations, is not the suitable form for description of dielectric properties in the
electrostatic case, which require a dielectric constant. A general expression for an effective dielectric constant
is therefore provided, obtained from the effective dielectric tensor, which satisfy Onsager symmetry.

1 Introduction energy between wave and particles.

The undesirable features of the dielectric tensor obtained
The subject of wave propagation in inhomogeneous plasmagvith the plane wave approximation can be corrected by the
can not be considered a simple problem, from a mathemat-introduction of the effective dielectric tensor, which is orig-
ical point of view. In a collisionless plasma it involves the inated from an iterative procedure applied to the wave equa-
use of Maxwell’s equations for the components of the elec- tion [6]. The procedure which leads to the effective di-
tromagnetic field, coupled to a set of Vlasov equations for electric tensor, starting from the conventional tensor derived
the distributions of each of the plasma species. However, forwith use of the plane wave approximation, will be called in
the case of small amplitude perturbations with wavelengthswhat follows as BGI procedure, after the names of Beskin,
much smaller than the scalelengths of inhomogeneities, theGurevich and Istomin, the authors of Ref. [6]. The BGI
analysis can be simplified. In the simplest approach the fluc-procedure assumes weak gradients in the physical param-
tuations are described by a plane wave approximation, andeters and neglects mode conversion and reflection. These
a local relationship is assumed between current density andsimplifying assumptions may be violated near resonances or
electric field. The procedure generates a dispersion relatiorcut-offs, or for parameters for which two dispersion curves
which for a given wave frequency provides the local refrac- approach each other. However, many interesting phenom-
tion index. Since the dispersion relation depends on local€na occur in parameter regions with weak gradients where
parameters, the approach is called the “locally homogeneoughe WKB approximation is justified and where the effective
approximation”. dielectric tensor may play important role, as can be seen in

Inhomogeneity effects can be explicitly included in the & récent publication on geometrical optics [7].

description of dielectric effects by simply taking into ac- We have early on been atracted by the potential useful-
count in the evaluation of the dielectric tensor components ness of the concept of effective dielectric tensor and used
the space derivatives of parameters that describe the plasmé for several applications in magnetized plasmas, consid-
at each point, and then inserting these components into theering situations where the magnetic field is homogeneous
same form of the dispersion relation utilized in the locally and other parameters are inhomogeneous [5], situations
homogeneous approximation [1, 2, 3, 4]. However, this where the magnetic field isinhomogeneous [8, 9], and situa-
simple approach for the introduction of inhomogeneity ef- tions where density and magnetic field inhomogeneities are
fects has an important drawback. It leads to expressions forpresent simultaneously [10, 11]. In all these cases, we have
the components of the dielectric tensor which in general do obtained expressions which clearly satisfy Onsager symme-
not satisfy Onsager symmetry, except for wave propagationtry and used them to obtain the solutions of the dispersion
perpendicular to the direction of inhomogeneity [5]. As a relation. It is important to remark the point about the On-

consequence, non-resonant contributions appear to the antisager symmetry, since although the general conception of
Hermitian parts of the components of the dielectric tensor, the effective dielectric tensor is aimed to satisfy energy con-
which means that the dielectric tensor obtained according toservation, the proper symmetry of the tensor might be lost
this approach do not properly describe the dielectric prop- due to approximations introduced in the process of actual
erties of the inhomogeneous medium and the exchange otalculation of specific expressions of its components. If On-
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sager symmetry is satisfied, the anti-Hermitian parts of the  In section 2 we briefly review the steps for derivation
dielectric tensor only feature resonant parts, properly de-of the components?j for the case of electromagnetic (EM)
scribing wave-particle energy exchange. As it is known, if waves, which are necessary for the derivations of the effec-
non-resonant terms appear in the anti-Hermitian parts of thetive dielectric tensor, according to the BGI procedure. In
dielectric tensor, they describe the variation of the wave am-section 3 we obtain the corresponding componepisof
plitude due to the modification of the group velocity in an the effective dielectric tensor, using Eq. (2), and also dis-
inhomogeneous medium, not true absorption or amplifica- cuss the case of electrostatic (ES) fluctuations, according to
tion [12, 13]. This point has been illustrated with examples the approach adopted in Ref. [17]. In section 4 we discuss
in Ref. [8], where results obtained from the dispersion rela- the Onsager symmetry of the effective dielectric tensor, the
tion with use of the effective dielectric tensor are compared validity of the approach adopted in section 3 for the case of
with results obtained using other approaches found in theES fluctuations, and the proper application to the ES limit.
literature [3, 14, 15, 16, 12]. In Sect. 5 we state the main results of the paper.

