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This article contains the lecture notes for the short course “Introduction to Econophysics,” delivered at the II
Brazilian School on Statistical Mechanics, held in São Carlos, Brazil, in February 2004. The main goal of
the present notes is twofold: i) to provide a brief introduction to the problem of pricing financial derivatives
in continuous time; and ii) to review some of the related problems to which physicists have made relevant
contributions in recent years.

1 Introduction

This article comprises the set of notes for the short course
“Introduction to Econophysics,” delivered at the II Brazilian
School on Statistical Mechanics, held at the University of
São Paulo, in S̃ao Carlos, SP, Brazil, in February 2004. The
course consisted of five lectures and was aimed at physics
graduate students with no previous exposition to the subject.

The main goal of the course was twofold: i) to provide
a brief introduction to the basic models for pricing financial
derivatives; and ii) to review some of the related problems in
Finance to which physicists have made significant contribu-
tions over the last decade. The recent body of work done by
physicists and others have produced convincing evidences
that thestandard model of Finance(see below) is not fully
capable of describing real markets, and hence new ideas and
models are called for, some of which have come straight
from Physics. In selecting some of the more recent work
done by physicists to discuss here, I have tried to restrict
myself to problems that may have a direct bear on models
for pricing derivatives. And even in such cases only a brief
overview of the problems is given. It should then be empha-
sized that these notes are not intended as a review article on
Econophysics, which is nowadays a broad interdisciplinary
area, but rather as a pedagogical introduction to the math-
ematics (and physics?) of financial derivatives. Hence no
attempt has been made to provide a comprehensive list of
references.

No claim of originality is made here regarding the con-
tents of the present notes. Indeed, the basic theory of finan-
cial derivatives can now be found in numerous textbooks,
written at a different mathematical levels and aiming at spe-
cific (or mixed) audiences, such as economists [1, 2, 3, 4],
applied mathematicians [5, 6, 7, 8], physicists [9, 10, 11],
etc. (Here I have listed only the texts that were most often
consulted while writing these notes.) Nevertheless, some
aspects of presentation given here have not, to my knowl-
edge, appeared before. An example is the analogy between
market efficiency and a certain symmetry principle that is
put forward in Sec. V. Similarly, the discussion of some of

the more recent research problems is based on the already
published literature. An exception is Fig. 12 which contains
unpublished results obtained by R. L. Costa and myself.

The present notes are organized as follows. Section
II gives some basic notions of Finance, intended to intro-
duce the terminology as well as the main problems that I
shall be considering. In Sec. III, I discuss the Brownian
motion, under a more formal viewpoint than most Physics
graduate students are perhaps familiar with, and then de-
velop the so-called Itô stochastic calculus. Section IV con-
tains what is theraison d’etre of the present notes, the
Black-Scholes model for pricing financial derivatives. In
Sec. V, the martingale approach for pricing derivatives is
introduced. In particular, I recast the notions of market ef-
ficiency and no-arbitrage as a ‘symmetry principle’ and its
associated ‘conservation law.’ Sections VI and VII discuss
two possible ways in which real markets may deviate from
the standard Black-Scholes model. The first of such possi-
bilities is that financial asset prices have non-Gaussian dis-
tributions (Sec. VI), while the second one concerns the pres-
ence of long-range correlations or memory effects in finan-
cial data (Sec. VII). Conclusions are presented in Sec. VIII.
For completeness, I give in Appendix A the formal defini-
tions of probability space, random variables, and stochastic
processes.

2 Basic Notions of Finance

2.1 Riskless and risky financial assets

Suppose you deposit at timet = 0 an amount of R$ 1 into a
bank account that pays an interest rater. Then over time the
amount of money you have in the bank, let us call itB(t),
will increase at a rate

dB

dt
= rB. (1)

Solving this equation subject to the initial conditionB(0) =
1 yields

B(t) = ert. (2)
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A bank account is an example of a riskless financial
assets, since you are guaranteed to receive a known (usu-
ally fixed) interest rater, regardless of themarket situation.
Roughly speaking, the way banks operate is that they borrow
from people who have money to ‘spare’, but are not willing
to take risks, and lend (at higher interest rates) to people
who ‘need’ money, say, to invest in some risky enterprise.
By diversifying their lending, banks can reduce their overall
risk, so that even if some of these loans turn bad they can
still meet their obligations to the investors from whom they
borrowed.

Governments and private companies can also borrow
money from investors by issuingbonds. Like a bank ac-
count, a bond pays a (fixed or floating) interest rate on a reg-
ular basis, the main difference being that the repayment of
the loan occurs only at a specified time, called the bond ma-
turity. Another difference is that bonds are not strictly risk-
free assets because there is always a chance that the bond
issuer may default on interest payments or (worse) on the
principal. However, since governments have a much lower
risk to default than corporations, certain government bonds
can be considered to be risk free.

A company can also raise capital by issuingstocksor
shares. Basically, a stock represents the ownership of a
small piece of the company. By selling many such ‘small
pieces’, a company can raise capital at lower costs than if it
were to borrow from a bank. As will be discussed shortly,
stocks areriskyfinancial assets because their prices are sub-
jected to unpredictable fluctuations. In fact, this is what
makes stocks attractive toaggressiveinvestors who seek to
profit from the price fluctuations by pursuing the old advice
to “buy low and sell high.”

The buying and selling of stocks are usually done in or-
ganized exchanges, such as, the New York Stock Exchange
(NYSE) and the S̃ao Paulo Stock Exchange (BOVESPA).
Most stock exchanges haveindexesthat represent some sort
of average behavior of the corresponding market. Each in-
dex has its own methodology. For example, theDow Jones
Industrial Averageof the NYSE, which is arguably the most
famous stock index, corresponds to an average over 30 in-
dustrial companies. The Ibovespa index of the São Paulo
Stock Exchange, in contrast, represents the present value of
a hypothetical portfolio made up of the stocks that altogether
correspond to 80% of the trading volume. Another well
known stock index is the Standard & Poor’s 500 (S&P500)
Index calculated on the basis of data about 500 companies
listed on the NYSE. [Many other risky financial assets, such
as, currency exchange rates, interest rates, and commodities
(precious metals, oil, grains, etc), are traded on organized
markets but these will not be discussed any further in the
present notes.]

2.2 The random nature of stock prices

Since a stock represents a ‘small piece’ of a company, the
stock price should somehow reflect the overall value (net
worth) of this company. However, the present value of a firm
depends not only on the firm’s current situation but also on
its future performance. So here one sees already the basic

problem in pricing risky financial assets: we are trying to
predict the future on the basis of present information. Thus,
if a new information is revealed that might in one way or
another affect the company’s future performance, then the
stock price will vary accordingly. It should therefore be
clear from this simple discussion that the future price of a
stock will always be subjected to a certain degree of uncer-
tainty. This is reflected in the typical ‘erratic behavior’ that
stock prices show when graphed as a function of time. An
example of such a graph is shown in Fig. 1 for the case of
the Ibovespa stock index.
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Figure 1. Daily closing values of the deflated Ibovespa index in the
period 1968–2003.

Although stock prices may vary in a rather unpredictable
way, this does not mean that they cannot be modeled. It says
only that they should be described in aprobabilisticfashion.
To make the argument a little more precise, letS be the price
of a given stock and suppose we want to write an equation
analogous to (1) for the rate of increase ofS:

dS

dt
= R(t)S, (3)

whereR(t) represents the ‘rate of return’ of the stock. The
question then is: what isR(t)? From our previous discus-
sion, it is reasonable to expect thatR(t) could be separated
into two components: i) a predictable mean rate of return,
to be denoted byµ, and ii) a fluctuating (‘noisy’) termξ(t),
responsible for the randomness or uncertainty in the stock
price. Thus, after writingR(t) = µ + ξ(t) in (3) we have

dS

dt
= [µ + ξ(t)] S. (4)

Now, one of the best models for ‘noise’ is, of course, the
white noise, so it should not come as a surprise to a physi-
cist that Brownian motion and white noise play an important
rôle in finance, as will be discussed in detail shortly.

