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The paper is the summary of lectures given in São Carlos, Brazil during the2004 Summer School on Statistical
Mechanics. My objective was to provide the students with some basic tools necessary to study the thermody-
namics of Coulomb systems. I have restricted myself to simple models and techniques, which nevertheless,
when used correctly can give a clear insight into the fundamental physics behind various complex phenomena
that appear when the interactions between the system’s constituents are dominated by the long ranged Coulomb
force.

1 Introduction

Electrostatic interactions are ubiquitous. Yet, our under-
standing of the thermodynamics of these systems is far from
complete. Even such seemingly simple question as whether
or not a symmetric electrolyte or plasma can undergo a
liquid-gas phase separation has been conclusively resolved
only very recently [1, 2, 3]. Even though, the universal-
ity class of the phase transition still remains a source of
ongoing debate [4]. For strongly asymmetric system such
an aqueous colloidal suspension with monovalent salt even
the existence of the liquid-gas phase transition still remains
unsettled [5]. For two dimensional plasma, in which ions
interact through a logarithmic potential, in addition to the
liquid-gas phase separation, one also finds a metal-insulator
transition, commonly designated as the Kosterlitz-Thouless
transition [6]. The importance of this lies in the fact that
the phase transitions in many two dimensional models can
be mapped directly onto the metal-insulator transition of the
two dimensional Coulomb gas. An example of these are:
the roughening transition of a crystal interface [7], super-
fluid 4He films, two dimensional crystalline solids, etc [8].

Besides the question of thermodynamic stability, statis-
tical mechanics of Coulomb systems can lead to a number
of surprising conclusions [5]. Thus it is actually possible
for two like-charged colloidal particles inside a suspension
containing electrolyte to attract one another. The mecha-
nism of attraction is purely electrostatic and is not due to
some other, yet unknown, force. Another curious finding,
is that the electrophoretic mobility of a highly charged col-
loidal particle can actually become reversed, if the suspen-
sion contains multivalent counterions. Thus, if the electric
field is applied to the suspension, the particle will drift in the
direction opposite to the one expected based on their bare
charge.

The goal of the mini-course was to provide the students
with the basic tools needed to understand the thermodynam-
ics of charged systems. Because of the time constraint, I

have restricted the presentation to simple models and tech-
niques, only mentioning in passage the more advanced ap-
proaches, such as integral equations and field theories.

During the preparation of the mini-course I have relied
heavily on the recent review which I wrote for the Institute
of Physics Publishing, entitledElectrostatic correlations:
from plasma to biology, Reports on Progress in Physics,65
1577-1632, (2002).

2 Ideal gas

Lets begin by considering the gas ofN non-interacting par-
ticles confined to a box with dimensionsL × L × L. The
Hamiltonian for this system is

H =
1

2m

N∑

j=1

p2
j = − ~

2

2m

N∑

j=1

∇2
j . (1)

The wave function ψ(x1,x2...xN ) satisfies the
Schroedinger equation

Hψ = Eψ , (2)

the solution to which can be written in the form of a product

ψ(x1,x2...xN ) = φ1(x1)φ2(x2)...φN (xN ) . (3)

Quantum mechanical particles are indistinguishable, so
that the wave function should be symmetric (for bosons)
or antisymmetric (for fermions) under the permutation
of indices. Eq. (3) must, therefore, be suitably sym-
metrized/antisymmetrized following the usual quantum me-
chanical procedure.

Substituting Eq.(3) into the Schroedinger equation (35)
we find that functionsφj(x) satisfy the Helmholtz equation

∇2φj(x) = −k2
jφj(x) , (4)
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where the eigenvaluek is determined from the boundary
conditions. If we suppose that the probability of finding a
particle outside the box is zero, then the solution to Eq.(4)
has the form

φ(x) = A sin(kxx) sin(kyy) sin(kzz) , (5)

where to simplify the notation we have dropped the particle
indexj. The eigenvaluek2 = k2

x + k2
y + k2

z , where

ki =
πni

L
, (6)

with i = {x, y, z} and {ni} are the integer labels of the
quantum states of a particle. For a given distribution of par-
ticles among the quantum states, the energy in the box is

E =
N∑

j=1

Ej = − ~
2

2m

N∑

j=1

k2
j . (7)

The partition function

Q =
1

N !
Tr e−βE , (8)

whereβ = 1/kBT and Tr is the sum over all the possi-
ble quantum states of the particles in the box. The partition
function can be rewritten as

Q =
1

N !

N∏

j=1

Tr e−βEj , (9)

where we first perform the trace over all the accessible quan-
tum states of a particlej, and only then perform the product
over all the particles. Furthermore, since all theN particles
are indistinguishable and have the same accessible quantum
states

Q =
1

N !
(
Tr e−βE1

)N
, (10)

where

E1 = − ~
2

2m

(
k2

x + k2
y + k2

z

)
, (11)

with possible values ofki given by Eq.(6). The trace over
the quantum states can be done by transforming the sum into
an integral,

c

Q1 = Tr e−βE1 =
∞∑

nx,ny,nz

e−βE1 =
(

L

π

)3 ∫ ∞

0

dkxdkydkze
−βE1 . (12)

d

The integration can now be easily performed by going to the
spherical coordinates yielding,

Q1 =
L3

h3

(
2πm

β

)3/2

=
V

Λ3
, (13)

whereV = L3 is the volume of the box and

Λ =
h√

2πmkBT
, (14)

is the thermal de Broglie wavelength. The canonical parti-
tion function forN non-interacting particles is then

QN (V, T ) =
V N

N !Λ3N
. (15)

The Helmholtz free energy for the ideal gas is

βF = − ln QN , (16)

which with the help of the Stirling approximation reduces to

βF = N ln(ρΛ3)−N , (17)

whereρ is the density of the particles in the box. Given the
free energy, all the thermodynamic functions can be easily
calculated. For example the internal energy is

E =
∂βF

∂β
=

3
2
NkBT , (18)

and the pressure is

P = −∂F

∂V
= kBTρ , (19)

For interacting particles the canonical partition function
can be written as

QN (V, T ) =
∫

dpNdxN

h3NN !
e−βE , (20)

where

E =
N∑

j=1

p2
j

2m
+ H(x1,x2, ...xN ) (21)

andH is the potential energy of interaction between the par-
ticles.

3 Symmetric electrolyte

Consider the simplest model of an electrolyte solution:N
ions idealized as hard spheres of diametera carrying charge
±q at their center confined to volumeV . The charge neutral-
ity of solution requires thatN+ = N− = N/2. The solvent
will be modeled as a continuum of dielectric constantε.
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The Hamiltonian for this system is

H =
1
2

∑

i,j

qi qj

|xi,j | +
1
2

∑

i,j

v(xi,j) , (22)

wherexi,j = |xi − xj |, andv(xi,j) is the potential of hard-
core repulsion between particlesi andj. Following the com-
mon nomenclature, we refer to the “Hamiltonian” where in
reality we mean only the potential part of the total energy.
The notation is a form of shorthand, since the integration
over momenta in the partition function completely decou-
ples from the integration over the positions of the particles,
and can be performed explicitly. Thus, the free energy of an
interacting system can always be written as a combination of
the free energy of an ideal gas, plus the excess contribution
coming from the interactions between the particles.

For a bulk, charge neutral system, the electrostatic po-
tential at any pointx inside the electrolyte is constant and
can be set to zero. This means that the mean-field contribu-
tion to the free energy vanishes and the excess free energy is
due to positional correlations between the ions of the elec-
trolyte. The electrostatic free energy,F el = F − F0, ( F0

is the free energy when all the electrostatic interactions are
turned off) follows from,

e−βF el

=
QN

Q0
N

=
∫

dx1dx2...dxNe−βH

∫
dx1dx2...dxNe−βH0

, (23)

where

H0 =
1
2

∑

i,j

v(|xi,j |) . (24)

Lets define
ψj(xj) =

∑

i6=j

qi

|xj − xi| , (25)

as the potential that ionj feels due to interaction with all
other ions located at{xi}. The average electrostatic poten-
tial felt by ion j is

ψj =
∫

dx1dx2...dxNψj(xj)e−βH

∫
dx1dx2...dxNe−βH

, (26)

and we see that

∂

∂qj
ln

QN

Q0
N

= −βψj . (27)

Using the definition of the Helmholtz free energy, Eq. (27)
can be written as

∂F

∂qj
= ψj . (28)

Integrating Eq. (28), the electrostatic free energy inside the
electrolyte is

F el = Nq

∫ 1

0

ψj(λq)dλ . (29)

This equation is known as the Debye charging process [9].

+ −

a

Figure 1. The configuration of closest approach between two op-
positely charged ions. The dashed curve delimits the region into
which no ions can penetrate, due to the hard core repulsion.

To calculate the electrostatic contribution to the
Helmholtz free energy, let us fix one ion of charge+q at the
origin r = 0 and see how the other ions distribute around
it, see Fig. 1. Inside the region0 < r ≤ a there are no
other charges except for the one fixed at the origin, and the
electrostatic potentialφ(r) satisfies the Laplace equation,

∇2φ = 0 . (30)

For r > a the electrostatic potential satisfies the Poisson
equation

∇2φ = −4π

ε
ρq(r) , (31)

where the charge density can be expressed in terms of the
charge-charge correlation functionsg++(r) = g−−(r) and
g+−(r) = g−+(r)

ρq(r) = qρ+g++(r)− qρ−g+−(r) . (32)

The average densities of positive and negative ions areρ+ =
N+/V , ρ− = N−/V ; ρ+ = ρ− = ρ/2.

