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A model potential depending on an effective core radius but otherwise parameter free is used for the comparative
study of electrical resistivity of simple and non-simple liquid metals. In the present paper electrical resistivity
of simple and non-simple liquid metals have been calculated using Ziman’s formula, Ziman’s formula modified
and used by Khajil and Tomak (Self consistent approximation) and t-matrix formulation given by Evans and
Evans et al. Previously no one have reported such comparative study using pseudopotentials. In the electrical
resistivity calculations we have used structure factor derived through charge hard sphere approximation. The
beauty of this approximation is that it needs pseudopotential form factor for the calculation of structure factor.
So this gives the better explanation of structure factor than any other approximations. From present investiga-
tions it is found that self consistent formulation results are excellently agrees with the experimental findings. A
successful application is an evidence that our potential can predict wide class of physical properties of d and f -
shell metals as well as simple and non-simple metals.

1 Introduction

The Ziman’s nearly free electron (NFE) theory has been
fairly successful in describing the quantitative behavior of
the electrical resistivity in simple liquid metals. This is be-
cause in these metals the mean free path is about one hun-
dred times the interatomic distance and the weak scatter-
ing picture should be valid. Even for the heavy polyvalent
metals (e.g. mercury, thallium and lead) where the mean
free path is only about two interatomic distances, the NFE
model can yield results, which are in reasonable in agree-
ment with experiments. Calculations of electrical Resistivity
using structure factor from various experiments or different
versions of bare ion potential and dielectric function, gives
correct order of magnitude but differ among themselves. In
fact sometimes the theory is trusted sufficiently to use mea-
sured value of Resistivity to determine the parameter of the
potential. The Ziman’s formula is not expected to apply to

d-state transition metals because the unfilled d-state cause
strong resonant scattering which seems inappropriate for de-
scription by pseudopotential. Nevertheless, Evans et al [1]
put forward a version of equation of Resistivity in which
|W (q)|2 was replaced by exact value of the squared matrix
element for the scattering of a plane wave by a transition
metal ion. The potential of the latter was taken to be Muffin-
Tin potential as derived in solid state physics for band struc-
ture calculations and the exact scattering can be calculated
by the phase shift method.

2 Electrical resistivity of liquid met-
als

For both liquid and amorphous metals the electrical resistiv-
ity is given by [1,2]

c

ρZiman =
3 π m2

4 Z e2 ~3 n k6
F

∞∫

0

q3 S(q) |W (q)|2 Θ (2kF − q) dq (1)

d

Here, S(q) is the structure factor. In the present work
we have used the Charged Hard Sphere (CHS) [3] structure
factor. The structure factor derived through CHS has an ad-
vantage that it involves the pseudopotential form factor. In
this sense it differs from the Percus-Yevick (PY) [4] theory.

So the structure factor derived through CHS gives the better
explanation than PY theory. Recently Baria and Jani [5,6]
have proposed model potential which is quite successful in
describing lattice mechanical properties of d and f – shell
metals is used in the present calculation of electrical resis-
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tivity for simple and non-simple liquid metals. The unit step
functionΘ which cuts off the integration at 2kF correspond-
ing to a preferably sharp Fermi surface, is defined as,

Θ (2kF − q) = 0 for| q > 2kF

= 1 for q ≤ 2kF (2)

But the finite mean free path corresponds to a finite un-
certainty in the electron position. This corresponds to a finite
uncertainty in the electron momentum. Thus the Fermi sur-
face is not perfectly sharp as implied by the equation (1) but
it is blurred. The attempts to take this blurring in to account
in the formulation of resistivity is reviewed by Mc Caskill

and March [7]. Ferraz and March [8] approach yields in
place of equation (1)

ρsc =
3 π m2

4 Z e2 ~3 n k6
F

∞∫

0

q4 S(q) |W (q)|2 Γ (q, kF , l) dq

(3)
This equation must self consistently solved. Very

few explicit approximations are proposed for the function
Γ (q, kF , l) [7]