The Onsager symmetry of the effective dielectric tensor
for electromagnetic waves has also been considered in Ref. 0
[17], for the case of homogeneous magnetic field. In fact, 2 Calculation of the € tensor
Ref. [17] obtained expressions which satisfy Onsager sym-
metry for the case of electromagnetic waves, corroborating) et ys consider a plasma with several species of particles,
our earlier results presented in Ref. [5]. However, Ref. [17] gach denoted by the index Each species is described by
also considered the case of electrostatic waves, concluding, gjstribution functionf, (r, p, ), wherer is position,p is
that in this particular case the Onsager symmetry is not sat-momentum, and is the time. The distribution function is
isfied by the effective dielectric tensor. This is a particularly normalized as follows
puzzling feature, which motivates the present investigation.

In the present paper we therefore return to the subject, 3
with the objective of briefly review the derivation of the ef- /d P fa(r,p,t) = na(r,1), (3)
fective dielectric tensor for electromagnetic waves, and dis- . ] ]
cuss its extension for the case of electrostatic waves. It isWherenq(r,?) is the number of particles of type by unit
therefore sufficient to consider for simplicity the case of in- Of volume, at positior and timet.
homogeneous density in homogeneous magnetic field. In- In the absence of collisions the behavior of the system is
homogeneities in other plasma parameters, like temperaturegoverned by the Vlasov-Maxwell system of equations. Con-
and in the magnetic field, could be also considered, but theysidering small amplitude fluctuations such as the system can
are not essential to the point which we wish to demonstrate,be linearized, using the method of characteristics to solve
and would only contribute to the complexity of the expres- the Vlasov equation, and assuming plane-wave approxima-
sions for the components of the tensor. The calculationstion, the perturbed distribution function can be given by the
which follow show that the non-symmetrical tensor obtained Well known result,
when following the procedure indicated in Ref. [17] is not
the correct form to be used for the study of electrostatic fluc- foro = —9Aq - Ex o 4)
tuations. We therefore point out that the proper dispersion '
relation for electrostatic waves can be obtained from the ef-Where o
fective dielectric tensor for electromagnetic waves, which A, = / 0, cikR-wr) .
features adequated symmetry properties. For the derivation, — 7
we consider a weakly inhomogeneous plasma with inho- ,
mogeneities along direction, immersed in a homogeneous e — <1 _ b -k > v (k : vp/faO) /

L . . @ p’ faO + p,

magnetic field along direction,Bo = Bpes. We also as- Mo VoW Mo VoW
sume waves propagating in an arbitrary direction relative to
ambient the magnetic field and to the inhomogeneity, with
wave vector

R=r'-r, 7=t —t,

and where we have used Faraday’s law to relate magnetic
k =k, cosver + ki sinez + kjes. 1) and electric field. The quantity, is the equilibrium dis-
tribution function, which is a function of the constants of
The procedure starts with the calculation of the com- motion,
ppnent&:?j, which are the components of the usual dielec- fao(r, P, t) = Fou (01,1, Xa), (5)
tric tensor for homogeneous medium, obtained with a plane .
wave approximation, but including terms corresponding to Wherep andp, are, respectively, the momentum parallel
the gradients of the plasma distribution function [1]. The and perpendicular to the magnetic fiéd, and where

effective dielectric tensor is then obtained by application of

. > Py
Xo =
the following rule, x+ R
{—)0 B .
o <0 0% with Q, = ¢.Bo/(mqc) being the cyclotron angular fre-

E=¢€ +§m- ) quency of particles of typa.
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Therefore, it easily follows that the components of vec- Using the expressions for the unperturbed orbits in the
tor A, are proposed geometry, the, I, and I, integrals can be writ-

by sin oF ten as follows
Ao = |o(Fa) + 220V _PL a0 (g
ax |:§00( a) + Mg Yo oSl 0X . x> ( )