The correlation functions can be written in terms of the
potential of mean forcewij

gij(r) = e−βwij(r) , (33)

whereβ = 1/kBT . The wij(r) is the work required to
bring ionsi and j from infinity to separationr inside the
electrolyte solution. In their paper Debye and Hückel [9]
made an implicit approximation of replacing the potential
of mean force by the electrostatic potential

wij(r) = qjφi(r) , (34)

whereqj is the charge ofj′th ion andφi(r) is the electro-
static potential at distancer from the ioni fixed at the origin
r = 0. With this approximation, Eq.(31) reduces to the non-
linear Poisson-Boltzmann equation(PB),

∇2φ = −4π

ε

[
qρ+e−βqφ − qρ−e+βqφ

]
=

4πρq

ε
sinh(βqφ) .

(35)
Debye and Ḧuckel proceeded to linearize this equation.
Technically, linearization is only valid ifβqφ ¿ 1, how-
ever, being practically minded Debye and Hückel linearized
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first and worried about the consequences later. As was
noted later by Onsager, linearization of Eq.(35) is a neces-
sary step in order to produce a self-consistent theory[10].
The linearized Poisson-Boltzmann equation reduces to the
Helmholtz equation

∇2φ = κ2φ , (36)

where the inverse Debye length is

ξ−1
D ≡ κ =

√
4πq2ρ

kBTε
. (37)

The Laplace equation (30) forr ≤ a and the Helmholtz
equation (36) forr > a must be integrated, subject to the
boundary condition of continuity of the electrostatic poten-
tial and the electric field across the boundary surfacer = a.
For r ≤ a the electrostatic potential is found to be

φ<(r) =
q

εr
− qκ

ε(1 + κa)
, (38)

while for r > a,

φ>(r) =
qθ(κa)e−κr

εr
, θ(x) =

ex

(1 + x)
. (39)

Equation (39) shows that the electrostatic potential produced
by the central charge is exponentially screened by the sur-
rounding ionic cloud. Because of the hardcore repulsion
the screening, however, appears only at distances larger than
r = a. This accounts for the presence of geometric factor
θ(κa) in Eq. (39). The screening of electrostatic interactions
inside the electrolyte solutions and plasmas is responsible
for the existence of thermodynamic limit in these systems
with extremely long range forces.

The electrostatic potentialφ<(r), Eq. (38), consists of
two terms: the potential produced by the central ionq/εr,
and the electrostatic potential induced by the surrounding
ionic cloud,

ψ = − qκ

ε(1 + κa)
. (40)

The electrostatic free energy can now be obtained using the
Debye charging process Eq. (29). While performing the
charging, it is important to remember thatκ(λq) = λκ(q).
Defining the free energy density asf = F/V , the integral
in Eq. (29) can be performed explicitly yielding

βfel =
βF el

V
= − 1

4πa3

[
ln(κa + 1)− κa +

(κa)2

2

]
.

(41)
For large dilutions Eq. (41) reduces to the famous Debye
limiting law,

βfel ≈ − κ3

12π
∼ −

( ρ

T

)3/2

. (42)

Given the free energy, the limiting laws for the osmotic pres-
sure and activity can be easily found [2].

The free energy is not analytic atρ = 0. The singularity
at ρ = 0 is a consequence of long-range Coulomb inter-
actions, which also manifest themselves in the divergence

of the standard virial expansion [11]. The total free energy
of the electrolyte,F , is the sum of electrostatic Eq. (41),
and entropic contributions. The entropic contribution to the
free energy arises from the integration over the momentum
degrees of freedom in the partition function Eq. 20, and is
equivalent to the free energy of an ideal gas,

βF ent = N+ ln[ρ+Λ3]−N+ + N− ln[ρ−Λ3]−N−
= N ln[ρΛ3/2]−N , (43)

where the de Broglie thermal wavelength is given by
Eq.(14).

The osmotic pressure of the electrolyte is

P = −∂F

∂V


N

, (44)

which can also be expressed in terms of the Legendre trans-
form of the negative free energy density−f [2],

P = −f + µρ , (45)

where the chemical potential is

µ =
∂F

∂N


V

=
∂f

∂ρ
. (46)

It is a simple matter to see that below the critical tem-
peratureTc the total free energyF = F ent + F el fails to
be a convex function of the electrolyte concentration. This
implies the presence of a phase transition. Alternatively the
phase separation can be observed from the appearance of a
van der Waals loop in the osmotic pressure Eq. (45), below
the critical temperatureTc. The critical parameters are de-
termined from

∂P

∂ρ
= 0 , (47)

∂2P

∂ρ2
= 0 . (48)

The coexistence curve can be obtained using the standard
Maxwell construction. It is convenient to define the reduced
temperature and density asT ∗ = kBTaε/q2 andρ∗ = ρa3.
The critical point of the plasma, within theDH theory, is
found to be located at [1, 2]

T ∗c =
1
16

, (49)

and

ρ∗c =
1

64π
. (50)

It is interesting to note that at criticalityκ = 1/a. This
means that in spite of a very low concentration of electrolyte
at the critical point, the screening remains very strong. We
also observe that the reduced critical temperature for the
electrolyte is almost an order of magnitude lower, than for
systems in which the particles interact by the short-ranged
isotropic potentials. Since the critical point within theDH
theory occurs at extremely low density, we are justified in
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neglecting the excluded volume contribution to the total free
energy.

Phase separation of an electrolyte or of a two compo-
nent plasma is the result of an electrostatic instability arising
from the strong positional correlations between the oppo-
sitely charged ions. This mechanism is very different from
the one driving the phase separation in systems dominated
by the short ranged isotropic forces. In that case the ther-
modynamic instability is a consequence of the competition
between the interparticle attraction and the hardcore repul-
sion.

The reduced temperature can be written asT ∗ = a/λB ,
whereλB = q2/kBTε is the Bjerrum length. For water at
room temperatureλB ≈ 7 Å. This means that one would
need ions of size less than0.4 Å, in order to observe phase
separation at room temperature. This is clearly impossible
since the minimum hydrated ionic size is about2 − 4 Å.
Therefore, in order to see phase separation, one is required
to look for solutions withλB on the order of40 Å or more.
For water such large values ofλB correspond to temper-
atures well below the freezing. An alternative is to work
with organic solvents which have dielectric constants sig-
nificantly lower than water. This was the strategy adopted
by K.S. Pitzer in his studies of ionic criticality [12, 13, 14].
Pitzer used liquid salt triethyl-n-hexylammonium triethyl-n-
hexylboride(N2226B2226) in the diphenyl ether. With this
he was able to observe the critical point at room tempera-
ture. Pitzer’s work has provoked a lot of stimulating contro-
versy because his measurements suggested that the Coulom-
bic criticality belonged to a new universality class [15]. At
first sight this might not seem very surprising, after all the
Coulomb force is extremely long ranged. On further reflec-
tion the situation is not so clear. Although the bare interac-
tion potential between any two ions is long ranged, inside
the electrolyte solution it is screened by the surrounding
particles, as is seen from Eq. (39). The effective interac-
tion potential, therefore, is short ranged, which should place
the ionic criticality firmly in the Ising universality class. In
fact all the theoretical arguments lead to this conclusion,
which seems to be contradicted by the Pitzer’s experiments.
In principle, it is possible that one has to be very close to
the critical point before the Ising behavior becomes appar-
ent. However, even this conclusion is hard to justify theo-
retically. Estimates of the Ginzburg criterion suggest that
the width of the critical region for the Coulombic criticality
should be comparable to that of systems with short ranged
isotropic interactions [1, 16]. The situation remains unclear.

An alternative to working with electrolyte solutions is
to study molten salts, which are classical two component
plasmas. In this case the dielectric constant can be taken to
be that of vacuum, and ions are no longer hydrated. The
reduced critical temperatureT ∗ = 1/16 and the character-
istic ionic diameter of about2 Å, imply that at criticality
λB ≈ 30, which means that the critical point for a molten
salt is located at about5000K. It is, indeed, very hard
to study critical phenomena at such high temperatures! It
seems, therefore, that we are stuck with the low dielectric
solvents. An alternative is the computer simulations, which
are becoming sufficiently accurate to allow measurements

of the critical exponents, at least for symmetric 1:1 elec-
trolytes. Indeed the most recent simulations suggest that
the Coulombic criticality belongs to the Ising universality
class [4].