2.3 Options and derivatives

Besides the primary financial assets already mentioned
(stocks, commodities, exchange rate, etc), many other fi-
nancial instruments, such asoptionsand futures contracts,
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are traded on organized markets (exchanges). These secu-
rities are generically calledderivatives, because they derive
their value from the price of some primary underlying as-
set. Derivatives are also sometimes referred to ascontingent
claims, since their values are contingent on the evolution of
the underlying asset. In the present notes, I will discuss only
one of the most basic derivatives, namely, options.

An option is a contract that gives its holder the right,but
not the obligation, to buy or sell a certain asset for a speci-
fied price at some future time. The other part of the contract,
the option underwriter, is obliged to sell or buy the asset at
the specified price. The right to buy (sell) is called acall
(put) option. If the option can only be exercised at the future
date specified in the contract, then it is said to be a Euro-
pean option. American options, on the other hand, can be
exercised at any time up to maturity. (For pedagogical rea-
sons, only European derivatives will be considered here.) To
establish some notation let us give a formal definition of a
European option.

Definition 1 A European call option with exercise price (or
strike price)K and maturity (or expiration date)T on the
underlying assetS is a contract that gives the holder the
right to buy the underlying asset for the priceK at timeT .

A Europeanput option is the same as above, the only
difference being that it gives the holder the right tosell the
underlying asset for the exercise price at the expiration date.

If at the expiration dateT the stock priceST is above the
strike priceK, the holder of a call option will exercise his
right to buy the stock from the underwriter at priceK and
sell it in the market at the spot priceST , pocketing the dif-
ferenceST −K. On the other hand, if at expiration the price
ST closes belowK then the call option becomes worthless
(since it would be cheaper to buy the stock in the market).
Thepayoffof a call option at maturity is therefore given by

payoffcall = max(ST −K, 0). (5)
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Figure 2. Value of a call option at the expiration date (thick line)
and before expiration (thin line).

The payoff diagram of a call option is illustrated by the thick
line in Fig. 2. In this figure the thin line represents the price
of the call option at an arbitrary timet < T before expira-
tion. (The otpion price before expiration is always greater
than the payoff at expiration on account of the higher risks:

the further way the expiration date, the greater the uncer-
tainty regarding the stock price at expiration.) Similarly, the
payoff function for a put option is

payoffput = max(K − ST , 0), (6)

which is shown as the thick line in Fig. 3.
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Figure 3. Value of a put option at the expiration date (thick line)
and before expiration (thin line).

Because an option entitles the holder to a certain right
it commands a premium. Said differently, since the under-
writer has an obligation (while the holder has only rights)
he will demand a payment, to be denoted byC0, from the
holder in order to enter into such a contract. Thus, in the
case of a call option, if the option is exercised the holder
(underwriter) will make a profit (loss) given bymax(S −
K, 0) − C0; otherwise, the holder (underwriter) will have
lost (won) the amountC0 paid (received) for the option. And
similarly for a put option. Note then that the holder and the
underwriter of an option have opposite views regarding the
direction of the market. For instance, the holder of a call
option is betting that the stock price will increase (past the
exercise price), whereas the underwriter hopes for the oppo-
site.

Now, given that the holder and the underwriter have op-
posite views as to the direction of the market, how can they
possibly agree on the price for the option? For if the holder
(underwriter) suspects that the option is overvalued (under-
valued) he will walk away from the contract. The central
problem in option pricing is therefore to determine thera-
tional pricepriceC0 that ensures that neither part ‘stands a
better chance to win.’

A solution to this problem (under certain assumptions)
was given in 1973 in the now-famous papers by Black and
Scholes [12] and Merton [13], which won Scholes and Mer-
ton the Nobel prize in Economics in 1997. (Black had died
meanwhile.) The history of options is however much longer.
In fact, the first scientific study of options dates back to
the work by the French mathematician Bachelier in 1900
[14], who solved the option pricing problem above but un-
der slightly wrong assumptions; see, e.g., [11] for a detailed
discussion of Bachelier’s work.

After an option (traded on exchange) is first underwrit-
ten, it can subsequently be traded and hence its ‘market
price’ will be determined by the usual bid-ask auction. It is
nonetheless important to realize that investors in such highly
specialized market need some basic pricing theory to rely
on, otherwise investing in options would be a rather wild
(and dangerous) game. Indeed, only after the appearance
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of the Black-Scholes model [and the establishment of the
first option exchange in Chicago also in 1973] have option
markets thrived. One of the main objectives of the present
notes is to explain the theoretical framework, namely, the
Black-Scholes model and some of its extensions, in which
options and other derivatives are priced. I will therefore not
say much about the practical aspects of trading with options.

2.4 Hedging, speculation, and arbitrage

Investors in derivative markets can be classified into three
main categories:hedgers, speculators, andarbitrageurs.

Hedgersare interested in using derivatives to reduce the
risk they already face in their portfolio. For example, sup-
pose you own a stock and are afraid that its price might go
down within the next months. One possible way to limit
your risk is to sell the stock now and put the money in a
bank account. But then you won’t profit if the market goes
up. A betterhedgingstrategy would clearly be to buy a put
option on the stock, so that you only have to sell the stock
if it goes below a certain price, while getting to keep it if
the price goes up. In this case an option works pretty much
as an insurance: you pay a small price (the option premium
C0) to insure your holdings against possibly high losses.

Speculators, in contrast to hedgers, seek to make profit
by taking risks. They ‘take a position’ in the market, by bet-
ting that the price on a given financial asset will go either
up or down. For instance, if you think that a certain stock
will go up in the near future, you could “buy and hold” the
stock in the hope of selling it later at a profit. But then there
is the risk that the price goes down. A better strategy would
thus be to buy a call option on the stock. This not only is
far cheaper than buying the stock itself but also can yield
a much higher return on your initial investment. (Why?)
However, if the market does not move in the way you ex-
pected and the option expire worthless, you end up with a
100% loss. (That’s why speculating with option is a very
risky business.)

Arbitrageursseek to make arisklessprofit by entering
simultaneously into transactions in two or more markets,
usually without having to make any initial commitment of
money. The possibility of making a riskless profit, starting
with no money at all, is called an arbitrage opportunity or,
simply, an arbitrage. A more formal definition of arbitrage
will be given later. For the time being, it suffices to give an
example of how an arbitrage opportunity may arise.

But before going into this example, it is necessary first
to discuss the notion of ashort sell. ‘Shorting’ means selling
an asset that one does not own. For example, if you place an
order to your broker to short a stock, the broker will “bor-
row” a stock from somebody else’s account, sell it in the
market, and credit the proceeds intoyour account. When
you then decide to close your short position (there usually is
a limit on how long an asset can be held short), your broker
will buy the stock in the market (taking the money from your
account) and return it to its original owner. If in the mean-
time the stock prices decreased, the short sell brings a profit,
otherwise the short seller incurs in a loss. This is why a
short sell is usually done simultaneously with another oper-

ation to compensate for this risk (as in the arbitrage example
below). It should also be noted, in passing, that buying the
actual asset corresponds to taking a ‘long position’ on this
asset.