too 1 6'iz
L=i } elbasintv-ne-v] L <M) ,

n=-—oo DO‘" p”
k OF, ©)
Apy = ——= cos pg = I+ o(Fa) Iy where
an EW— ——— — ——, (10)
n 1— kaH 1 8Fa (7) MaYa Vo
MaYaw ) MaQa 0Xy = and where ther; are the components of the following auxil-
iary vector,
ki costy k1 siny T (b
Aocz - MaYaw [’(Ex) IJL + MaYaw [’(Ex) Iy ﬁna — (n 2( Ol) COS?/} _ 7(];1(12(1) sinzﬂ) e1
OF, ki sinvy OF, D
E I, 8 n(ba) . .
N {am ’ ( e, axa) e ©) n (”‘]b”smw HJ;(ba)cosw) o2
where : »
Il
+—Jn(by)es, 11
_ (1o ke Y 9 Rpr 9 py n(be)es &
po = 1 5 + 3
MaYaW pPL MaYaw 0P| with b, = kLpL/(maQa)-
L = p 9 mi We now consider the distribution function. For a weakly
IpL Ip| inhomogeneous plasma it can be expanded as follows,
0 /
px (k- R—wt - —
I, = / P (eR-wm)qr Foa(0h,py, Xa) = fa(p?,pp,2) + (Xo —2) fh (12)
[ 0 &ei(k'R“”)dT where f.(p% ,pj, ) is a local distribution with azimuthal
Y DL symmetry, andf/, represents its derivative with respect the
o P a
o variablezx.
I, = / ek R=wr) g Using Eq. (12), we obtain
—0o0
]
sin k. sin
Aus = [oalfa) + EEER 1) 4 L0 P g ] (13
M MaYaw Malla
A :_kLCOS¢ pL f/]— + (f)_’_pJ_SlnSO (fl) I
Y MaYaW Malla e polJe Maflo Pota Y
kypy L,
1- I 14
+ ( MaYaw | Moo fa (14)
ki cosv pLsing ,
Age = —— | L(fa L I
S g) 4 P ()
k1 siny pLsing ,
L L I
HLY )+ PR 1) 1,
Ofa  pisingdf, kisiny p|
— =24 = I,. 15
* |:8p| * maQa 8pH * maYaW m(an fa ( )

These expressions are used to obtain the perturbed disforms of current and electric field,
tribution function, according to Eq. (4). The distribution is
then utilized to evaluate the current, generating a linear re-
. . . . . . 0
lationship, possibly anisotropic, between the Fourier trans- Jeow =0 (kw;z)-E,. (16)
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4—)0 .
It is important to remark that the tenser is not the where
Fourier transform of the conductivity tensor in configura-

tion space, which relates current density and electric field in w2 4 o\ 1/2
a stationary and inhomogeneous medium X, = Lz"" and where wy, = < Wnaqa>
w mey

J(r,t) = /d3m’/dt o (r,r',t—¢)-E@.t), (17)
is the plasma frequency for the particles of specieblsing

since a relationship like Eq. (16) only would be obtained by in Eg. (18) the expressions given by Egs. (13) to (15), along

Fourier transform from Eq. (17) in the case of a homoge- with Eq. (9), and following through some tedious algebra,

neous medium, granting the use of the convolution theorem.we obtain

Using the expression obtained for tdn%, and following
the usual procedures, one arrives to the following expression g0 _ Oh | Onh (19)
for the components of the plane wave dielectric tensor: R O

Xo [ 4 1
el = Oia —iw Y = / &p = pida,, (18)  where
]

EQh:&-—l-wZé io /d3pm ! 7}
Y * a nO( ’-YOKDO(TL !

n=—oo

x {(1 —d;2)p0(fa)mj + 352 {lﬁ L)+ gﬁ] plﬂz} ’ 0

ma’}/awE PH

X, 1 1

Onh (&3 3 2

i =W — d&’ppl —F—

" g Na Malla n:z—oo/ J_'Yozl)om
kyp kipy n] 1

X {5j {(1 B ) — — | —fiminm,
MaYaW MaYaW ba D

+kl Sin’lﬁ

mMaYaW

ko n ’ 8.}” pL
0jz — 2| —=®ri7m, ». 21
+ J |:ma7aw ba‘c(fa) + ap“ pH i ( )

fomimy+ (1= 3652) wol(fo) @i,

In the derivation of these expressions, we have used

2m
hi = / p; ellbesinte—v)=nle=U)lge, — orp | 7 (22)
0

K;

2m
/ i sin<pei[b“ sin(<p—1/1)—n(:,a—1/;)]d(p — 27TPJ_<I’;‘k7 (23)
0

where thed; are components of the following vector

3,, = { {(”2 - 1) Tn(ba) — J’/l(b“)} sin(2¢)

22 ba
i (o) = 220 oo f e
ST ET
i [gntea) = 0 singz) | e

neds [nJ (bo) siny + i.J;,(by) cos 14 es. (24)

bo "
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An alternative form for these expressions can be obtained if we take into account the definttioaraf cancel out the
k1 which appear in the combinatidn /b, in Egs. (20) and (21). We arrive to the following form,