In this work we have used the form forΓ (q, kF , l) as
used by Laakkonen and Nieminen [9] and Khajil and Tomak
[10].

c

Γ (q, kF ,l) =
2

π q3

[
tan−1(ql)− 1

2
tan−1

(
2ql

1 + 4(kF l)2 − (ql)2

)
− π

2
Θ

(
q −

(
1
l2

+ 4k2
F

))]
(4)

d

The mean free path is determined self consistently as
follows. The first step of the self-consistency loop is to cal-
culate resistivity using equation (1) i.e. with mean free path
“ l” is infinity. A new mean free path“ l” is then obtained
from the Drude relation as

ρL =
~ kF

n e2 l
(5)

The iterations are continued tillρLconverges.

3 Resistivity (t-matrix) approach

We are concerned in this section with the scattering occur-
ring in liquid metals. For example, a flux of electrons is in-
cident on a scattering center and it is important to know the
number of electrons that are scattered in a definite direction.
This problem is most conveniently discussed using phase
analysis. This analysis will throw much additional light on
the use of pseudopotential see for more detail [11-12]. For
many purposes a detailed knowledge of how the electronic
wave functions behave in the neighborhood of the perturb-
ing potential is not required, it is only their asymptotic form
that matters. This, of course, is completely determines by
phase shifts. Since, when the potential is due to something
as small as metallic ion, the phase shifts are normally in-
significant beyond sayη3 thereforeη0, η1 andη2 are to be
calculated.

The phase-shiftηl of the lth partial wave related to the
pseudopotential is given by

ηl = −m kF Ω0

4 π ~2

2∫

0

W (y) y Pl(cosθ) dy (6)

where y=q/2kF and Pl(cosθ) is a Legendre polynomial and

cosθ=1-12

(
q

kF

)2

.

Using the above equation phase-shiftη0,η1,η2are calcu-
lated for s, p and d components and are shown in the ta-
ble I. Note that the low-energy phase-shift obeys the rule
η0¿η1¿η2. The larger the phase-shift, the stronger the scat-
tering. Evidently it is liable to be especially strong if the en-
ergy of the incident electron happens to coincide with that
of a virtual bound state.

TABLE I. Presently calculated values of phase shift of some simple
and non-simple liquid metals.

Metal η0 η1 η2

Li 0.374 0.302 0.053
Na 0.674 0.265 0.023
K 0.515 0.322 0.025
Rb 0.782 0.265 0.003
Cs 0.781 0.272 0.001
Be 0.757 0.491 0.129
Mg 0.882 0.544 0.105
Ca 0.445 0.252 0.013
Sr 0.795 0.619 0.095
Ba 0.758 0.634 0.095
Zn 1.148 0.469 0.092
Cd 1.1874 0.486 0.083
Hg 1.302 0.458 0.069
Al 1.074 0.777 0.195
Ga 1.392 0.737 0.167
In 1.381 0.771 0.162
Pb 1.889 1.007 0.215

In the case of noble and transition metals, the NFE ap-
proach is not appropriate due to presence the presence of a
d band in the conduction band, which complicates the pic-
ture. We use the t-matrix of the pseudopotential to calculate
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the scattering cross section rather than the usual screened
ion model potentials. The single scatter t-matrix form factor

for energy conserving transition is given by Evans [13] and
Evans et al [14]

c

t (~k, ~k′) = − 2 π ~3

m(2mE)
1
2

1
Ω0

∑

l

(2l + 1) sin ηl(EF ) exp[iηl(EF )]Pl(cos θ) (7)

d

The t-matrix has the dimensions of energy and is nor-
malized to the atomic volume. The resistivity takes the form
with y=q/2kF

ρt =
3 π Ω0

e2 ~2 v2
F

1∫

0

4y3S(q)
∣∣∣t(~k,~k′)

∣∣∣
2

dy (8)