Let us now consider our hypothetical arbitrage example.
Many Brazilian companies listed in the São Paulo Stock Ex-
change also have their stocks traded on the New York Stock
Exchange in the form of the so-called American Deposi-
tory Receipt (ADR). Suppose then that a stock is quoted in
São Paulo at R$ 100, with its ADR counterpart trading in
New York at US$ 34, while the currency rate exchange is
1 USD = 2.90 BRL. Starting with no initial commitment,
an arbitrageur could sell shortN stocks in S̃ao Paulo and
use the proceeds to buyN ADR’s in New York (and later
have them transferred to São Paulo to close his short po-
sition). The riskless profit in such operation would be R$
(100 − 2.90 × 34)N = R$ 1.40 N . (In practice, the trans-
action costs would eliminate the profit for all but large insti-
tutional investors [1].)

Note, however, that such ‘mispricing’ cannot last long:
buy orders in New York will force the ADR price up, while
sell orders in S̃ao Paulo will have the opposite effect on the
stock price, so that anequilibrium pricefor both the ADR
and the stock is soon reached, whereupon arbitrage will no
longer be possible. In this sense, the actions of anarbi-
trageurare self-defeating, for they tend to destroy the very
arbitrage opportunity he is acting upon—but before this hap-
pens a lot of money can be made. Since there are many
people looking for such riskless chances to make money, a
well-functioning market should be free of arbitrage. This is
the main idea behind the principle that in anefficient mar-
ket there is no arbitrage, which is commonly known as the
“no-free-lunch” condition.

2.5 The no-arbitrage principle in a (binomial)
nutshell

Here we shall consider a one-step binomial model to illus-
trate the principle of no-arbitrage and how it can be used
to price derivatives. Suppose that today’s price of an ordi-
nary Petrobras stocks (PETR3 in their Bovespa acronym) is
S0 = 57 BRL. Imagine then that in the next time-period,
say, one month, the stock can either go up toSu

1 = 65 with
probabilityp or go down toSd

1 = 53 with probabilityq. For
simplicity let us takep = q = 1/2. Our binomial model for
the stock price dynamics is illustrated in Fig. 4. Note that
in this case the stock mean rate of return,µ, is given by the
expression:(1+µ)S0 = E[S1], whereE[S] denotes the ex-
pected value ofS (see Sec. III A for more on this notation).
Using the values shown in Fig. 4, one then getsµ = 0.035
or µ = 3.5%. Let us also assume that the risk-free interest
rate isr = 0.6% monthly.

Consider next a call option on PETR3 with exercise
price K = 57 and expiration in the next time period, i.e.,
T = 1. Referring to (5) and Fig. 4, one immediately sees
that at expiration the possible values (payoffs) for this op-
tion in our binomial model are as shown in Fig. 5:Cu

1 = 8
or Cd

1 = 0 with equal probability. The question then is to
determine the ‘rational’ priceC0 that one should pay for the
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option. Below we will solve this problem using two differ-
ent but related methods. The idea here is to illustrate the
main principles involved in option pricing, which will be
generalized later for the case of continuous time.

S  = 651

S  = 531

p = 1/2

p = 1/2

S   = 570

Figure 4. One-step binomial model for a stock.

C  = 0

p = 1/2

1

1

C0

C  = 65-57 = 8

p = 1/2

Figure 5. Option value in the one-step binomial model.

V  = -53

p = 1/2

p = 1/2

1

1

V  = 8-65

0V  = C   -570 ∆

∆

∆
Figure 6. Delta-hedging portfolio in the one-step binomial model.

First, we describe the so-called delta-hedging argument.
Consider a portfolio made up of one optionC and a short
position on∆ stocks, where∆ is to be determined later, and
let Vt denote the money value of such a portfolio at timet.
We thus have

Vt = Ct −∆St,

where the minus sign denotes that we have short sold∆
stocks (i.e., we ‘owe’∆ stocks in the market). From Figs. 4
and 5, one clearly sees that the possibles values for this port-
folio in our one-step model are as illustrated in Fig. 6. Let
us now chose∆ such that the valueV1 of the portfolio is
the same in both ‘market situations.’ Referring to Fig. 6 one
immediately finds

V u
1 = V d

1 =⇒ 8−∆ · 65 = −∆ · 53 =⇒ ∆ =
2
3
.

Thus, by choosing∆ = 2/3 we havecompletelyeliminated
the risk from our portfolio, since in both (up or down) sce-
narios the portfolio has the same valueV1. But since this

portfolio is riskless,its rate of return must be equal to the
risk-free interest rater, otherwise there would be an arbi-
trage opportunity, as the following argument shows.

Let r′ denote the portfolio rate of return, i.e.,r′ is the
solution to the following equation

(1 + r′)V0 = V1. (7)

If r′ < r, then anarbitrageur should take a long position
on (i.e., buy) the option and a short position on∆ stocks.
To see why this is an arbitrage, let us go through the argu-
ment in detail. At timet = 0 the arbitrageur’s net cash-
flow would beB0 = |V0| = ∆ · S0 − C0, which he should
put in the bank so that in the next period he would have
B1 = (1 + r)|V0|. At time t = 1, he should then close his
short position on∆ stocks, either exercising his option (up
scenario) or buying∆ stocks directly in the market (down
scenario). In either case, he would have to pay the same
amount|V1| = (1 + r′)|V0| < B1, and hence would be left
with a profit ofB1 − |V1|. On the other hand, ifr′ > r the
arbitrageur should adopt the opposite strategy: go short on
(i.e., underwrite) the option and long on∆ stocks (borrow-
ing money from the bank to do so).

We have thus shown that to avoid arbitrage we must have
r′ = r. This is indeed a very general principle that deserves
to be stated in full:in a market free of arbitrage any risk-
less portfolio must yield the risk-free interest rater. This
no-arbitrage principle is at the core of the modern theory of
pricing derivatives, and, as such, it will be used several times
in these notes.

Let us now return to our option pricing problem. Setting
r′ = r in (7) and substituting the values ofV0 andV1 given
in Fig. 6, we obtain

(1 + r) [C0 −∆ S0] = −∆ Sd
1 . (8)

Inserting the values ofr = 0.006, S0 = 57, Sd
1 = 53, and

∆ = 2/3 into the equation above, it then follows that the
option price that rules out arbitrage is

C0 = 2.88. (9)

It is instructive to derive the option price through a
second method, namely, themartingale approachor risk-
neutral valuation. To this end, we first note that from Fig. 5
we see that the expected value of the option at expiration is
E[C1] = 1

2 8 + 1
2 0 = 4. One could then think, not to-

tally unreasonably, that the correct option price should be
the expected payoff discounted to the present time with the
risk-free interest rate. In this case one would get

C ′0 =
E[C1]
1 + r

=
4

1.006
= 3.98,

which is quite different from the price found in (9). The
faulty point of the argument above is that, while we used the
risk-free rater to discount the expected payoffE[C1], we
have implicitly used the stock mean rate of returnµ when
calculatingE[C1]. Using these two different rates leads to
a wrong price, which would in turn give rise to an arbitrage
opportunity.
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A way to avoid this arbitrage is to find fictitious proba-
bilities qu andqd, with qu + qd = 1, such that the stock ex-
pected return calculated with these new probabilities would
equal the risk-free rater. That is, we must demand that

S0(1 + r) = EQ[S1] ≡ qu · Su
1 + qd · Sd

1 , (10)

whereEQ[x] denotes expected value with respect to the new
probabilitiesqu and qd. Using the values forSu

1 and Sd
1

given in Fig. 4, we easily find that

qu = 0.3618, qd = 0.6382.

Under these probabilities, the expected valueEQ[C1] of the
option at maturity becomesEQ[C1] = 0.3618×8+0.6382×
0 = 2.894, which discounted to the present time yields

C0 =
EQ[C1]
1 + r

=
2.894
1.006

= 2.88,

thus recovering the same price found with the delta-hedging
argument.

Note that under the fictitious probabilityqu andqd, all
financial assets (bank account, stock, and option) in our bi-
nomial model yield exactly the same riskless rater. Proba-
bilities that have this property of ‘transforming’ risky assets
into seemingly risk-free ones are called anequivalent mar-
tingale measure. Martingale measures is a topic of great
relevance in Finance, as will be discussed in more detail in
Sec. IV.