“+o0
= 51] +WZ n Z /ddppL (foz)’rr;‘ﬂj
L p
— 0202 /d3 —LL(f 25
! Z Ya PL ) (25)
Onh_
oY _Z/ P D
ki sin N e
|:,nia7awfa7rz j + SOO(fa)(I)v ﬂ-j:|
(810 + 810 Z* L /dBpp L2 (26)
iv93= + 070iz) Ng Mol S apL

Details about this transformation can be found in Ap- the formulation given by Eqgs. (20) and (21), we obtain the
pendix A. Thea?j components given by Egs. (25) and (26) following correction for eachi; component of the tensor,
are exactly equivalent to those appearing in Ref. [5], since it
can easily be demonstrated that

i 02 l .
oiox e 5 fawn
S ( Ll ) R, o 20RO na

T n=—oo
pL

?

<{ (= 8100l 12) i)

0izt0;z
Ol = (p|) Sij, (28)
b1 5 ]CL n ’ @ ! pl (9
where theR;; and theS;; are those defined in Ref. [5]. + 05z {moﬁaw ba (fa 3p|:| p|| Ok in )H ’

Eqg. (25), as well as Eqg. (20), are the conventional ex-
pressions for the dielectric tensor obtained with the plane
wave approximation. Egs. (26) and (21) are alternative for- kL
mulations for the contribution originated when weak inho-
mogeneities are taken into account, which have to be added

to the homogeneous contribution. As mentioned in the In- js independent of., because of thé , dependence of,,
troduction section, the resulting dielectric tensor do not sat- gnd therefore don’t need to be derived.

where we notice that the quantity

n

Mool b

isfy Onsager symmetry. The derivative of the product}r; can be written in

terms of the components themselves and componendts

3 C.alculatlonHof the effective dielec- ai (rim) = Lo (@i~ 07 (29
tric tensor, € @ Madta

Usmg this equation and adding the corrections obtained
The tensor= for the general case of EM fluctuations may be to thee?. ; components, we readily arrive to the expression
now obtained by application of Eq. (2) to Eq. (18). Using for the components of the effective dielectric tensor

= 0; "H"Z - Z /dgmu

n=—oo

X {(1 = 052)p0(fa)mj + 02 {ma]ﬁbnﬁ(f“) i gﬂ ZTWZ}
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+w§j;;nmg §j(/d%wl

n=—oo

k k 1
" {% Kl - 1P > ~ kips ﬂ L e
aVaW MaYaW Oq | P

ki siny N .
o e+ (1= 032) po(£) (@)
ki n 5f/]}u H}
+5-Z[ —L(fL)+ =2 | = (P, . 30
i | e EU) + o2 | i (30)

As in the case of the plane wave tensor, an alternative form of the effective tensor can be obtained by cancelling ou
k. which appear in numerator and denominator in the combindtiofd,, (details in Appendix A). After this operation, the
components of the effective dielectric tensor are written as follows

+oo
€ij = 0ij erz - Z /dSPPL eo(fo)mim;
) Z L Pgs)
= ’Y(x pbL

o 1 1p
+5jy51z ZTW’L Q /dgppl’yipijn_fé

+wzamaga Z / ppl Ve a"

n=—oo

kysinvy , .
[maw faims + ol L) @iy
* H
o n_z_jw [ e e @in)" (31)
Now we take into account the following property, which can be eaS|Iy demonstrated,
+oo
L p
* H __ .
RO T @)

and write the last term in Eq. (31) as follows
1 X 1 1
—0iy0jz = § —= d? —L(f!
] 9 ~ N, maQa / ppL’Yaﬁ(fa)

X, 1 1
= G Y o d*p —p) £,
y0j — g maQa/ p’yapufa

where the last step was obtained via integration by parts.
Using this resultin Eq. (31),

= 51] +WZ n Z /dgppL D QDO(fa)ﬂ- Ty

n=—oo

o 3 1 p
— 03202 Zni/ddpfiﬁ(fa)

Ya PL

Xa =
+wzamoilga Z / ppl oc (7%

{kLsmzp

ma'yozw

fimta; + ool £ )(@*m)ﬂ

Lp
R ) e g K e (33)
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These expressions for the components of the effectiveto the distribution function. These components originated
dielectric tensor are exactly equivalent to those obtained infrom the use of Faraday’s law for the magnetic fluctuations,
Ref. [5]. k x E = (w/c)B. ltis clear that the more familiar form