4 The Bjerrum association

TheDH theory presented in the previous section was based
on the linearization of the Poisson-Boltzmann equation. In
view of the strong screening and the rapid decrease of the
electrostatic potential away from the central ion, such a lin-
earization can be justified at intermediate and long distances.
It is clear, however, that the linearization strongly dimin-
ishes the weight of configurations in which two oppositely
charged ions are in a close proximity. Linearization underes-
timates the strength of electrostatic correlations which result
in dipole-like structures. At low reduced temperatures char-
acteristic of the critical point, these configurations should
be quite important and must be taken into account. One
way of doing this, while preserving the linearity of the the-
ory, is to postulate existence of dipoles whose concentra-
tion is governed by the law of mass action. In the leading-
order approximation the dipoles can be treated as ideal non-
interacting specie [17, 18, 19]. The total number of particles
N = ρV is then subdivided into monopolesN1 = ρ1V
and dipolesN2 = ρ2V . The particle conservation requires
that, N = N1 + 2N2. The free energy of the mixture is
F = F ent

1 + F ent
2 + F el, whereF el andF ent

1 are the en-
tropic and the electrostatic free energies of the monopoles,
given by the Eqs. (41) and (43), but withN → N1 and
ρ → ρ1. The entropic free energy of dipoles is,

βF ent
2 = N2 ln[ρ2Λ6/ζ2]−N2 , (51)

where the internal partition function of a dipole is,

ζ2(R) = 4π

∫ R

a

r2dr exp
(

βq2

εr

)
. (52)

At low temperatures, the precise value of the cutoffR at
which the two ions can be considered to be associated is
not very important. Following the original suggestion of
Bjerrum[17] we can take this value to be the inflection point
of the integral in Eq. (52),RBj = λB/2. This choice cor-
responds to the minimum of integrand in Eq. (52), which
in turn can be interpreted as the probability of finding two
oppositely charged ions at the separationr. The minimum
then correspond to a liminal between bound and unbound
configurations. A much more careful analysis of the dipo-
lar partition function has been carried out by Falkenhagen
and Ebeling based on the resummed virial expansion [19].
They found that that the low temperature expansion of the
Bjerrum equilibrium constant is identical to the equilibrium
constant which can be constructed on the basis of the re-
summed virial expansion. Since we are interested in the low
temperature regime where the critical point is located, the
Bjerrum equilibrium constant,ζ2 ≡ ζ2(RBj), will be suffi-
cient.

It is important to keep in mind that at this level of ap-
proximation the electrostatic free energyF ent

1 is only a
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function of the density of free unassociated ionsρ1, since
the dipoles are treated as ideal non-interacting specie. The
concentration of dipoles is obtained from the law of mass
action

µ2 = µ+ + µ− , (53)

where the chemical potential of a species is

µs =
∂F

∂Ns


V

. (54)

Substituting the expression for the total free energy into the
law of mass action leads to

ρ2 =
1
4
ρ2
1ζ2 e2βµex

, (55)

where the excess chemical potential isµex = ∂fel/∂ρ1.
The critical point can be located from the study of the con-
vexity of the total free energy as a function of ion concentra-
tionρ. There is, however, a simpler way [2]. We observe that
at Bjerrum level of approximation, dipoles are ideal non-
interacting specie. This means that they are only present
as spectators and do not interact with the monopoles in any
way. This implies that only the monopoles can drive the
phase separation. Thus, at the critical point the temperature
must still beT ∗c = 1/16 and the density of monopoles must
still remainρ∗1c = 1/64π, as in the case of the pureDH
theory. The corresponding density of dipoles at criticality
is then given by Eq. (55), withT ∗c = 1/16 = 0.0625 and
ρ∗1c = 1/64π = 0.00497. We find that at the critical point
the density of dipoles isρ∗2c ≈ 0.02. In the vicinity of the
critical point there are many more dipoles than monopoles,
ρ∗2c/ρ∗1c ≈ 4. Within the Bjerrum approximation the non-
linear correlations, in the form of dipoles, do not affect the
critical temperature, but strongly modify the critical density,
ρ∗c = ρ∗1c + 2ρ∗2c = 0.045. In spite of the crudeness of
approximations, the location of the critical point agrees rea-
sonably well with the Monte Carlo simulations [20, 3, 21],
T ∗c = 0.051 andρ∗c = 0.079. The coexistence curve, how-
ever, is found to have an unrealistic “banana” shape [2].
To correct this deficiency one must go beyond the “ideal”
dipole approximation and allow for the dipole-ion interac-
tion [1, 2]. Most of the fundamental physics of electrostatic
correlations, however, is already captured at the level of the
Bjerrum approximation.

5 Plasma in d-dimensions

The theory presented above can be easily extended to ar-
bitrary dimensions [22]. Specifically in d-dimensions the
Poisson equation becomes,

∇2φ = −Cd

ε
ρq , (56)

where

Cd =
2πd/2

Γ(d/2)
(57)

is the surface area of sphere in d-dimensions:C2 = 2π,
C3 = 4π, C4 = 2π2, etc.

As before, we shall approximate the potential of mean
force by the electrostatic potential and then linearize the
Boltzmann factor. Fixing one ion atr = 0, the electrostatic
potential for distancesr ≤ a satisfies the Laplace equation

∇2φ = −Cdq

ε
δ(x) , (58)

while for r > a the potential satisfies the Helmholtz equa-
tion∇2φ = κ2φ, with the inverse Debye length now given
by

κ =

√
Cdq2ρ

kBTε
, (59)

whereρ = ρ+ + ρ−. These equations must be solved sub-
ject to the boundary conditions of the continuity of the elec-
trostatic potential and the electric field across the excluded
volume region. Forr < a, Eq. (59) can be easily integrated
yielding

φ<(r) =
q

ε(d− 2)
1

r(d−2)
+ ψ . (60)

For r ≥ a the electrostatic potential is

φ>(r) = AG(r) , (61)

whereG(r) is the solution of

∇2G− κ2G = −δ(r) . (62)

The integration constantsψ and A are determined from
the boundary conditions. Taking the Fourier transform of
Eq. (62) we obtain,

G(r) =
∫

e−iq·r

q2 + κ2

dq
(2π)d

. (63)

To perform the integration we rewriteG as

G(r) =
∫

dq
(2π)d

∫ ∞

0

dαe−α(q2+κ2)−iq·r . (64)

Interchanging the limits of integration,

G(r) =
1

(2π)d

∫ ∞

0

dαe−ακ2
∫ ∞

−∞
dq1dq2...dqde

−αq2−iq·r .

(65)
The integral overq can now be done easily since it involves
only integration of decoupled Gaussians,

G(r) =
1

(4π)d/2

∫ ∞

0

dαe−ακ2− r2
4α

αd/2
. (66)

The above integral can be performed using the modified
Bessel functions, yielding

G(r) =
1

(2π)d/2

(κ

r

) d
2−1

K d
2−1(κr) . (67)

The boundary conditions determine the integration constants
to be,

A =
q

ε

(2π)d/2

(κa)d/2K d
2
(κa)

(68)
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and

ψ = − q

εad−2

K d
2−2(κa)

(d− 2)K d
2
(κa)

. (69)

The free energy can now be obtained using the Debye charg-
ing process

F el = − Nq2

(d− 2)εad−2

∫ 1

0

λK d
2−2(λκa)dλ

K d
2
(λκa)

. (70)

Not withstanding the apparent complexity of the Eq. (70),
the integration can be done explicitly using the identities re-
lating Bessel functions of different orders. The electrostatic
free energy density for a d-dimensional plasma is found to
be [22]

c

βfel = − 1
Cd(d− 2)ad

{
(d− 2) ln

[
Cd

(κa

2π

)d/2

K d
2
(κa)

]
+

(κa)2

2

}
. (71)

d

In d = 3, C3 = 4π,

K 3
2
(x) =

√
π

2
e−x

[
x−1/2 + x−3/2

]
. (72)

and the free energy density reduces to the one found earlier,
Eq. (41).

It is now possible to study the thermodynamic stability
of a general d-dimensional plasma against a liquid-gas phase
separation [22]. A particularly interesting case is a plasma
in two dimensions, to which we shall now turn our attention.

6 Two-dimensional plasma and the
Kosterlitz-Thouless transition

The 2d plasma has attracted much attention over the years
because various important physical systems can be mapped
directly onto it. Examples include superfluid4He films, two-
dimensional crystalline solids, andXY magnets [8]. Al-
though a continuous symmetry can not be broken in two di-
mensions [23], if the Hamiltonian of a system is invariant
under an Abelian group, a finite temperature phase transition
is possible. This transition occurs as the result of unbinding
of the topological defects or “charges”. The defect-mediated
phase transitions belong to the universality class of the two-
dimensional plasma.

Thirty years ago Kosterlitz and Thouless(KT ) have
presented a renormalization group study of the 2d
plasma [6]. They concluded that at sufficiently low tem-
perature, the 2d plasma becomes an insulator. All the posi-
tive and negative ions pair-up forming dipoles. The metal-
insulator transition was found to be of infinite order, char-
acterized by an essential singularities in the thermodynamic
functions. The KT analysis, however, was restricted to the
low ionic densities and it is not clear what happens when the
concentration of charged particles is increased. To study this
we can apply to the 2d plasma the theory developed above.
Lets defineδ = d−2, then in the limitδ → 0 the free energy

in Eq. (71) becomes,

βfel =
1

2πa2

{
ln[κaK1(κa)] +

(κa)2

2δ

}
. (73)

The second term of Eq. (73) diverges in the limit that
δ → 0. This divergence of the free energy, however, does
not influence the pressure which remains well defined. This
is because(κa)2 ∼ ρ, which means that the contribution
to the electrostatic free energy coming from this term is vol-
ume independent, and will vanish when derived with respect
to volume. In fact it is quite straightforward to see the origin
of the divergence appearing in Eq. (73). Recall that the bare
Coulomb potential between two ions in the d-dimensional
electrolyte is,

ϕ(r) =
qiqj

ε(d− 2)rd−2
, (74)

see Eq. (60). In the limitδ → 0, Eq. (74) can be expanded
in powers ofδ yielding

ϕ(r) =
qiqj

ε

(
1
δ
− ln(r) + O(δ)

)
. (75)

Therefore, the divergence appearing in Eq.(73) can be traced
back to the divergence found in Eq. (75). This divergence
is easily renormalized away by redefining the point of zero
potential. Thus if in d-dimensions the bare electrostatic po-
tential is redefined as [22]

ϕ(r) = − qiqj

ε(d− 2)

(
1

rd−2
− 1

ad−2

)
, (76)

the limit δ → 0 is well defined, and the electrostatic poten-
tial in 2d reduces to

ϕ(r) = −qiqj

ε
ln(r/a) . (77)

Within the Debye-Ḧuckel approximation the free energy for
particles interacting through this potential is finite and is
given by

βfel =
1

2πa2
ln[κaK1(κa)] . (78)
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The electrostatic contribution to the chemical potential and
the pressure can now be calculated. We find

βµel
± =

∂βfel

∂ρ±
=

κa

4πρ∗
K0(κa)
K1(κa)

(79)

and

βP ela2 =
1
2π

ln[κaK1(κa)] +
κa

4π

K0(κa)
K1(κa)

, (80)

where the reduced density and temperature in 2d are defined
as:ρ∗ = ρa2 andT ∗ = kBTε/q2, respectively. In the limit
of large dilutionρ → 0, the pressure inside the plasma is

βPa2 =
(

1− 1
4T ∗

)
ρ∗ + O(ρ2) . (81)

We observe that forT ∗ < 1/4, the pressure at low density
of electrolyte is negative, signifying presence of a thermo-
dynamic instability. The critical point is located atρ∗c = 0
andT ∗c = 1/4. For T ∗c < 1/4 the 2d plasma phase sepa-
rates into two coexisting phases one of which has zero den-
sity [22]. This is clearly an artifact of the approximations
made.