In closing this subsection, it should be noted that the
one-step binomial model considered above can be easily
generalized to a binomial tree with, say,N time steps. But
for want of space this will not be done here. (I anticipare
here, however, that Black-Scholes model to be considered
later corresponds precisely to the continuous-time limit of
the binomial multistep model.) It is perhaps also worth men-
tioning that binomial models are often used in practice to
price exotic derivatives, for which no closed formula exists,
since such models are rather easy to implement on the com-
puter; see, e.g., [1] for more details on binomial models.

2.6 Put-Call parity

In the previous subsection I only considered the price of a
(European) call option, and the attentive reader might have
wondered how can one determine the price of the corre-
sponding put option. It turns out that there is a simple re-
lationship between European put and call options, so that
from the price of one of them we can obtain the price of the
other. To see this, form the following portfolio: i) buy one
stockS and one put optionP on this stock with strike price
K and maturityT , and ii) short one call optionC with the
same strike and maturity as the put option. The value of such
portfolio would thus be

V = S + P − C. (11)

Now from (5) and (6), one immediately sees that at expira-
tion we haveP −C = K−S, so that the value of the above
portfolio at timeT becomes simply

VT = K. (12)

Since this portfolio has a known (i.e., riskless) value at time
t = T , it then follows from the no-arbitrage condition that
its value at any time0 ≤ t ≤ T must be given by

V = Ke−r(T−t), (13)

wherer is the risk-free interest rate. Inserting (13) into (11)
immediately yields the so-called put-call parity relation:

P = C − S + Ke−r(T−t). (14)

3 Brownian motion and stochastic
calculus

3.1 One-dimensional random walk

Every physics graduate student is familiar, in one way or an-
other, with the concept of a Brownian motion. The custom-
ary introduction [15] to this subject is through the notion of
a random walk, in which the anecdotal drunk walks along a
line taking at every time interval∆t one step of sizel, either
to the right or to the left with equal probability. The posi-
tion, X(t), of the walker after a timet = N∆t, whereN
is the number of steps taken, represents astochastic process.
(See Appendix A for a formal definition of random variables
and stochastic processes.) As is well known, the probability
P (X(t) = x) for the walker to be found at a given position
x = nl, wheren is an integer, at given timet, is described
by a binomial distribution [15].

Simply stated, the Brownian motion is the stochastic
process that results by taking the random walk to the con-
tinuous limit: ∆t → 0, l → 0, N → ∞, n → ∞ such that
t = N∆t andx = nl remain finite. (A more formal defini-
tion is given below.) Here, however, some caution with the
limits must be taken to ensure that a finite probability den-
sity p(x, t) is obtained: one must take∆t → 0 andl → 0,
such thatl2 = σ∆t, whereσ is a constant. In this case one
obtains thatp(x, t) is given by a Gaussian distribution [15]:

p(x, t) =
1√

2πσ2t
exp

{
− x2

2σ2t

}
. (15)

At this point let us establish some notation. LetX be
a random variable with probability density function (pdf)
given byp(x). [Following standard practice, we shall de-
note a random variable by capital letters, while the values it
takes will be written in small letters]. The operator for ex-
pectation value will be denoted either asE[·] or < · >, that
is,

E[f(X)] ≡ 〈f(X)〉 =
∫ ∞

−∞
f(x)p(x)dx, (16)

wheref(x) is an arbitrary function. Although the angular-
bracket notation for expectation value is preferred by physi-
cists, we shall often use theE notation which is more con-
venient for our purposes.
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A Gaussian or normal distribution with meanm and
standard deviationσ will be denoted byN (m,σ), whose
pdf is

pN (x, t) =
1√

2πσ2
exp

{
− (x−m)2

2σ2

}
. (17)

Let us also recall that the (nonzero) moments of the Gaus-
sian distribution are as follows

E[X] = m, E[X2] = σ2, (18)

E[X2n] = 1 · 3 · 5 · ... · (2n− 1)σ2n. (19)

3.2 Brownian motion and white noise

We have seen above that a 1D Brownian motion can be
thought of as the limit of a random walk after infinitely
many infinitesimal steps. This formulation was first given
in 1900 by Bachelier [14] who also showed the connection
between Brownian motion and the diffusion equation (five
years before Einstein’s famous work on the subject [16]). It
is thus telling that the first theory of Brownian motion was
developed to model financial asset prices! A rigorous math-
ematical theory for the Brownian motion was constructed
by Wiener [17] in 1923, after which the Brownian motion
became also known as the Wiener process.

Definition 2 The standard Brownian motion or Wiener pro-
cess{W (t), t ≥ 0} is a stochastic process with the follow-
ing properties:

1. W (0) = 0.

2. The incrementsW (t) −W (s) are stationary and in-
dependent.

3. For t > s, W (t) − W (s) has a normal distribution
N (0,

√
t− s).

4. The trajectories are continuous (i.e., “no jumps”).

The stationarity condition implies that the pdf ofW (t)−
W (s), for t > s, depends only on the time differencet− s.

(For a more precise definition of stationary processes see
Appendix A.) Now, it is not hard to convince oneself that
conditions 2 and 3 imply thatW (t) is distributed according
toN (0,

√
t) for t > 0. In particular, we haveE[W (t)] = 0

for all t ≥ 0. Furthermore, one can easily show that the
covariance of the Brownian motion is given by

E[W (t)W (s)] = s, for t > s.

It is also clear from the definition above that the Brownian
motion is a Gaussian process (see Appendix A for the for-
mal definition of Gaussian processes). Then, since a Gaus-
sian process is fully characterized by its mean and covari-
ance, we can give the following alternative definition of the
Brownian motion.

Definition 3 The standard Brownian motion or Wiener pro-
cess{W (t), t ≥ 0} is a Gaussian process withE[W (t)] =
0 andE[W (t)W (s)] = min(s, t).

The Brownian motion has the important property of hav-
ing bounded quadratic variation. To see what this means,
consider a partition{ti}n

i=0 of the interval [0, t], where
0 = t0 < t1 < . . . < tn = t. For simplicity, let us take

equally spaced time intervals:ti − ti−1 = ∆t =
t

n
. The

quadratic variation ofW (t) on [0, t] is defined as

Qn =
n∑

i=0

∆W 2
i , (20)

where∆Wi = W (ti)−W (ti−1). Since∆Wi is distributed
according toN (0,

√
∆t) we have thatE[∆W 2] = ∆t,

which implies that

E[Qn] = t. (21)

Furthermore, using the fact that the increments∆Wi are in-
dependent and recalling that the variance of the sum of in-
dependent variables is the sum of the variances, we get for
the variance ofQn:

c

var[Qn] =
n∑

i=0

var[∆W 2
i ] =

n∑

i=0

{
E[∆W 4

i ]− (
E[∆W 2

i ]
)2

}

=
n∑

i=0

[
3(∆t)2 − (∆t)2

]
=

2t2

n
,

d

where in the third equality we used (19) and the fact that
∆Wi has distributionN (0,

√
∆t). We thus see that

var[Qn] → 0, as n →∞. (22)

On the other hand, we have that

var[Qn] = E
[
(Qn − E[Qn])2

]
= E

[
(Qn − t)2

]
, (23)

where in the last equality we have used (21). Comparing



1046 Giovani L. Vasconcelos

(22) and (23) then yields

lim
n→∞

E
[
(Qn − t)2

]
= 0.