According to the approach adopted in Ref. [17], we pro- given by Eqg. (33) of course can not be used for obtain-
ceed to derive expressions for the dielectric tensor for theing this limit, because some of these components have
case of ES fluctuations. The components of the effective di-been cancelled out and are no longer present. However, Eqg.
electric tensor in the electrostatic limit can be obtained from (30) can be used for such a procedure, and after taking the
those which we have derived for EM waves by assumption limit of vanishingk; in the differential operator we obtain
of vanishing value of the components of the wave vector ap- the following limiting expression for the components of the
pearing in the numerators of the differential operator applied effective dielectric tensor,

|
X, <& 1
€ij = (Sij + wz E Z /d3ppL’yaDa
Ofa 1 }
X o ——qim; — 0 —L(fo)miT,
{3PL ) (o)
¢ — Na Mafla PP D,
1 of! H 1 .
X | 05y — frmim, + =22 (Drmy) — 85 —L(f)(Fm) P | 34
b T (Bim)" — 4 L(12) (@) 9

Of course, the procedure of assuming vanishing valuesfield fluctuations, containing the; components in the nu-
of the components; in the differential operator applied to merator of the differential operator, were essential in the
the distribution function, in order to obtain the ES limit, is transformation between Eqg. (30) and Eq. (33), as can be
only an useful artificial procedure. It is equivalent to assum- seen in Appendix A. In the case of the ES limit, when
ing as a starting condition that magnetic fluctuations do not these terms are no longer present, the same operation which
exist. In that case, the quanti®,, which was defined along makes the symmetry evident can not be made. As a result,
with Eq. (4) would be simpl®,, = V fa0, @and Egs. (13), by considering the components of the tensor in the ES limit,

(14), and (15) would be reduced simply to Eq. (34), we obtain the following result
8fa afa 8f04
Apz = 7—, Aoy = , Apr == (35) . X, &2 \ 1
o . R R 2 e O e
All other procedures would be exactly as described in @ n=-o0
the more general case of EM waves, and the outcome would 1
be exactly Eq. (34). X Llfa) [8j:mims = dizmy]
I
4 The symmetry properties of the ef- i, X, 1 f /dgpp2 1
. . . o 17
fective dielectric tensor and the ap- o Mo Mafla T VoD,
plication to the electrostatic limit 1,
X Q — o [0y Timy — 84y mim5]
The effective dielectric tensor as given by Eq. (33) features P
proper Onsager symmetry [5], as it is easily verified by con- 1 .
sidering that it contains the Hermitean part®fr;, and —Fﬁ(f&) (67 (@)™ — 6ix (D7) "] } . (36)
that the productr;r; is also Hermitean. When written in I
the form of Eq. (30), however, the symmetry of the effective It is seen that the quantities; and¢?; have a non-

dielectric tensor is apparently not satisfied, due to the termvanishing difference in the ES limit, leading to the conclu-
with §;, andd;.. However, despite the apparent asymme- sion that the effective dielectric tensor do not satisfy On-
try, the tensor in the form of Eq. (30) also satisfies Onsagersager symmetry when written in the ES limit, while the ef-
symmetry, since it is equivalent to Eq. (33). fective tensor derived for the general case of EM waves sat-
When considering the ES limit, however, an important isfies Onsager symmetry. This conclusion is the same as ob-
feature emerges. The terms originated from the magnetictained in Ref. [17], where the lack of Onsager symmetry in
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the ES case was atributed to the diamagnetic current whichthe dielectric tensor introduces inhomogeneity effects which
occurs in the direction respectively perpendicular to the am- are of the same order of inhomogeneity effects which were
bient magnetic field and to the inhomogeneity. However, taken into account in the derivation of the effective dielec-
in what follows we argue with more fundamental reasons tric tensor. Even if it can be negligible in some circunstances
to show that the so called ‘dielectric tensor for ES waves’ [18], it has been shown to play essential role in the descrip-
obtained in Ref. [17], and which has been discussed in thetion of the lower hybrid drift instability (LHDI), an insta-
present paper as a limiting form, is not the correct way to bility with strong electrostatic character which occurs in the
deal with ES fluctuations, making meaningless and without lower hybrid range of frequencies [11].
consequence the lack of Onsager symmetry of the effective  For the actual derivation of the dielectric constant we
dielectric tensor in the ES limit. start from the components of the effective dielectric tensor
First of all, we start by considering that the dielectric as given by Eq. (30), and obtain the following,
tensor given by Eqgs. (30) and (33) features the proper sym-