While the Debye-Ḧuckel theory is sufficient to account
for electrostatic correlations on long length scales, due to
its linear nature it fails for short distances. On short length
scales, the correlations manifest themselves in the form of
dipolar pairs of positively and negatively charged ions. As
in the case of 3d electrolyte we should, therefore, separate
the total density of hard discs into the density of monopoles
ρ1, and dipolesρ2, so thatρ = ρ1 + 2ρ2. At the level
of Bjerrum approximation the dipoles are treated as ideal
non-interacting particles. The electrostatic free energy then
comes only from the interactions between free un-associated
ions, and is given by Eq. (78) with

κ =

√
2πq2ρ1

kBTε
. (82)

The total free energy density isf = fent
1 + fent

2 + fel,
where

βfent
1 = ρ1 ln[ρ1Λ2/2]− ρ1 (83)

and
βfent

2 = ρ2 ln[ρ2Λ4/ζ2]− ρ2 . (84)

The internal partition function for a 2d dipole is

ζ2(R) = 2π

∫ R

a

rdr exp
[
−βq2

ε
ln

( r

a

)]
. (85)

We note that for low temperatures,T ∗ < 1/2, the integral in
Eq (85) converges uniformly asR →∞. In this regime it is
possible, therefore, to define the internal partition function
of dipole as

ζ2 ≡ ζ2(∞) =
2πa2T ∗

1− 2T ∗
. (86)

The thermodynamic equilibrium requires that for fixed vol-
ume and number of particles the Helmholtz free energy be
minimum. This is equivalent to the law of mass action
Eq. (53), which upon the substitution of free energy sim-
plifies to Eq. (55). In the limit of small concentrations, the
excess chemical potential can be expanded in powers ofρ1

yielding

βµex = − 1
2T ∗

[γE + ln(κa/2)] , (87)

whereγE is the Euler constant. Substituting Eq. (87) into
Eq. (55), we find that the concentration of dipoles in the
limit ρ → 0 scales as

ρ2 ∼ ρ
θ(T∗)
1 , (88)

where

θ(T ∗) = 2− 1
2T ∗

. (89)

For T ∗ < 1/4, the exponentθ(T ∗) < 0, and in the limit
ρ1 → 0 the law of mass action can not be satisfied. This
means that in the temperature density plane(T ∗, ρ∗), for
sufficiently small densities, the lineT ∗ = 1/4 corresponds
to the critical locus of metal-insulator transitions. Below this
line, and for sufficiently small ionic concentrations, no free
monopoles can exist. All the ions are paired up into neutral
dipolar pairs. The critical line terminates at the tricritical
point located atT ∗KT = 1/4 and

ρ∗tri =
e−4γE

8π
' 0.003954 . (90)

For T ∗ < 1/4 andρ∗ > ρ∗tri there is a phase separation
between an insulating vapor and a conducting liquid phases,
Fig. 2.

T*

ρ*

insulator

conductor

ρ>0

1

1

ρ=0

ρ*
tri

T*
KT

Figure 2. Phase diagram for the two dimensional plasma within the
Debye-Ḧuckel-Bjerrum approximation. We expect the fluctuations
to renormalize the Kosterlitz-Thouless line, shifting it from its hor-
izontal position and making it density dependent. The topology of
the phase diagram should, however, remain the same.

As the critical line is approached from high tempera-
tures, the Debye length diverges as

ξD ≡ κ−1 ∼ ec(ρ)/tν

, (91)
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where

c(ρ) =
1
4

ln
(

ρtri

ρ

)
, (92)

and

t =
T − TKT

T
. (93)

The critical exponent isν = 1. The Kosterlitz-Thouless
(KT) renormalization group theory [6] predict the same be-
havior for ξD except thatν = 1/2. TheKT theory, how-
ever, leaves unanswered the question of what happens to the
metal-insulator transition for higher plasma concentrations.
The current theory, on the other hand, shows that the critical
line terminates in a tricritical point, after which the metal-
insulator transition becomes first order [22]. This topology
is also consistent with the findings of Monte Carlo simula-
tions [24, 25]. A more sophisticated theory introduced by
Minhagen [26], leads to a very similar phase diagram, ex-
cept that the tricritical point is replaced by a critical end-
point.

We see that the electrostatic correlations are even more
important in 2d than in 3d. While in three dimensions the
electrolyte phase separates into the coexisting liquid and gas
phases, both of which contain monopoles and dipoles, in two
dimensions the low density vapor phase does not contain any
free charges and is an insulator.

7 Confined one component plasma

In 1971 Crandall and Williams suggested that electrons
trapped on the surface of liquid helium4He can crystal-
lize, forming a two dimensional Wigner crystal [27]. Eight
years later this order-disorder transition was observed exper-
imentally by Grimes and Adams [28]. In this system elec-
trons obey the classical mechanics, since the Fermi energy
is much smaller thankBT . Similar crystallization can occur
in the inversion layer near the surface of a semiconductor,
however, in this case the quantum effects are important and
the electrons form a degenerate quantum gas [29].

The trapped electrons above the liquid4He can be mod-
eled as a confined quasi-two-dimensional plasma of parti-
cles interacting by1/r potential. This model is also appro-
priate for the study of correlations between the condensed
counterions on the surface of colloidal particles.

The average spacing between the confined electrons is
d = (πσ)−1/2, whereσ is the average surface density,
σ = N/A. The dimensionless quantity parameterizing the
strength of electrostatic interactions isΓ = q2/εkBTd. For
an infinitesimally thin layer separating two mediums of di-
electric constantsε1 andε2, the important parameter is the
average dielectric constantε = (ε1 + ε2)/2. It has been ob-
served in computer simulations [30] that the 2dOCP crys-
tallizes into triangular Wigner crystal forΓ > 130. This
value is also in a close agreement with the experiments of
Grimes and Adams.

We can gain much insight into thermodynamics of 2d
OCP using the, now familiar, Debye-Ḧuckel theory. Our
model consists of a plasma of point particles of chargeq
and of a neutralizing background, confined to an interface

located atz = 0 between the two dielectric half-spaces. For
z < 0 the dielectric constant isε1 and forz > 0 the dielec-
tric constant isε2. Since the half-spaces do not contain any
free charges, the electrostatic potential everywhere satisfies
the Laplace equation∇2φ = 0. The electrostatic free en-
ergy is obtained by fixing one particle and calculating the
induced potential resulting from the redistributions of other
ions in thez = 0 plane. It is convenient to adopt the cylin-
drical coordinate system,(%, ϕ, z), so that the fixed ion is
located at% = 0, z = 0. Using the azimuthal symmetry and
the fact that the electrostatic potential vanishes at infinity,
the solution to Laplace equation can be written as [31]

φ1(%, z) =
∫ ∞

0

A1(k)J0(k%)ekz dk for z < 0 , (94)

and

φ2(%, z) =
∫ ∞

0

A2(k)J0(k%)e−kz dk for z > 0 ,

(95)
whereJ0(x) is the Bessel function of order zero.

The functionsA1(k) andA2(k) can be determined from
the boundary conditions, which are: continuity of the elec-
trostatic potential,

φ2(%, 0) = φ1(%, 0) , (96)

and discontinuity of the displacement field across thez = 0
plane. The discontinuity results from the inhomogeneous
distribution of interfacial charge induced by the fixed ion,

[ε2E2(%, z)− ε1E1(%, z)] · n̂ = 4πσq(%) . (97)

From charge neutrality theaverage interfacial charge is
zero, so thatσq(%) is the result of ionic correlations,

σq(%) =
qδ(%)
2π%

− qσ + qσe−βqφ(%,0) . (98)

The first term of Eq. (98) is the surface charge density of
the fixed ion, the second term is due to the uniform negative
background, while the last term is the surface charge density
of ions confined to the interface. We have, once again, ap-
proximated the potential of mean force by the electrostatic
potential. In the spirit of Debye-Ḧuckel theory we shall now
linearize the Boltzmann factor. The surface charge density
becomes

σq(%) =
qδ(%)
2π%

− εφ(%, 0)
2πλGC

, (99)

where

λGC =
kBTε

2πq2σ
(100)

is the Gouy-Chapman length.
The continuity of the electrostatic potential requires that

A1(k) = A2(k). Substituting Eqs. (94) and (95) into
Eq. (97) and using Eq. (99), we find the electrostatic po-
tential over the full range−∞ < z < ∞ to be

φ(%, z) =
q

ε

∫ ∞

0

k

k + λ−1
GC

J0(k%)e−k|z|dk . (101)
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Forz = 0 the integral can be performed explicitly yielding

φ(%, 0) =
qτ0(%/λGC)

ε%
, (102)

where the functionsτν(x) are defined as [32],

τν(x) = 1− πx1−ν

2
[Hν(x)−Nν(x)] , (103)

with Hν(x) and Nν(x) being the Struve and the Bessel
functions of orderν, respectively. For large values ofx,
τ0 ≈ 1/x2, so that asymptotically,

φ(%, 0) ≈ qλ2
GC

ε%3
. (104)

We conclude that in the case of a confined plasma there is
no exponential screening, instead the electrostatic potential
is purely algebraic and has the form of a dipole-dipole inter-
action [33].