We have thus proven thatQn converges tot in the mean
square sense. This fact suggests that∆W 2 can be thought
of as being of the order of∆t, meaning that as∆t → 0 the
quantity∆W 2 “resembles more and more” the deterministic
quantity∆t. In terms of differentials, we write

[dW ]2 = dt. (24)

Alternatively, we could say thatdW is of order
√

dt:

dW = O(
√

dt). (25)

(I remark parenthetically that the boundedness of the
quadratic variation of the Brownian motion should be
contrasted with the fact that its total variation,An =∑n

i=0 |∆Wi|, is unbounded, that is,An → ∞ asn → ∞,
with probability 1; see [7].)

Another important property of the Brownian motion
W (t) is the fact that it isself-similar(or more exactlyself-
affine) in the following sense:

W (at) d= a1/2W (t), (26)

for all a > 0. Here
d= means equality in the sense of prob-

ability distribution, that is, the two processesW (at) and
a1/2W (t) have exactly the same finite-dimensional distribu-
tionsp(x1, t1; ..., xn, tn) for any choice ofti, i = 1, ..., n,
andn ≥ 1. Self-similarity means that any finite portion of
a Brownian motion path when properly rescaled is (statisti-
cally) indistinguishable from the whole path. For example,
if we ‘zoom in’ in any given region (no matter how small)
of a Brownian motion path, by rescaling the time axis by a
factor ofa and the vertical axis by a factor of

√
a, we obtain

a curve similar (statistically speaking) to the original path.
An example of this is shown in Fig. 7. In the language of
fractals, we say that a trajectory of a Brownian motion is a
fractal curvewith fractal dimensionD = 2.

The self-similarity property implies that sample paths of
a Brownian motion are nowhere differentiable (technically,
with probability 1). A formal proof of this fact, although
not difficult, is beyond the scope of the present notes, so that
here we shall content ourselves with the following heuris-
tic argument. Suppose we try to compute the derivative of
W (t) in the usual sense, that is,

dW

dt
= lim

∆t→0

∆W

∆t
= lim

∆t→0

W (t + ∆t)−W (t)
∆t

.

But since∆W is of order
√

∆t, it then follows that

∆W

∆t
= O

(
1√
∆t

)
, (27)

so thatdW/dt = ∞ as∆t → 0.
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Figure 7. Self-similarity of a Brownian motion path. In (a) we plot
a path of a Brownian motion with 15000 time steps. The curve in
(b) is a blow-up of the region delimited by a rectangle in (a), where
we have rescaled thex axis by a factor 4 and they axis by a factor
2. Note that the graphs in (a) and (b) “look the same,” statistically
speaking. This process can be repeated indefinitely.

Although the derivative ofW (t) does not exist as a reg-
ular stochastic process, it is possible to give a mathematical
meaning todW/dt as ageneralized process(in the sense
of generalized functions or distributions). In this case, the
derivative of theW (t) is called thewhite noiseprocessξ(t):

ξ(t) ≡ dW

dt
. (28)

I shall, of course, not attempt to give a rigorous definition
of the white noise, and so the following intuitive argument

will suffice. Since according to (27) the derivative
dW

dt
di-

verges as
1√
dt

, a simple power-counting argument suggests

that integrals of the form

I(t) =
∫ t

0

g(t′)ξ(t′)dt′, (29)

should converge (in some sense); see below.
In physics, the white noiseξ(t) is simply ‘defined’ as

a ‘rapidly fluctuating function’ [15] (in fact, a generalized
stochastic process) that satisfies the following conditions

〈ξ(t)〉 = 0, (30)

〈ξ(t)ξ(t′)〉 = δ(t− t′). (31)
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These two relations give the ‘operational rules’ from which
quantities such as the mean and the variance of the integral
I(t) in (29) can be calculated. It is convenient, however, to
have an alternative definition of stochastic integrals in terms
of regular stochastic process. Such a construction was first
given by the Japanese mathematician Itô [18].

3.3 Itô stochastic integrals

Using (28), let us first rewrite integral (29) as an “integral
over the Wiener process”W (t):

I(t) =
∫ t

0

g(t′)dW (t′). (32)

The idea then is to define this integral as a kind of Riemann-
Stieltjes integral. We thus take a partition{ti}n

i=0 of the
interval[0, t] and consider the partial sums

c

In =
n∑

i=1

g(ti−1)∆W (ti) ≡
n∑

i=1

g(ti−1)[W (ti)−W (ti−1)]. (33)

d

The functiong(t) above must satisfy certain appropriate
conditions [7], the most important one being thatg(t) be
a non-anticipating function. This means, in particular, that
the valueg(ti−1) in (33) is independent of the ‘next incre-
ment’ ∆W (ti) of the Brownian motion. [For this reason,
choosing to evaluateg(t) at the beginning of the interval
∆ti = ti − ti−1 is a crucial point in the definition of the Itô
stochastic integral. Another possible choice is to evaluate
g(t) at the mid pointt∗ = (ti−1 + ti)/2, which leads to the
Stratonovich integral [8]. In these notes I shall only consider
Itô integrals.]

Under the appropriate conditions ong(t), it is then pos-
sible to show that the partial sumsIn converge in themean
square sense. That is, there exists a processI(t) such that

E
[
(In − I(t))2

]
→ 0 as n →∞. (34)

Using the fact thatg(t) is non-anticipating and that
E [∆W (t)] = 0, it follows immediately from the definition
(33) thatI(t) has zero mean:

E[I(t)] = E

[∫ t

0

g(t′)dW (t′)
]

= 0, (35)

It is also possible to show that stochastic integrals obey the
so-calledisometry property:

E
[
{I(t)}2

]
= E

[(∫ t

0

g(t′)dW (t′)
)2

]

=
∫ t

0

E
[
g2(t′)

]
dt′. (36)

We now see that the true meaning of conditions (30) and
(31) is given by properties (35) and (36), for the particular
case wheng(t) is a deterministic function.

The Itô integral does not conform to the usual integra-
tion rules from deterministic calculus. An example is the
formula below

∫ t

0

WdW =
1
2
W (t)2 − 1

2
t,

which is left as an exercise for the reader [19]. Itô integrals
offer however a convenient way to define (and deal with)
stochastic differential equations, as we will see next.

3.4 Stochastic differential equations

Physicists are quite familiar with differential equations in-
volving stochastic terms, such as the Langevin equation

dv

dt
= −γv + σξ(t), (37)

which describes the motion of a Brownian particle in a vis-
cous liquid [15]. Hereγ is the viscosity of the fluid andσ is
the ‘amplitude’ of the fluctuating force acting on the Brown-
ian particle. (These parameters are usually considered to be
constant but in general they could be non-anticipating func-
tions of time.) Equation (37) does not however make much
mathematical sense, since it evolves a quantity, namely, the
derivativeξ(t) of the Brownian motion, that does not even
exist (except as a generalized process). Nevertheless, it is
possible to put this equation on a firm mathematical basis
by expressing it as a stochastic integral equation. First we
rewrite (37) as

dv = −γvdt + σdW, (38)

which upon integration yields

v(t) = v(0)−
∫ t

0

γv(t′)dt′ +
∫ t

0

σdW (t′). (39)

This integral equation now makes perfectly good sense—in
fact, its solution can be found explicitly [19].

Let us now consider more general stochastic differential
equations (SDE) of the form

dX = a(X, t)dt + b(X, t)dW, (40)
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wherea(x, t) andB(x, t) are known functions. Note that
this ‘differential equation’ is actually a short-hand notation
for the following stochastic integral equation

X(t) = X(0)+
∫ t

0

a(X, t′)dt′+
∫ t

0

b(X, t′)dW (t′). (41)

Under certain condition on the functionsa(x, t) andb(x, t),
it is possible to show (see, e.g., [8]) that the SDE (40) has a
unique solutionX(t).