metry and can be used in the dispersion relation for quite 3
general circunstances, even for low level of magnetic per- ‘= k:2 Z ma Z /d
turbation. Let us therefore examine the dispersion relation. n=-00 Do,
In the electrostatic approximatio®; ~ 0, and Gauss’s n 9fa of

law can be used to obtain the dispersion relation. Using it {]ﬁ > 4 kla]

along with the equation of continuity, and using plane wave ba Op.1 Ip|

approximation for the electric field, we obtain the following

kQZX ki siny Z /d3 f

ik - E__@[(v.g’).E+ik.‘;.E}7 n=—o0
w
where we have used the relationship between the effective + —2 bm¢ Z /d3
dielectric tensor and the effective conductivity, k* 4 n=—o0
4mi np Qoo n f Ofa
s —n - —= T J | |kL— k . (39
E'Lj 61] + w Uz] . X |: b(,v YaW Lba 6pL + I 8]3“ ( )
Considering now that in the ES limE ~ —V¢ = Details about this calculation can be found in Appendix
—ik¢, we obtain the following form of the dispersion re- B. It is important to notice that all thé; components
lation [18], originated from the magnetic fluctuations have been can-
ke — ik - ( _ H) —0 37 celled out in the derivation of Eq. (39), so that the di-
Tt Ve ’ 37) electric constant is the same as it would be obtained if we

where we have introduced the effective dielectric constant, had started assuming electrostatic fluctuations when deriv-
ing the components of the dielectric tensor. This result was

_ kieij kj attained as a consequence of the double scalar product con
tained ink- ¢ -k, without the need of considering any non-
symmetrical dielectric tensor,
It is important to point out that the dielectric tensor to By taking into account that in the present application

be used in Eq. (37) is the effective dielectric tensor, which the inhomogeneities are along thedirection, evaluating
is free from the inconsistencies arising from the use of the the derivatives of the components of the dielectric tensor as
local approximation for inhomogeneous plasmas. We alsogiven by Eq. (30), and using Eqg. (39), the dispersion relation
point out that the term with derivatives of the components of (37) can be written more explicitly as follows,

j

|
ofl of!
a3 ko oy 2
k2 Z nzoo/ ppL D,, { “bo Op. i dp
2
X (an” cos) + iJ,J) sinw) +e =0, (40)

where the dielectric constantis given by Eq. (39).
Some limiting cases can be now considered. For instance, in the case of waves propagating parallel to the ambient ma
field (kL = 0), we obtain the well known dispersion relation for electrostatic waves propagating along the ambient magn

field, ,
4d7q / 3 1 0fa
eg=1+ < [ dp ——=0. (41)
> Des 01

This expression shows that in the case of parallel propagation the dispersion relation for ES waves is not affected b
inhomogeneity.
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Another limit to be considered is the case of waves propagating along the direction of inhomogdeneity, 6in ;) = 0).
In this case, EqQ. (40) is reduced to

W Xa
"%¥E

io /d3 1 nofinly
— 00 PPL P)/ocDocn ba 8}& ba

n=

w? — X = 1 nJ2of.
1+ “m, d? % =
e k ;nam n_z—oo/ pDozT,, boc apl
It is seen that the effect of inhomogeneity comes entirely from the term with the derivative of the dielectric tensor, intro-
duced in Eq. (37).
Another interesting limit is that of waves propagating perpendicularly both to the magnetic field and to the inhomogeneity
(kH =0, Sinl/} = 1).
1+w2ZXa +ZOO /d3 1 nJ2of,
k > Ne Ma b Dan bo/ apL

n=—oo

P Ko 1R [ 1,
+k;nagan_zoo/dpl)an Jnta

W X, 1 1 nJ2 n Of!
il Sa - a3 Zn 7 ZJa
T 2, Qan_z_:oo/ PP Do, b bo Op1
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5 Summary and conclusions A Some details on the transition be-

We have presented a detailed derivation of the effective di- tween two expressions for the com-
electric tensor for electromagnetic waves propagating in ar- . .

bitrary direction in a weakly inhomogeneous plasma. Some ponents of the dielectric tensor
of the details of the derivation have already appeared in the . .
literature, but were repeated here in order to clearly defineIn the term with the);, in Egs. (21) and (30), we have
the notation, and because they are important in order to show kpy kip. n

details of the derivation of the particular limiting case for (1 - ) - b
electrostatic fluctuations. The calculations have shown once ) L .

again that the effective dielectric tensor satisfies Onsager ~USing the definition ob,, this is equal to
symmetry, and have also corroborated earlier results of the kypy nQs Do
literature which indicated that the symmetry is lost in the (1 - ) T W
case of a limiting form of the tensor derived assuming the ] o ) ) i
absence of magnetic fluctuations. We have therefore argued _Whenthisresultis introduced either in Eq. (21) orin Eq.
using basic features of electromagnetic theory that the lim- (30), the denominator is cancelled, and the following prop-
iting electrostatic form obtained for the effective dielectric My can be used to add the Bessel functions which remain.