There is a well known argument in the condensed matter
physics going back all the way to Bloch [34], Peierls [35]
and Landau [36] in the 1930’s, which states that a continu-
ous symmetry can not be broken in two dimensions. This
means that there can not exist a true two dimensional crys-
talline order, since it requires breaking translational sym-
metry. The argument was made rigorous by Mermin, who
proved it for particles interacting by short-ranged poten-
tials [23]. It is quite simple to see how this conclusion arises.
Suppose that there is a 2d crystal, one can then calculate the
mean-square displacementδ2 of one particle from its equi-
librium position due to thermal fluctuations. It is found that
δ2 ∼ T ln L, whereL is the characteristic crystal size. For
L → ∞, the mean square displacement diverges for any fi-
nite temperature, implying that in thermodynamic limit a 2d
crystal is unstable to thermal fluctuations. Although there is
no true long-range order in two dimensions for systems with
short-range forces, there exists a pseudo-long-range order
characterized by an algebraically decaying correlation func-
tions. It is not clear, however, to what extent this conclusion
applies to the 2dOCP , whose particles interact by a long-
ranged1/r potential. Certainly in this case Mermin’s proof
is no longer valid. However, since the effective interaction
potential inside a 2dOCP decays as1/r3, which is short-
ranged in two dimensions, suggests that there should not be
any long-range order. Whether there is a true long-range
order or a pseudo-long-range order for a 2dOCP remains
uncertain. Simulations find that forΓ ≈ 130 there is a crys-
tallization transition. It is, however, difficult to say whether
the crystalline state has a true long-range order or a pseudo-
long-range order [30]. It is also unclear if the transition
is of first order or continuous, belonging to the Kosterlitz-
Thouless universality class [6, 8]. Existence of the thermo-
dynamic limit for confined 2d plasmas can also be attributed
to the effective renormalization of the interaction potential
from a non-integrable1/r to integrable (in two dimensions)
1/r3 form.

The Helmholtz free energy of a 2d plasma can be ob-
tained directly from Eq. (102). We need to know the induced

potential felt by the central ion due to other particles. In the
limit % → 0, the electrostatic potential reduces to

φ(%, 0) ≈ q

ε%
+

q

ελGC
ln(%/2λGC) . (105)

The first term of this expression is the potential produced
by the central ion, while the second term is the induced po-
tential felt by the fixed ion. We note that the induced po-
tential is actually divergent in the limit% → 0. This is a
consequence of the failure of linearization of the Poisson-
Boltzmann equation. The linear equation allows for a much
closer mutual approach between two ions, than is actually
possible. A suitable cutoff must, therefore, be introduced
into the linear theory to to account for the omitted non-
linearity of the Boltzmann factor. It is reasonable to pos-
tulate that the distance of closest approachh between the
two ions is such that their electrostatic energy of repulsion is
comparable to their characteristic kinetic (thermal) energy,

q2

εh
≈ kBT . (106)

This means thath ≈ λB . We can use this value as the short-
distance cutoff in the calculation of free energy. The induced
potential then becomes

ψ ≈ q

ελGC
ln(λB/2λGC) . (107)

The free energy is obtained through the usual Debye charg-
ing process, Eq. (29). Recalling thatλB(λq) = λ2λB(q)
andλGC(λq) = λGC(q)/λ2, whereλ is the charging pa-
rameter, in the limit of high temperaturesΓ → 0, the re-
duced free energy per particle is found to be

βF el

N
≈ Γ2 ln(Γ) . (108)

Eq. (108) is precisely the leading order term of the resumed
virial expansion obtained by Totsuji [37, 38].

For low temperatures, theOCP crystallizes into a trian-
gular lattice. The Madelung energy of this lattice is,

βU

N
= −1.106103Γ . (109)

This equation provides a surprisingly good fit not only for
the free energy of solid, but also for the free energy of fluid
at sufficiently high values ofΓ. Comparing to the results
of the Monte Carlo simulations [30] we find that forΓ = 5
the error accrued from using Eq. (109) to calculate the total
electrostatic free energy is about30%. ForΓ = 20 this error
drops to11% and forΓ = 50 it goes down to6%. Recall-
ing that the crystallization transition occurs atΓ ≈ 130, we
see that the Eq. (109) works well into the fluid phase. It is
reasonable, therefore, to approximate the electrostatic free
energy of a fluid forΓ > 5 by

βF el

N
= −1.106103Γ . (110)

The reason why the electrostatic free energy of a fluid is so
well approximated by the free energy of the crystal, is a con-
sequence of strong electrostatic correlations.
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8 Asymmetric systems

Up to now we have considered only symmetric plasmas and
electrolytes. In practice, however, it is unlikely that both
cations and anions have exactly the same size and magni-
tude of charge. It is, therefore, important to explore the ther-
modynamics of a generalZ : 1 electrolyte in which cations
have chargeZq and diameterac, while anions have charge
−q and diameteraa. Unfortunately, as soon as the asymme-
try is introduced, the internal inconsistency enters into the
Poisson-Boltzmann equation [10]. Recall that the cation-
anion correlation function can be expressed in terms of the
potential of mean forcew+−

g+−(r) = e−βw+−(r) . (111)

The w+−(r) is the work needed to bring cation and anion
from infinity to separationr inside an electrolyte. Clearly
this work is invariant under the permutation of particle la-
belsw+−(r) = w−+(r). This means that

g+−(r) = g−+(r) . (112)

The Poisson-Boltzmann equation, which serves as the basis,
for the Debye-Huckel theory, approximates the potential of
mean force byw+−(r) = q−φ+(r). The self consistency
condition, Eq. (112), then requires that

q+φ−(r) = q−φ+(r) . (113)

Because of the non-linear nature of thePB equation this
condition can not be satisfied except for symmetric elec-
trolytes. The linearization prescription intrinsic to the
Debye-Ḧuckel theory allows Eq. (113) to hold for ions of
different valence, but with thesame ionic diameter,ac =
aa.

We see that as soon as the symmetry between the cations
and anions is broken the physics and the mathematics of the
problem becomes significantly more complex. In the limit
of very large asymmetries,Z → ∞ andac À aa a new
simplification, however, enters into the game.

9 Colloidal suspensions

A typical colloidal suspension often studied experimen-
tally consists of polystyrene sulphonate spheres of diameter
10nm− 1µm and103 − 104 ionizable surface groups. Be-
cause of the large surface charge, the colloidal particles tend
to repel each other, forming crystals, even at fairly low vol-
ume fraction of less than10%. Using the periodic structure
of the lattice, the thermodynamics of a colloidal crystal can
be studied fairly straightforwardly. Each colloidal particle
can be thought to be confined to a Wigner-Seitz (WS) poly-
hedral cell. A further approximation replaces the polyhedral
WS cell by a sphere [39].

9.1 Colloidal lattices

We shall model the colloidal particles as hard spheres of ra-
diusa carryingZ ionizable groups of charge−q distributed
uniformly on the surface. The counterions will be ideal-
ized as point particles of charge+q. The suspension of
Np = ρpV polyions andNc = ZNp = ρcV counteri-
ons is confined to a volumeV . As usual, the solvent will
be treated as a uniform continuum of dielectric constantε.
For sufficiently large polyion concentrations colloidal sus-
pension crystallizes. Using the lattice symmetry, we restrict
our attention toonecolloidal particle and its counterions in-
side a sphericalWS cell of radiusR such that

ρp =
1

4π
3 R3

. (114)

The osmotic pressure inside theWS cell is

βP = −∂F

∂V
=

1
4πR2Q

∂Q

∂R
, (115)

where the canonical partition function is

Q =
1

Λ3ZZ!

∫ R

a

dx1

∫ R

a

dx2...

∫ R

a

dxZe−βH(x1,x2...xZ) .

(116)
Using the chain rule and the fact that all the particles are
identical,

c

∂Q

∂R
=

4πR2

Λ3Z(Z − 1)!

∫ R

a

dx2

∫ R

a

dx3...

∫ R

a

dxZe−βH(R,x2...xZ) . (117)

d

On the other hand, we recall that the concentration of coun-
terions at theWS cell boundary is

ρc(R) = Z

∫ R

a
dx2

∫ R

a
dx3...

∫ R

a
dxZe−βH(R,x2...xZ)

∫ R

a
dx1

∫ R

a
dx3...

∫ R

a
dxZe−βH(x1,x2...xZ)

.