Let us discuss another simple SDE, namely, the Brown-
ian motion with drift:

dX = µdt + σdW, (42)

where the constantµ represents the mean drift velocity. In-
tegrating (42) immediately yields the process

X(t) = µt + W (t), (43)

whose pdf is

p(x, t) =
1

2πσ2t
exp

{
(x− µt)2

2σ2t

}
. (44)

Another important example of a (linear) SDE that can be
solved explicitly is the geometric Brownian motion that will
be discussed shortly. But before doing that, let us discuss a
rather useful result known asItô lemmaor Itô formula.

3.5 Itô formula

Consider the generic processX(t) described by the SDE
(40), and suppose that we have a new stochastic processZ
defined by

Z(t) = F (X(t), t), (45)

for some given functionF (x, t). We now wish to find the lo-
cal dynamics followed by theZ(t), that is, the SDE whose
solutions corresponds to the processZ(t) above. The an-
swer is given by the It̂o formula that we now proceed to
derive.

First, consider the Taylor expansion of the function
F (X, t):

dF =
∂F

∂t
dt +

∂F

∂x
dX +

1
2

∂2F

∂x2
(dX)2+

+
1
2

∂2F

∂t2
(dt)2 +

1
2

∂2F

∂t∂x
dtdX + ... (46)

Note, however, that

(dX)2 = b2dW 2 + 2ab dtdW + a2(dt)2

= b2dt + O(dt3/2), (47)

where we used the fact thatdW 2 = dt and dtdW =
O(dt3/2). (Here we have momentarily omitted the argu-
ments of the functionsa and b for ease of notation.) In-
serting (47) into (46) and retaining only terms up to order
dt, we obtain

dF =
[
∂F

∂t
+

1
2
b2 ∂2F

∂x2

]
dt + b

∂F

∂x
dX, (48)

which is known as It̂o formula. Upon using (40) in the equa-
tion above, we obtain Itô formula in a more explicit fashion

dF =
[
∂F

∂t
+ a(X, t)

∂F

∂x
+

1
2
b2(X, t)

∂2F

∂x2

]
dt

+ b(X, t)
∂F

∂x
dW, (49)

What is noteworthy about this formula is the fact that the
fluctuating part of the primary processX(t) contributes to
the drift of the derived processZ(t) = F (t, X) through the
term 1

2b2(t,X)∂2F
∂x2 . We shall next use Itô formula to solve

explicitly a certain class of linear SDE’s.

3.6 Geometric Brownian motion

A stochastic process of great importance in Finance is the
so-called geometric Brownian notion, which is defined as
the solution to the following SDE

dS = µSdt + σSdW, (50)

whereµ andσ are constants, subjected to a generic initial
conditionS(t0) = S0. Let us now perform the following
change of variablesZ = ln S. Applying Itô formula (49)
with a = µS, b = σS andF (S) = ln S, it then follows that

dZ =
(

µ− 1
2
σ2

)
dt + σdW, (51)

which upon integration yields

Z(t) = Z0+
(

µ− 1
2
σ2

)
(t−t0)+σ[W (t)−W (t0)], (52)

whereZ0 = ln S0. Reverting to the variableS we obtain the
explicit solution of the SDE (50):

S(t) = S0 exp
{(

µ− 1
2
σ2

)
(t− t0) + σ[W (t)−W (t0)]

}
.

(53)
From (52) we immediately see thatZ(t) − Z0 is dis-

tributed according toN ((
µ− 1

2σ2
)
τ, σ

√
τ
)
, whereτ =

t − t0. It then follows that the geometric Brownian motion
with initial valueS(t0) = S0 has the following log-normal
distribution:
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p(S, t;S0, t0) =
1√

2σ2τS
exp




−

[
ln

(
S
S0

)
− (µ− 1

2σ2)τ
]2

2σ2τ





. (54)

d

The geometric Brownian motion is the basic model for stock
price dynamics in the Black-Scholes framework, to which
we now turn.

4 The Standard Model of Finance

4.1 Portfolio dynamics and arbitrage

Consider a financial market with only two assets: a risk-
free bank accountB and a stockS. In vector notation,
we write ~S(t) = (B(t), S(t)) for the assetprice vectorat
time t. A portfolio in this market consists of having an
amountx0 in the bank and owingx1 stocks. The vector
~x(t) = (x0(t), x1(t)) thus describes the time evolution of
your portfolio in the(B, S) space. Note thatxi < 0 means
a short position on theith asset, i.e., you ‘owe the market’
|xi| units of theith asset. Let us denote byV~x(t) the money
value of the portfolio~x(t):

V~x = ~x · ~S = x0B + x1S, (55)

where the time dependence has been omitted for clarity. We
shall also often suppress the subscript fromV~x(t) when there
is no risk of confusion about to which portfolio we are re-
ferring.

A portfolio is calledself-financingif no money is taken
from it for ‘consumption’ and no additional money is in-
vested in it, so that any change in the portfolio value comes
solely from changes in the asset prices. More precisely, a
portfolio ~x is self-financing if its dynamics is given by

dV~x(t) = ~x(t) · d~S(t), t ≥ 0. (56)

The reason for this definition is that in the discrete-time
case, i.e.,t = tn, n = 0, 1, 2, ..., the increase in wealth,
∆V (tn) = V (tn+1) − V (tn), of a self-financing portfolio
over the time intervaltn+1 − tn is given by

∆V (tn) = ~x(tn) ·∆~S(tn), (57)

where∆~S(tn) ≡ ~S(tn+1) − ~S(tn). This means that over
the time intervaltn+1 − tn the value of the portfolio varies
only owing to the changes in the asset prices themselves, and
then at timetn+1 re-allocate the assets within the portfolio
for the next time period. Equation (56) generalizes this idea
for the continuous-time limit. If furthermore we decide on
the make up of the portfolio by looking only at the current
prices and not on past times, i.e., if

~x(t) = ~x(t, ~S(t)),

then the portfolio is said to beMarkovian. Here we shall
deal exclusively with Markovian portfolios.

As we have seen already in Sec. 2.4, an arbitrage rep-
resents the possibility of making a riskless profit with no
initial commitment of money. A more formal definition of
arbitrage is as follows.

Definition 4 An arbitrage is a portfolio whose valueV (t)
obeys the following conditions

(i) V (0) = 0

(ii) V (t) ≥ 0 with probability 1 for allt > 0

(iii) V (T ) > 0 with positive probability for someT > 0.

The meaning of the first condition is self-evident. The
second condition says that there is no chance of losing
money, while the third one states that there is a possibility
that the portfolio will acquire a positive value at some time
T . Thus, if you hold this portfolio until this arbitrage time
there is a real chance that you will make a riskless profit
out of nothing. [If P (V (T ) > 0) = 1 we have astrong
arbitrageopportunity, in which case we aresureto make a
profit.] As we have already discussed in Sec. 2.4, arbitrage
opportunities are very rare and can last only for a very short
time (typically, of the order of seconds or a few minutes at
most). In fact, in the famous Black-Scholes model that we
will now discuss it is assumed that there is no arbitrage at
all.

4.2 The Black-Scholes model for option pric-
ing

The two main assumptions of the Black-Scholes model are:

(i) There are two assets in the market, a bank accountB
and a stockS, whose price dynamics are governed by
the following differential equations

dB = rBdt, (58)

dS = µSdt + σSdW, (59)

wherer is the risk-free interest rate,µ > 0 is the stock
mean rate of return, σ > 0 is thevolatility, andW (t)
is the standard Brownian motion or Wiener process.

(ii) The market is free of arbitrage.
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Besides these two crucial hypothesis, there are addi-
tional simplifying (technical) assumptions, such as: (iii)
there is a liquid market for the underlying assetS as well
as for the derivative one wishes to price, (iv) there are no
transaction costs (i.e., no bid-ask spread), and (v) unlimited
short selling is allowed for an unlimited period of time. It
is implied by (58) that there is no interest-rate spread either,
that is, money is borrowed and lent at the same rater. Equa-
tion (59) also implies that the stock pays no dividend. [This
last assumption can be relaxed to allow for dividend pay-
ments at a known (i.e., deterministic) rate; see, e.g., [4] for
details.]