Mo YaW MaYaw ba

(42)
MaYaW

tensor is a spurious result which does not satisfy the whole 400 o\ 2
set of Maxwell equations and does not constitute the cor- Z i, = (”> Oiz (43)
rect form of description of dielectric properties for the case n=—oo pL

of electrostatic fluctuations, which require a dielectric con-
stant. We have then provided a general expression for thqq
dielectric constant which incorporate inhomogeneity effects,
derived from the effective dielectric tensor and therefore sat- ki n g
isfying energy conservation requirements. Ma Yol Do g opy’

Moreover, in Egs. (20) and (21), and also in (30), we
ave terms with ;. containing the following,




1220 L. F. Ziebell and R. S. Schneider

whereg can bef,, or f’.. Using the definition ob,,, thiscan B~ The derivation of the effective di-

be written as O, 1 99 electric constant
—L(g) +
Yaw DL Ip|

Using Eqg. (38) with the components of the effective dielec-

and therefore tric tensor as given by Eq. (30), we use the following results,

(1= L) ttg) + 5 = P2y,

MaYaw ) PL opj  w pL S kibiky =S kiks = K, (45)
P Dy 1 ¥ i
= — —_ 7£ s
oL volg) = — o (9)
When this result is introduced either in Eq. (20), (21), Zk, 8;26,k; = kok, = kl\’ (46)

or in Eg. (30), the term with they operator is incorpo-
rated into the terms witfil — §,), and in the other term the
denominator is cancelled, and Eq. (43) can be used to add

ij

the Bessel functions which remain, along with the following > ki(GiySj= + 0jy0i2)k; = 2Ky
property. ij
Brr, =+ p ” oL, 44 -
Z - 1Y ( ) = Qkﬂlﬂ_ SIH'LZJ s (47)

The outcome is, in either case, Eq. (25), (26) or EqQ. (31). and obtain after some algebraic manipulations,

]

&= kQZ Z / PpLz

n=—oo

Ofa k| -
8 {((% B ma'VaWC(fa) izjkzﬂ—i ijj

k‘HpH /{jlpL n
-1 —_
pH L(fa) g kimim k) { + + o b

mOéPyO(w

- maQ Z /dgplh

n=—oo

k
x{[l L FipL n} —Fky sinef), Zkﬂ' T,

MaYaW MaYaW b D

Oé

kJ_smwf ka ik,

ma’Yaw

- (@u mwawﬁ(fa)) izjkl(@i ™)

Zk k|[ LI LY ”]} (48)

MaYaW  MaYaW ba

p”

Using the definition of ther;, we obtain

kaﬁJ ( /ﬂ+k|p') (49)

2
> kimimiks = Jy (n’ﬂ + k|p|> (50)
i ba pL
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We also need the following quantity,

Zk (@) k; = [( & )(k~ﬁ)+c.c.] .

l\D\’—‘

Since the quantity;; is real,

[(k-cﬁ*) (k-ff)+c.c] = (k- 7) (k-Re@) .

N =

Using the definition of th&;,

n?J,  Jn J] .
Zk Red; =k, [ R ba:| sin(2¢) cos ¢

In n’J,  Jn Jl .
+k'J_ {2 — |: b2 — 7 — ba:| COS(2¢)} smw
+k\| i : Jpsiny
= Red} (k; pib”_|_k|> —kL blnw

| O

Therefore,

— (/ﬂpi: 4 k|> T, sin
| Oax
n pLn J!,

Using Egs. (50) and (51) in Eq. (48),

n D
J kil +k
- kzz nzoo/ ppos (baL |pl)