4 Results and discussion

The resistivity calculated using Ziman’s formula, self-
consistent approach and t-matrix formulations are tabulated
in table II with the experimental and other such theoretical
findings. Daver et al [15] have calculated resistivity and the
mean free path using self-consistent method of about twenty
liquid metals inclusive noble metals. They have used the
Ashcroft’s empty-core pseudopotential, the parameter of the
potential were chosen to yield the best agreement with the
experimental structure factor. As they have fitted the po-
tential parameter their results are very close to the experi-

mental findings for simple metals while for Cu and Ag it
deviates little. Very recently Geertsma et al [16] have calcu-
lated density of states, resistivity and thermopower of liquid
alkali metals and two liquid alloys Li-Na and Na-K. they
have used Linear Response Theory (LRT) to calculate the
screened pseudopotential and the structure factor was ob-
tained from the pair-potential using Modified Hyper Neted
Chain (MHNC) theory of liquid. Their results of electrical
resistivity for liquid alkali metals are very poor particularly
for Li and Cs. Leavens et al [17] have also calculated elec-
trical resistivity using Ziman’s formula and self consistent
approximation for liquid alkali metals Mg and Al. their re-
sults of electrical resistivity using self consistent approxima-
tion are better than Ziman’s formula but could not avoid the
reasonable deviation from the experimental findings. It is
evident from table 2 that the electrical resistivity using self
consistent approach is much better than the Zimzn’s formula
except Al, Ga and In, while t-matrix results are deviating
much from the experimental findings. Moreover the mean
free path of the present investigations is also comparable to
the previously reported theoretical findings [15,17].

TABLE II. Electrical resistivity of some simple and non-simple liquid metals

Metal
l in (au) Electrical resistivity (ρ)

ρExpt. [11]
Other theoretical findings

Present Others
[15]

Others
[17]

ρsc ρZiman ρT−mat [15] [16] [16] [18] [11]

Li 108.48 77.5 112.05 23.8 21.15 18.91 24.7 23.2 7.0 7.3 25
Na 192.29 288.0 165.91 9.82 8.44 37.7 9.6 5.3 15.8 16.3 7.9
K 269.09 316.0 182.41 14.06 11.48 26.11 13.0 11.1 18.5 19.6 23
Rb 174.11 223.0 159.76 23.09 23.62 30.66 22.5 19.8 20.8 22.0 10
Cs 153.43 157.0 178.78 35.25 31.29 62.71 36.0 32.7 13.8 14.9 10
Be 55.94 50.7 45.56 17.23 19.19 31.47 - 11.7 54.9
Mg 75.71 44.9 27.02 29.13 59.08 26.0 23.7 17.3
Ca 61.75 56.4 32.61 35.12 52.45 33.0 26.4 64 16
Sr 36.08 26.1 87.12 76.39 102.63 85.0 61.1 82 7
Ba 9.94 7.8 307.23 300.91 449.22 306.0 308.0 290 15
Zn 22.83 24.8 37.83 38.74 53.04 37.0 35.6 37
Cd 44.25 34.6 37.20 34.65 70.12 34.0 30.4 23
Hg 12.26 13.5 91.12 88.93 90.93 91.0 102.0 30
Al 37.89 30.8 29.10 21.65 25.58 34.12 24.0 20.8 27
Ga 28.12 32.3 29.63 26.49 81.18 26.0 21.6 23
In 29.51 30.5 31.94 30.65 40.75 33.0 26.0 35.6 24
Pb 100.55 96.8

[10]
90.59 94.57 135.24 95.0 68.9

[10]
121 64
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It is strongly emphasis previously by Esposito et al [19]
that the Ziman’s formula describes electrical transport cor-
rectly for simple liquid metals while self-consistent results
of resistivity are over estimates if mean free paths are com-
parable or smaller than an interatomic distances, which hap-
pens in the d and f-shell metals. In the present investiga-
tions we have calculated the electrical resistivity of sim-
ple and non-simple liquid metals using Ziman’s formula,
self-consistent approach and t-matrix formula have been re-
ported. The present investigations confirm that the self con-
sistent approach are the better choice for the resistivity cal-
culations of simple and non-simple liquid metals.
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