(118)
Substituting Eqs. (117) and (118) into Eq. (115) we ob-

tain [40],
βP = ρc(R) . (119)

The thermodynamics of a crystalline colloidal suspension
now reduces to the calculation of the distribution of coun-
terions inside theWS cell. This can be achieved using a
simple mean-field picture. The electrostatic potential inside
the WS cell satisfies the Poisson equation (31), with the
counterion charge density approximated by the normalized
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spherically symmetric Boltzmann distribution,

ρq(r) = ZqNp
e−βqφ(r)

4π
∫ R

a
r2dre−βqφ(r)

. (120)

The non-linear Poisson-Boltzmann equation can be
solved numerically to yield the electrostatic potential and
the distribution of counterions inside the cell. In practice it
is more convenient to work with the electric field

E(r) = −∇φ(r) . (121)

The Poisson equation can then be rewritten as

∇ ·E(r) =
4π

ε
[ρq(r) + qp(r)] , (122)

whereqp(r) is the polyion charge density,

qp(r) = − Zq

4πa2
δ(|r| − a)] . (123)

To simplify the calculations we have uniformly smeared the
charge of the polyion over its surface. Integrating both sides
of Eq. (122) and taking advantage of the divergence theo-
rem, the electric field at distancer from the polyion is

E(r) = − 1
εr2

[Zq − α(r)] , (124)

where

α(r) =
∫

|r′|<r

d3r′ρq(r′) (125)

is the counterion charge inside a sphere of radiusr centered
on the colloidal particle. Using the gauge in whichφ(a) = 0
the electrostatic potential is

φ(r) = −
∫ r

a

drE(r) (126)

and the Poisson-Boltzmann equation reduces to an integral
equation for the electric field. Note that Eq. (124) naturally
incorporates the boundary conditions

E(a) = −Zq

εa2
(127)

and
E(R) = 0 . (128)

Eq. (124) can be solved iteratively to yield the counterion
density profile from which all other thermodynamic func-
tions are straightforwardly determined.

For aqueous colloidal lattices with monovalent counteri-
ons, the Poisson-Boltzmann equation is in excellent agree-
ment with the experiments and simulation. ThePB equa-
tion, however, does not account for the correlations between
the counterions and breaks down for low dielectric solvents
or for aqueous suspensions with multivalent ions. Fortu-
nately, in the case of colloidal lattices, it is fairly straightfor-
ward to account for these effects using the density functional
theory.

At lower concentrations, when the crystalline structure
has melted the situation, unfortunately, is no longer so clear
cut. In this case a simple picture based on the Wigner-
Seitz cell is not sufficient and new methods must be devel-
oped [41, 42]. Unfortunately the standard techniques of the
liquid state theory based on integral equations are power-
less in the case of highly asymmetric colloidal systems. The
field theoretic methods also fail when applied to this diffi-
cult problem [5]. Furthermore, even the experimental sit-
uation is far from clear. Ise and coworkers claim to have
seen stable clusters of colloidal particles in highly deion-
ized colloidal suspensions. Tataet al. even report an ob-
servation of a full equilibrium vapor-liquid-like phase sep-
aration [43]. These experiments, however, have been chal-
lenged by Palberg and Ẅurth, who demonstrated that the
phase separation observed by Tataet al. was the result
of non-equilibrium salt gradients produced by the ion ex-
change resin [44, 45]. In the colloidal science community
the possibility of a liquid-vapor phase separation in highly
deionized colloidal suspensions has met with a large amount
of scepticism. The usual argument against the phase tran-
sition is based on the Derjaguin-Landau-Verwey-Overbeek
(DLV O) colloidal pair potential [46, 47].

It is easy to understand the nature of theDLV O po-
tential based on the Debye-Hückel theory. If the size of
colloidal particles is shrunk to zero,a → 0, then due to
screening by counterions, the interaction energy between
two “point” colloids would be of a Yukawa form,

V0(r) = (Zq)2
e−κr

εr
, (129)

where the inverse Debye length is

ξ−1
D ≡ κ =

√
4πZq2ρp

kBTε
. (130)

Now, consider the electrostatic potential outside the fixed
colloidal particle of radiusa and charge−Zq, Eq. (39)

φ>(r) = −Zqθ(κa)e−κr

εr
, θ(x) =

ex

(1 + x)
. (131)

Evidently the factorθ(κa) accounts for the fact that screen-
ing starts only outside the cavity,r > a. We also can think
of Eq. (131) as the potential of a point particle with an effec-
tive chargeQp = Zqθ(κa). An advantage of this alternative
point of view is that the interaction energy for two “point”
particles is simply given by Eq. (129) withZq → Qp. This
leads directly to the famousDLV O potential

VDLV O(r) = (Zq)2θ2(κa)
e−κr

εr
. (132)

This potential is purely repulsive [48], which naively sug-
gests that a charged colloidal suspension is stable against
a liquid-gas phase separation. Sogami and Ise, therefore,
have argued that theDLV O potential must be incorrect,
since it cannot account for the inhomogeneities observed
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experimentally [49]. In its stead, they proposed a differ-
ent interaction potential derived on the basis of the Gibbs
free energy. The potential found by Sogami and Ise con-
tains a minimum [49], which implies that at short enough
separations the two like-charged colloidal particles attract!
What is most surprising is that the attraction appears even
for monovalent counterions, i.e in the absence of strong cor-
relations between the colloidal double layers. Furthermore,
water is an incompressible fluid so that it is difficult to see
how a change of paradigm from Helmholtz to the Gibbs free
energy can lead to such a profound modification of the in-
teraction potential. Inconsistency in the results based on the
Helmholtz and the Gibbs free energies has been carefully
reexamined by Overbeek, who has traced the discrepancy to
a flaw in the Sogami and Ise’s calculations [50].

It is important to stress that the repulsive two-body in-
teractions do not, in general, preclude the possibility of a
liquid-gas phase separation in a multicomponent fluid. In
fact van Roij and Hansen found, within the linearized den-
sity functional theory, that it is possible for a colloidal sus-
pension with polyions interacting by the repulsiveDLV O
potential to phase separate into coexisting liquid and gas
phases [51]. Before entering into the discussion of colloidal
fluids it is, however, important to introduce a new funda-
mental concept — the colloidal charge renormalization.

9.2 Charge Renormalization

Although the non-linear Poisson-Boltzmann equation can
not be solved analytically for a spherical geometry, the nu-
merical solution indicates that the electrostatic potential far
from colloidal particle saturates as a function of the bare col-
loidal charge [39]. This suggests that the thermodynamics
of a highly charged colloidal systems can be based on the
linearizedPB equation but with the bare colloidal charge
replaced by an effective renormalized charge. The orig-
inal concept of colloidal charge renormalization is due to
Alexander et al., but is well predated in the polyelectrolyte
literature, where the phenomenon is known as the Manning
counterion condensation [52, 53, 54].

To understand better colloidal charge renormalization,
let us first consider a uniformly charged plane at fixed po-
tentialψs inside a salt solution of concentrationc. The elec-
trostatic potential at distancex from the plane satisfies the
PB equation,

d2φ(x)
dx2

=
8πcq

ε
sinh(βqφ) . (133)

Since at the moment we are considering aqueous suspen-
sions containing only monovalent ions, the electrostatic
correlations are insignificant and the mean-field Poisson-
Boltzmann approximation is sufficient. Multiplying both
sides of Eq. (133) bydφ/dx allows us to perform the first
integration. Since the potential vanishes in the limitx →∞,
we find

1
2
[φ′(x)]2 =

8πc

εβ
[cosh(βqφ)− 1] . (134)

The second integration yields [55]

φ(x) =
2kBT

q
ln

1 + e−κx tanh(βqψs/4)
1− e−κx tanh(βqψs/4)

, (135)

where the inverse Debye length is,

κ =
√

8πcλB . (136)

In the limit of large surface potentials this expression sim-
plifies to

φ(x) =
2kBT

q
ln

1 + e−κx

1− e−κx
. (137)

For separations from the plane larger than the Debye length,
Eq. (137) becomes

φ(x) =
4kBT

q
e−κx . (138)

An important observation is that for large surface potentials,
βqψs/4 À 1, the electrostatics away from the plane is com-
pletely insensitive to the surface charge density.