We shall next describe how derivatives can be ‘ratio-
nally’ priced in the Black-Scholes model. We consider first
a European call option for which a closed formula can be
found. (More general European contingent claims will be
briefly considered at the end of the Section.) Let us then de-
note byC(S, t; K, T ) the present value of a European call
option with strike priceK and expiration dateT on the un-
derlying stockS. For ease of notation we shall drop the
parametersK and T and simply writeC(S, t). For later
use, we note here that according to Itô formula (49), with
a = µS andb = σS, the option priceC obeys the following
dynamics

dC =
[
∂C

∂t
+ µS

∂C

∂S
+

1
2
σ2S2 ∂2C

∂S2

]
dt + σS

∂C

∂S
dW.

(60)
In what follows, we will arrive at a partial differential

equation, the so-called Black-Scholes equation (BSE), for
the option priceC(S, t). For pedagogical reasons, we will
present two alternative derivations of the BSE using two dis-
tinct but related arguments: i) the∆-hedging portfolio and
ii) the replicating portfolio.

4.2.1 The delta-hedging portfolio

As in the binomial model of Sec. 2.5, we consider the self-
financing∆-hedging portfolio, consisting of a long position
on the option and a short position on∆ stocks. The value
Π(t) of this portfolio is

Π(t) = C(S, t)−∆ S.

Since the portfolio is self-financing, it follows from (56) that
Π obeys the following dynamics

dΠ = dC −∆ dS, (61)

which in view of (59) and (60) becomes

dΠ =
[
∂C

∂t
+ µS

∂C

∂S
+

1
2
σ2S2 ∂2C

∂S2
− µ∆S

]
dt

+ σS

(
∂C

∂S
−∆

)
dW. (62)

We can now eliminate the risk [i.e., the stochastic term
containingdW ] from this portfolio by choosing

∆ =
∂C

∂S
. (63)

Inserting this back into (62), we then find

dΠ =
[
∂C

∂t
+

1
2
σ2S2 ∂2C

∂S2

]
dt. (64)

Since we now have a risk-free (i.e., purely deterministic)
portfolio, it must yield the same rate of return as the bank
account, which means that

dΠ = rΠdt. (65)

Comparing (64) with (65) and using (61) and (63), we then
obtain the Black-Scholes equation:

∂C

∂t
+

1
2
σ2S2 ∂2C

∂S2
+ rS

∂C

∂S
− rC = 0, (66)

which must be solved subjected to the following boundary
condition

C(S, T ) = max(S −K, 0). (67)

The solution to the above boundary-value problem can be
found explicitly (see below), but before going into that it is
instructive to consider an alternative derivation of the BSE.
[Note that the above derivation of the BSE remains valid
also in the case thatr, µ, and,σ are deterministic functions
of time, although a solution in closed form is no longer pos-
sible.]

4.2.2 The replicating portfolio

Here we will show that it is possible to form a portfolio on
the(B,S) market thatreplicatesthe optionC(S, t), and in
the process of doing so we will arrive again at the BSE.
Suppose then that there is indeed a self-financing portfo-
lio ~x(t) = (x(t), y(t)), whose valueZ(t) equals the option
priceC(S, t) for all time t ≤ T :

Z ≡ xB + yS = C, (68)

where we have omitted the time-dependence for brevity.
Since the portfolio is self-financing it follows that

dZ = xdB + ydS = (rxB + µyS)dt + σySdW. (69)

But by assumption we haveZ = C and sodZ = dC.
Comparing (69) with (60) and equating the coefficients sep-
arately in bothdW anddt, we obtain

y =
∂C

∂S
, (70)

∂C

∂t
− rxB +

1
2
σ2S2 ∂2C

∂S2
= 0. (71)

Now from (68) and (70) we get that

x =
1
B

[
C − S

∂C

∂S

]
, (72)
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which inserted into (71) yields again the BSE (66), as the
reader can easily verify.

We have thus proven, by direct construction, that the op-
tion C can be replicated in the(B,S)-market by the port-
folio (x, y), wherex andy are given in (72) and (70), re-
spectively, with option priceC being the solution of the
BSE (with the corresponding boundary condition). [To com-
plete the proof, we must also show that the initial price
C0 = C(S, 0) is the ‘correct’ one, in the sense that if the op-
tion price wereC ′0 6= C0, then there would be an arbitrage
opportunity. In fact, ifC ′0 > C0 an arbitrageur should short
the option and invest in the replicating portfolio, whereas if
C ′0 < C0 he should do the opposite.]

4.3 The Black-Scholes formula

Here we will solve equation (66) subjected to the boundary
condition (67). Following the original work of Black and
Scholes [12], the idea is to perform a change of variables so
as to turn the BSE into the heat equation, which we know
how to solve. Here we will not use the original transfor-
mation employed by these authors but a related one [6], as
shown below:

τ =
T − t

2/σ2
, x = ln

(
S

K

)
, (73)

u(x, τ) = eαx+β2τ C(S, t)
K

, (74)

where

α =
1
2

(
2r

σ2
− 1

)
, β =

1
2

(
2r

σ2
+ 1

)
. (75)

After a somewhat tedious but straightforward algebra
[6], one obtains that in the new variables equation (66) reads

∂u

∂τ
=

∂2u

∂x2
, (76)

while the terminal condition (67) becomes an initial condi-
tion

u(x, 0) = u0(x) = max
(
eβx − eαx, 0

)
. (77)

We now recall that the Green’s function for the heat
equation is

G(x, x′) =
1√
4πτ

e−(x−x′)2/4τ ,

so that its generic solution for an arbitrary initial condition
u0(x) is given by

u(x, τ) =
∫ ∞

−∞
u0(x′)G(x, x′)dx′

=
1√
4πτ

∫ ∞

−∞
u0(x′)e−(x−x′)2/4τdx′. (78)

Inserting (77) into the integral above we obtain

u(τ, x) =
1√
4πτ

∫ ∞

0

(
eβx′ − eαx′

)
e−(x−x′)2/4τdx′

= I(β)− I(α), (79)

where

I(a) ≡ 1√
4πτ

∫ ∞

0

eax′e−(x−x′)2/4τdx′. (80)

After completing the squares and performing some simplifi-
cation, we find that

I(a) = eax+a2τN(da), (81)

where

da =
x + 2aτ√

2τ
, (82)

andN(x) denotes the cumulative distribution function for a
normal variableN (0, 1):

N(x) =
1√
2π

∫ x

−∞
e−s2/2ds. (83)

Inserting (81) into (79) and reverting back to the original
dimensional variables, we obtain the famous Black-Scholes
formula for the price of a European call option:

C(S, t) = SN(d1)−Ke−r(T−t)N(d2), (84)

where

d1 =
ln

(
S
K

)
+

(
r + 1

2σ2
)
(T − t)

σ
√

T − t
, (85)

(86)

d2 =
ln

(
S
K

)
+

(
r − 1

2σ2
)
(T − t)

σ
√

T − t
. (87)

This formula is so often used in practice that it is already
pre-defined in many software packages (e.g., Excel, Mat-
lab, Maple, etc) as well as in most modern hand calculators
with financial functions. It should noted, however, that many
people (academics and practitioners alike) believe that the
Black-Scholes model is too idealized to describe real mar-
ket situations; see Secs. V and VII for a brief discussion of
possible extensions of the BS model.