O fao ki n P
. {<apl B ma'yozwﬁ(fa)> (bosz_ - kllPi—)

k [e2yye?
HL(fo) — {mqutkp'ﬂﬂb]}
MaYaW b1

Z%klbmd) Z/ ppL

n=—oo

J

1
. { |:m(¥’yaw h k“ ﬂ N kLn:l f(;‘]n
pL y2in ba w

1k
+ P g (kg + k2L
MaYaw " “ ki ba y2an

. +o00
w X siny 3 9 1
75 Za E d -
T —~ Na Mally noo/ PPL D,

dfa ky , n il
. {<5m a mwawc(fo‘)> (kLba R m)
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n Py . ey
X[baJ (kJ_b +k” ) ki b

el )kusmw {b J2 (k; = +k|10|> kLJ"Jﬂ

MaYaW ba

><|:mafya +k‘ ‘+kL :|}
DL ba

After some simple algebraic manipulation, we obtain the following,

a=1+.3 Z Z /d?’pm

n=—oo

4l n 8fa fa
(b kJ_-‘rkH >|:kj_b 6pl+k‘|(9p”

kQZXiklsmw Z /ddppl

n—=—oo

><J72L (b ki +k ”)f
W= X, sing X 1
= o Bop? ———
+ k2 za: Ne maQa nzoo/ ppy VaDozn
nJ? pH In ),
><|:ba (kj_b +/€” -k ba
/ /
[zﬂ" Ofa 4, %} .

b (r“)pJ_ I 8}9”

It is important to notice that none of the componeht$abeled as coming from the magnetic fluctuations have survived

up to this point.
We now write q L
( he Ry p||)f _ MaYa (n L )
ba pL Ya  MaYa
_ MaYa (

o
Inserting this expression into Eq. (52), and uspig nJ2 =0, > J2 = 1 and)_ n?J%(z) = 2%/2, and also taking

into account that ¢
/d?’pf?fa/ﬁpu =0, /d?’pm Jo _ —2/d3pf&
Op.

a [e7%)

(52)

w—D,,) .

we obtain Eq. (39).

References [4] H. P. Freund, D. Dillenburg, and C. S. Wu, J. Plasma Phys.
27,69 (1982).
[1] A. B. Mikhailovskii, in Oscillations of an inhomogeneous [5] R. A. Caldela Filho, R. S. Schneider, and L. F. Ziebell, J.
plasma Vol. 3 of Reviews of Plasma Physi¢€onsultants

) Plasma Phys12, 165 (1989).
Bureau, New York, 1967), pp. 159-227, M. A. Leontovich, ) ] .
editor. [6] V. S. Beskin, A. V. Gurevich, and Y. I. Istomin, Sov. Phys.

. L Gl JETP65, 715 (1987).
[2] A. B. Mikhailovskii, in Instabilities in inhomogeneous

plasma Vol. 1: Basic Plasma Physics | dflandbook [7] M. Bornatici and Y. A. Kravtsov, Plasma Phys. Contr. Fusion
of Plasma PhysicgNorth Holland, Amsterdam, 1983), 42,255 (2000).

Chap. 3.4, pp. 587-610, M. N. Rosenbluth and R. Z. Sagdeev, [8] R. Gaelzer, R. S. Schneider, and L. F. Ziebell, Phys. Rev. E
general editors; A. A. Galeev and R. N. Sudan, editors. 51, 2407 (1995).

[3] A.B. Mikhailovskii and O. G. Onishchenko, J. Plasma Phys. [9] R. Gaelzer, R. S. Schneider, and L. F. Ziebell, Phys. Rev. E
37,15 (1987). 55, 5859 (1997).



Brazilian Journal of Physics, vol. 34, no. 3B, September, 2004 1223

[10] R. Gaelzer, L. F. Ziebell, and O. J. G. Silveira, Phys. Plasmas [14] C. N. Lashmore-Davies and R. O. Dendy, Phys. Fluids B

6, 4533 (1999). 1565 (1989).
[11] O. J. G. Silveira, L. F. Ziebell, R. Gaelzer, and P. H. Yoon, [15] C.N.Lashmore-Davies and R. O. Dendy, Phys. Rev. B&t.
Phys. Rev. 55, 036407, 11p. (2002). 1982 (1989).

) ) [16] R. A. Cairnset al, Phys. Fluids B3, 2953 (1991).
[12] C. N. Lashmore-Davies and R. O. Dendy, Phys. Fluid4 B

493 (1992). [17] M. Nambu, Phys. Plasm&s 4325 (1996).
) ) [18] T. H. Stix, The theory of plasma wavdalP, New York,
[13] D. C. McDonald, R. A. Cairns, and C. N. Lashmore-Davies, 1992).

Phys. Plasmas, 842 (1994).