Now, let us consider a highly charged colloidal particle
of valenceZ and radiusa inside a symmetric1 : 1 elec-
trolyte of concentrationc. The electrostatic potential at dis-
tancer from the center of a colloidal particle satisfies the
PB equation (35). For distancesr > a + ξD the electro-
static potential is small and thePB equation can be safely
linearized leading to the Helmholtz equation (36). This can
be easily integrated yielding the electrostatic potential,

φ(r) = A
e−κr

r
, (139)

whereA is the integration constant. To find its value, lets
restrict our attention to suspensions in which theξD ¿ a.
In practice this is not a very strong restriction. For salt so-
lutions at physiological concentrationsξD ≈ 8 Å while the
characteristic colloidal size is on the order of1000 Å. Even
for solutions with very low salt content, in themM range,
the Debye length is on the order of100 Å. Under these con-
ditions all the curvature effects associated with the spheri-
cal geometry of colloidal particle are effectively screened at
separationsa+ ξD < r < 2a, and the electrostatic potential
is well approximated by that of a uniformly charged plane,
Eq. (138). Comparing Eqs. (138) and Eq. (139) the value
of the integration constant follows directly, and the electro-
static potential at distancer > a + ξD from the center of
colloidal particle is

φ(r) =
4kBTae−κ(r−a)

qr
. (140)

This is the asymptotic solution of the full non-linearPB
equation forκa À 1. Comparing this to the solution of lin-
earizedPB, Eq. (131), it is evident that the two are identical
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as long asthe bare colloidal charge is replaced by the renor-
malized charge. For highly charged particles, Eq. (140)
shows that the renormalized charge saturates at [56]

Zsat
ren =

4a(1 + κa)
λB

. (141)

While the previous analysis was carried out for one
colloidal particle inside an electrolyte solution, the con-
cept of charge renormalization is quite general and can
be applied to colloidal suspensions under various condi-
tions [57, 57, 58, 59]. The difficulty of defining the effective
charge for suspensions at non-zero concentrations resides in
the complexity of accounting for the consequences of col-
loidal interactions. The standard practice is to to study one
colloidal particle inside a spherical Wigner-Seitz cell whose
radius is determined by the volume fraction of colloids [39].
While this procedure is fully justified for colloidal lattices,
its foundation is less certain for fluidized suspensions. To
find the renormalized charge one numerically solves the full
non-linearPB equation and matches the electrostatic po-
tential to the solution of the linearized equation at the cell
boundary. Alternatively, the osmotic pressures inside the
WS cell calculated using the non-linear and linear equa-
tions are matched in order to define the effective charge.
One should remember, however, that while at the level of
non-linearPB equation the osmotic pressure is directly pro-
portional to the concentration of ions at the cell boundary,
Eq. (119), this is not the case for the linearizedPB equa-
tion. The various procedures lead to similar values of the
renormalized charge. In the case of salt-free suspensions,
the effective charge is found to saturate at [39]

Zsat
ren ≈

χa

λB
, (142)

whereχ is an approximately linearly increasing function of
colloidal concentration for suspensions with volume fraction
larger than1%. For suspensions with colloidal volume frac-
tion between1% and10% the value ofχ varies from around
9 to 15 [60, 61].

9.3 Colloidal Fluid

In this section we will apply the insights gained from the
study of one and two component plasmas to the exploration
of stability of charged colloidal suspensions against a gas-
liquid phase separations. We note that the large size asym-
metry between colloids and counterions leads to very differ-
ent equilibration time scales. On the time scale of polyion
motion, the counterions are always equilibrated. This sug-
gests that the calculation of free energy should be done in
two stages [62]. First, we shall trace out the counterion de-
grees of freedom, leading to effective many-body interac-
tions between the colloidal particles. Then we will use these
effective interactions to calculate the colloid-colloid contri-
bution to the total free energy. The procedure is similar to
the one used in McMillan-Mayer theory of solutions [63].

We shall first calculate the contribution to the total
free energy arising from the polyion-counterion interac-
tions [41, 42]. Consider a suspension in thermal equilib-
rium. While the colloidal particles are more or less uni-
formly distributed throughout the solution, the positions of
counterions are strongly correlated with the positions of
polyions. As a leading order approximation we can, there-
fore, take the polyion-polyion correlation function to be

gpp = 1 (143)

and the polyion-counterion correlation function to be

gpc = e−βqφ(r) . (144)

Choosing the coordinate system in such a way that it is cen-
tered on top of one of the colloidal particles, the electrostatic
potential at distancer < a satisfies the Laplace equation,
while for distancesr > a it satisfies the Poisson equation
Eq. (31). Based on Eqs. (143) and (144) the charge density
in the regionr > a can be approximated by,

ρq(r) = −Zqρp + qρce
−βqφ(r) . (145)

In the spirit of the Debye-Ḧuckel theory we shall linearize
the exponential [9, 2]. The distribution of charge around the
colloid reduces to

ρq(r) = −βq2ρcφ(r) . (146)

For r > a the electrostatic potential, therefore, satisfies the
Helmholtz equation (36) withκ given by Eq. (130). The
solution to this equation is

φ>(r) = −Zqθ(κa)e−κr

εr
, (147)

while the solution to the Laplace equation forr ≤ a is

φ<(r) = − Zq

εa(1 + κa)
. (148)

The electrostatic energy due to polyion-counterion interac-
tion is

up =
1
2

∫
d3r[ρq(r) + qp(r)]φ(r), (149)

whereρq(r) is the charge density of counterions given by
Eq. (146), andqp(r) is the charge density of a polyion,

qp(r) = − Zq

4πa2
δ(|r| − a) . (150)

Performing the integration we find

up =
Z2q2

2ε(1 + κa)

[
1
a
− κ

2(1 + κa)

]
. (151)

The electrostaticfree energyof a polyion inside the suspen-
sion is obtained using the Debye charging process [64],

Fp =
∫ 1

0

dλ
2up(λq)

λ
=

Z2q2

2εa(1 + κa)
. (152)
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Note that this free energy is the sum of the polyion self en-
ergy

Fself
p =

Z2q2

2εa
, (153)

and the solvation energy

Fsolv
p = − Z2q2κa

2εa(1 + κa)
, (154)

which the polyion gains from being inside the “ionic sea”.
The electrostatic free energy due to interaction between all
the polyions and counterions is

F pc = − Z2q2Npκa

2εa(1 + κa)
. (155)

We have effectively integrated out the counterion de-
grees of freedom. This, however, leaves us with the effec-
tive many-body potentials of interaction between the col-
loidal particles. For dilute suspensions, the pairwise inter-
action potential should be the dominant one. The two-body
interaction potential can be obtained from the solution of
Helmholtz equation for two colloidal particles [65, 66]. At
large separations this leads directly to theDLV O interac-
tion potential, Eq. (132). This potential has been extensively
tested experimentally and found to work very well for bulk
colloidal suspensions [67]. Since theDLV O potential is
short ranged, the contribution to the total free energy aris-
ing from the colloid-colloid interaction can be calculated in
the spirit of the traditional van der Waals theory, through the
second virial term. A more sophisticated calculation of the
colloid-colloid free energy relies on the Gibbs-Bogoliubov
variational bound,

F pp ≤ F0 + 〈VDLV O〉0 , (156)

where the reference system is taken to be the fluid of hard
spheres, whose diameter plays the role of a variational pa-
rameter. The free energy resulting from the polyion-polyion
interaction,F pp, can be approximated by the lowest vari-
ational bound of Eq. (156). The calculation is somewhat
involved, so we refer the interested reader to the original pa-
pers [68, 69, 51, 70].

The entropic mixing free energy of colloids and their
counterions is simply that of an ideal gas,

βF ent = ZNp[ln(ZρpΛ3
c)−1]+Np[ln(ρpΛ3

p)−1] , (157)

whereΛc andΛp are the de Broglie thermal wavelengths of
counterions and polyions, respectively.

The total free energy of colloidal suspension is the free
energy needed to solvate colloids in the sea of other polyions
and counterionsF pc + F pp, and the free energy of mixing
F ent,

F = F pc + F pp + F ent . (158)

The osmotic pressure is

P = −∂F

∂V


Np

. (159)

It is found that for suspensions with

C ≡ ZλB

a
> 15.2 (160)

the pressure is not a convex function of the colloidal con-
centration, implying existence of a thermodynamic instabil-
ity. At criticality the colloidal volume fraction is around1%.
The crucial question is whether this result is reliable? In
order to calculate the electrostatic free energies, we were
forced to linearize the Boltzmann factor. While this is a rea-
sonable approximation at large separations away from the
polyions, linearization is clearly invalid in the vicinity of
colloidal surface. There, the strong electrostatic interactions
result in an accumulation of counterions and the effective
polyion charge renormalization. Therefore, the linear theory
can be usedonly if the bare colloidal charge is replaced by
the effective renormalized charge,Z → Zeff , in all the ex-
pressions. It was found, however, that the bare charge does
not increase without limit but saturates at the value given by
the Eq. (142). SubstitutingZ → Zeff , into the definition
of C Eq. (160), we see thatC < 15 for all the values of the
bare chargeZ in the critical region. The critical threshold,
therefore, can not be reached [71], meaning that a deionized
aqueoussuspensions withmonovalentcounterions is stable
against a liquid-gas phase separation for all colloidal charges
and sizes. This conclusion has also been confirmed by more
detailed calculations and simulations [41, 72, 73, 74, 75].

The result that the non-linear terms omitted within the
Debye-Ḧuckel approximation stabilize a deionized colloidal
suspensions against a liquid-vapor phase separation has
also been obtained by von Grünberg et al. [76, 77, 78]
and Tamashiro and Schiessel [79] based on the analysis
of the full non-linear Poisson-Boltzmann equation inside a
Wigner-Seitz cell. The numerical integration of the non-
linear PB shows that the osmotic pressure is a monoton-
ically increasing function of colloidal concentration. This
means that at the level ofWS approximation suspension
is thermodynamically stable. Von Grünberg et al. and
Tamashiro and Schiessel, however, demonstrate that thelin-
earizedPB equationleads to the negative compressibility
and the osmotic pressures for highly charged colloidal par-
ticles. This erroneously suggests presence of a thermody-
namic instability. Clearly the instability is an artifact of the
linearization. Furthermore, our calculations show that any
linear theory, which does not take into account the colloidal
charge renormalization, is likely to lead to an incorrect pre-
diction of a liquid-vapor phase separation [51, 80] in deion-
ized aqueous suspensions with monovalent counterions.

It is curious that the “linear” correlations between the
colloids and the counterions, responsible for the screening of
electrostatic interactions, are also the ones driving the sus-
pension towards the phase separation. On the other hand,
the “non-linear” correlations responsible for the counterion
condensation and the colloidal charge renormalization, sta-
bilize the suspension against the phase transition.
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10 Multivalent counterions

Up to now we have been concentrating our attention on
aqueous solutions with monovalent counterions. It was al-
ready mentioned that in this case the correlations between
the condensed counterions can be neglected. To understand
why, let us compare the characteristic electrostatic energy
of a counterion-counterion interaction to the characteristic
thermal energykBT ,

Γ =
α2q2

εdkBT
, (161)

whereα is the counterion valence andd is the average sep-
aration between then condensed counterions on the surface
of a colloidal particle of radiusa. Sincenπ(d/2)2 = 4πa2,

d =
4a√
n

, (162)

and the coupling strength becomes,

Γ =
α2λB

√
n

4a
. (163)

Now, lets consider highly charged latex particles withZ =
7000 anda = 1000 Å, in water at room temperature. From
Eq. (142), takingχ = 15, Zsat

eff = 2100, which means
that 4900 monovalent(α = 1) counterions are condensed
onto the particle. The coupling strength of the counterion-
counterion interaction is thenΓ ≈ 0.13, which clearly
shows that the electrostatic interactions between the con-
densed counterions are very weak. We can make this ob-
servation even more general. The high surface charge con-
centrationσm encountered in nature is on the order of one
elementary charge per100 Å2. Lets suppose that suspen-
sion consists of highly charged colloidal particles with sur-
face charge densityσm. Clearly this means that there will
be a lot of counterion condensation. For a salt-free colloidal
suspension containing multivalent counterions, the number
of condensed counterions will be approximately

n∗ ≈ Z

α
. (164)

The radius of a colloidal particle can be expressed as

a =
√

Z

4πσm
. (165)

Substituting Eqs. (164) and (165) into Eq. (163) we find that
the maximum counterion-counterion coupling strength is,

Γmax ≈ 1
2
α

3
2 λB

√
πσm . (166)

For monovalent counterionsΓmax ≈ 0.65, for divalent
counterionsΓmax ≈ 1.8, and for trivalent counterions
Γmax ≈ 3.4. AlthoughΓmax is an overestimate, it clearly
shows that for highly charged colloidal particles, correla-
tions between the condensed multivalent counterions cannot
be ignored.

10.1 Overcharging

One consequence of strong electrostatic correlations is the
phenomenon known as the “overcharging” [81-94,5]. Over-
charging occurs as the result of highly favorable gain in elec-
trostatic free energy due to strong positional correlations be-
tween the condensed counterions.

To understand better how the overcharging of colloidal
particles comes about let us consider a simple case of one
colloidal particle with a uniform surface charge−Zq and
radiusa, at zero temperature [95, 96]. The question that
we would like to answer is how manyα-valent counte-
rions should be placed on top of the colloidal particle in
order to minimize the electrostatic energy of the resultant
polyion-counterion complex? Naively we might suppose
that the number of condensed counterions should be such
as to neutralize completely the colloidal charge. This, in-
deed, would be the case if the charge of counterions was
uniformly smeared over the surface of colloid. In reality, the
counterions are discrete entities and can gain favorable en-
ergy by maximizing their separation from one another. Lets
calculate the electrostatic energy of the polyion-counterion
complex,

En =
Z2q2

2εa
− Zαnq2

εa
+ Fαα

n . (167)

The first term is the self energy of a polyion, the second term
is the electrostatic energy of interaction between the polyion
and n condensedα-ions, and the last term is the electro-
static energy of repulsion between the condensed counteri-
ons. Now, consider a one component plasma ofn α-ions on
the surface of a sphere of radiusa but with auniform neu-
tralizing background charge−αnq. The electrostatic en-
ergy of thisOCP can be expressed as the sum of contri-
butions arising from the counterion-counterion interaction,
counterion-background interaction, and the self energy of
the background,

FOCP
n = Fαα

n − α2n2q2

εa
+

α2n2q2

2εa
. (168)

Substituting this expression into Eq. (167), the electrostatic
energy of the polyion-counterion complex simplifies to

En =
(Z − αn)2q2

2εa
+ FOCP

n . (169)

For low temperatures, the condensed counterions try to max-
imize their separation from one another. In the planar ge-
ometry the ground state corresponds to a triangular Wigner
crystal. A similar arrangement of counterions will also be
found on the surface of a spherical colloidal particle, up to
some topological defects. The electrostatic energy of a pla-
narOCP has been discussed in Section 7. For a spherical
OCP the electrostatic energy at zero temperature is

FOCP
n = −M

α2q2n3/2

2εa
. (170)
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whereM is the Madelung constant. At this point it is inter-
esting to make a historical aside. The energy in Eq. (169)
is related to the very old and famous problem in the his-
tory of modern physics. The question was first posed by J.J.
Thomson in the context of his exploration of what is “atom”
[97]? After his discovery of electron in1897, Thomson was
trying to understand the structure of the periodic table and
thought that he could do this if he could figure out the lo-
cation of the electrons inside atoms. The only problem was
that at that time proton was still not discovered, so in order to
keep his atom neutral, Thomson proposed that the “counter-
charge” to electron is uniformly distributed inside the atom.
The point-like electrons were allowed to move freely in the
interior of the atom, with the ground state determined by the
minimum of the electrostatic energy. This became know as
the “plum pudding” model of an atom: electrons confined to
an interior of a sphere with a uniform neutralizing positive
background.

The general solution to the Thomson problem is still un-
known. In the limit that the background charge vanishes,
the atom turns into conductor and all the electrons move to
the surface of the sphere. Even this simplified version of
the Thomson problem has no general solution, except for a
small number of particles — this is one hundred years af-
ter its original formulation! The difficulty in determining
the ground state configuration of charges on the surface of
a sphere is a consequence of an exponentially large number
of metastable states, with energies very close to that of the
true ground state [98]. Nevertheless, although in general the
exact ground state is not available, its energy is very well
approximated by the simple expression given by Eq. (169)
with Z = 0 [99, 100].

Because of a topological difference between a plane and
the surface of a sphere, we expect that the Madelung con-
stant will not be exactly the same in the two cases. The dif-
ference, however, is found to be very smallMs = 1.102 for
the sphere, as opposed toMp = 1.106 for the planarOCP .

Returning to our charge inversion problem, the effective
charge of the polyion-counterion complex in units of−q is

Zeff = Z − αn∗ . (171)

wheren∗ is the number of condensedα-ions which mini-
mize the electrostatic energy,

dEn

dn


n∗

= 0 . (172)

The effective charge is found to be

Zeff = −1 +
√

1 + 4γ2Z

2γ2
, (173)

whereγ is,

γ =
4

3Ms
√

α
. (174)

We see that the effective charge of the polyion-counterion
complex is reversed compared to the bare chargeZ of the

colloidal particle. The complex is overcharged. For highly
charged colloids, the effective charge scales as the square
root of the bare charge [101, 96],

Zeff ≈ −
√

Z

γ
. (175)

The analysis above was conducted for one colloidal par-
ticle at zero temperature. The charges were placed on top
of a sphere without taking into account the energy cost for
the charge transfer. This is clear unrealistic, the transfer of
charge from a reservoir to the colloidal surface requires an
expenditure of work, which in general can be quite large.
This will certainly strongly influence the degree of over-
charging. Nevertheless, the simple calculation presented
above provides us with an insight into how the electrostatic
correlations can lead to a charge reversal in a colloidal sus-
pension.

11 Conclusions

The goal of the mini-course was to provide the students with
some basic tools necessary to understand the thermodynam-
ics of Coulomb systems. We saw that much of the qualita-
tive and often semi-quantitative insight into these complex
systems can be gained from studying simple models, using
some fairly simple theories. One finds, however, that it is
often difficult to go beyond the “simple” theories. As one
tries to improve on these theories, the results often become
worse instead of better [5]. Thus, what might look like an
improvement, from the theoretical stand point, often fails
when compared to experiment or Monte Carlo simulations.
The advantage of “simple” theories, however, is that their
structure often allows to correct them in a physically trans-
parent sort of way. A nice example of this is the Bjerrum
modification of the Debye-Ḧckel theory(DHBj), Section
4. The drawback, on the other hand, is that the approxima-
tions are uncontrolled. Thus, there is no simple perturba-
tive parameter which allows one to clearly state the “order”
to which the theory is correct. Nevertheless, the physically
based theories are found, in many cases, to work better than
the more rigorous field theoretic perturbative expansions [5].
One possible explanation for this is that theDHBj types of
theories are intrinsically non-perturbative. This can already
be seen from the form of the Debye-Hückel free energy,
Eq. (41). The free energy contains terms to all orders inκa.
The absence of a good resummation prescription, in the case
of perturbative field theories, might be partially responsible
for their failure in application to Coulombic criticality.

References

[1] M. E. Fisher and Y. Levin, Phys. Rev. Lett.71, 3826 (1993).

[2] Y. Levin and M. E. Fisher, Physica A225, 164 (1996).

[3] G. Orkoulas and A. Z. Panagiotopoulos, J. Chem. Phys.110,
1581 (1999).



Yan Levin 1175

[4] E. Luijten, M. E. Fisher, and A. Z. Panagiotopoulos, Phys.
Rev. Lett.88, 185701 (2002).

[5] Y. Levin, Rep. Prog. Phys.65, 1577 (2002).

[6] J. Kosterlitz and D. Thouless, J. Phys. C6, 1181 (1973).

[7] S. T. Chui and J. D. Weeks, Phys. Rev. B14, 4978 (1976).

[8] D. Nelson, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic Press, NY,
1983), p. 1.
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