4.4 Completeness in the Black-Scholes model

We have seen above that it is possible to replicate a Euro-
pean call optionC(S, t) using an appropriate self-financing
portfolio in the (B,S) market. Looking back at the ar-
gument given in Sec. 4.2.2, we see that we never actually
made use of the fact that the derivative in question was a call
option—the nature of the derivative appeared only through
the boundary condition (67). Thus, the derivation of the BSE
presented there must hold foranycontingent claim!

To state this fact more precisely, letF (S, t) represent the
price of an arbitrary European contingent claim with payoff
F (S, T ) = Φ(S), whereΦ is a known function. Retracing
the steps outlined in Sec. 4.2.2, we immediately conclude
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that the priceF (S, t) will be the solution to the following
boundary-value problem

∂F

∂t
+

1
2
σ2S2 ∂2F

∂S2
+ rS

∂F

∂S
− rF = 0 , (88)

F (S, T ) = Φ(S) . (89)

Furthermore, if we repeat the arguments of preceding sub-
section and transform the Black-Scholes equation (88) into

the heat equation, we obtain thatF (S, t) will be given by

F (S, t) =
1√
4πτ

∫ ∞

−∞
Φ(x′)e−(x−x′)2/4τdx′, (90)

whereΦ(x) denotes the payoff function in terms of the di-
mensionless variablex; see (73). Expressing this result in
terms of the original variablesS andt yields a generalized
Black-Scholes formula

c

F (S, t) =
e−r(T−t)

√
2πσ2(T − t)

∫ ∞

0

Φ(S′)e[ln
(

S′
S

)
−(r− 1

2 σ2)(T−t)]2 dS′

S′
. (91)

d

In summary, we have shown above that the Black-
Scholes model is complete. A market is said to becom-
plete if every contingent claim can be replicated with a
self-financing portfolio on the primary assets. Our ‘proof
of completeness’ given above is, of course, valid only for
the case of European contingent claims with a simple pay-
off function Φ(S); it does not cover, for instance, path-
dependent derivatives. It is possible however to give a for-
mal proof that arbitrage-free models, such as the Black-
Scholes model, are indeed complete; see Sec. 5.3.

Comparing the generalized Black-Scholes formula (91)
with the pdf of the geometric Brownian motion given in
(54), we see that the former can be written in a convenient
way as

F (S, t) = e−r(T−t)EQ
t,S [Φ(ST )], (92)

whereEQ
t,S [·] denotes expectation value with respect to the

probability density of a geometric Brownian motion with
µ = r, initial time t, final timeT , and initial valueS; see
(54). In other words, the present value of a contingent claim
can be computed simply as its discounted expected value
at maturity, under an appropriate probability measure. This
idea will become more clear after we discuss the notion of
an equivalent martingale measure.

5 Efficient markets: the martingale
approach

5.1 Martingales

The concept of a martingale plays a important rôle in finance
[20]. Unfortunately, a proper introduction to martingales re-
quires some knowledge of probability measure theory [21].
Here however we will give a rather intuitive discussion of
martingales. For completeness we have listed in Appendix
A some basic concepts from probability theory that would
be required to make the following discussion more rigorous.

We begin by recalling that aprobability spaceis a triple
(Ω,F , P ), where

• Ω is the space of elementary events oroutcomesω.

• F is a properly chosen family of subsets ofΩ, (i.e., a
σ-algebra onΩ).

• P is a probability measure onF .

In Finance, an outcomeω is a ‘market situation.’ The
family of subsetsF specifies the class of events to which
probabilities can be assigned. This is done through the
concept of aσ-algebra, whose formal definition is given
in Appendix A. A probability measureP on F is simply
a functionP : F → [0, 1], satisfying a few ‘obvious re-
quirements’:P (∅) = 0, P (Ω) = 1, andP (A1 ∪ A2) =
P (A1) + P (A2) if A1 ∩ A2 = ∅. An elementA of F ,
A ∈ F , is called a “measurable set” or “observable event,”
meaning that it is possible to assign a “probability of occur-
rence,”P (A) ∈ [0, 1], for this event. Hence,F is said to be
the set of ‘observable events.’

Suppose now that we have a random functionX :
Ω → R. If to every subset ofΩ of the form {ω : a ≤
X(ω) ≤ b} there corresponds an eventA ⊂ F , then the
function X is said to bemeasurablewith respect toF or
simply F-measurable. What this means is that it is pos-
sible to ‘measure’ (i.e., assign a probability to) events of
the form {a ≤ X ≤ b} through the obvious definition:
P ({a ≤ X ≤ b}) ≡ p(A). A F-measurable functionX
is called arandom variable.

Let us next consider the notion of an “information flow.”
In a somewhat abstract way, we will represent theinforma-
tion available to an observer up to timet as aσ-algebra
Ft ⊂ F . In the context of Finance, the information set
Ft would contain, for instance, the price history up to time
t of all assets in the economy. It is natural to assume that
Fs ⊂ Ft for s ≤ t, since we expect that, as time goes on,
we gain new information (and do not discard the old ones).
Such a collection ofσ-algebras represents an “information
flow,” or, more technically, afiltration.

Definition 5 A filtration or information flow is a collection
{Ft}t≥0 of σ-algebrasFt ⊂ F such that

Fs ⊂ Ft, for 0 ≤ s ≤ t.
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Suppose now we have a stochastic processXt defined on
(Ω,F , P ). (Think of Xt as being, say, the price of a given
stock.) If the values ofXt can be completely determined
from the informationFt, for all t ≥ 0, then the processXt

is said to beadaptedto the filtration{Ft}t≥0.

Definition 6 The processXt is adapted to the filtration
{Ft}t≥0 if Xt isFt-measurable for allt ≥ 0.

A stochastic processXt naturally generates an informa-
tion flow, denoted byFX

t , which represents the “informa-
tion contained in the trajectories ofX(t) up to timet.” A
processX(t) is obviously adapted to its natural filtration
FX

t .
A last piece of mathematics is necessary to define a mar-

tingale, namely, the notion of conditional expectation. This
appears in connection with the crucial question of how the
information,Ft0 , available at present time influences our
knowledge about future values ofX(t). If X(t) andFt0

are not independent, then it is reasonable to expect that the
information available up to the present time reduces the un-
certainty about the future values ofX(t). To reflect this
gain of information is useful to introduce a new stochastic
process

Z(t) = E[Xt|Ft0 ], t > t0,

where the symbolE[Xt|Ft0 ] represents “the expected value
of Xt, contingent on the information gathered up to timet0.”

A precise definition of conditional expectation is beyond
the scope of these notes. Here it will suffice to say that given
a random variableY on a probability space(Ω,F , P ) and
anotherσ-algebraF ′ ⊂ F , it is possible to define a ran-
dom variableZ = E[Y |F ′], which represents “the expected
value of Y , given the information contained inF ′.” The
variableZ is a coarser version of the original variableY , in
the sense that we have used the information onF ′ to reduce
the uncertainty aboutY . The following two properties of
conditional expectations will be necessary later:

E[Y |Ft] = Y, if Y isFt-measurable. (93)

E[E[Y |Ft]] = E[Y ]. (94)

The first property above is somewhat obvious: ifY is Ft-
measurable thenY andFt ‘contain the same information,’
hence taking expectation ofY conditional toFt does not re-
duce the uncertainty aboutY . The second property is the
so-calledlaw of iterated expectations, and basically repre-
sents the law of total probability.

After these mathematical preliminaries, we are now in a
position to define martingales.

Definition 7 A stochastic processMt is called a martingale
with respect to the filtration{Ft}t≥0 if

(i) Mt is adapted to the filtration{Ft}t≥0

(ii) E[|Mt|] < ∞ for all t ≥ 0

(iii) E[Mt|Ft0 ] = Mt0 for all t ≥ t0

Condition (i) simply says thatMt can be determined
from the information available up to timet, whereas con-
dition (ii) is a technicality. The defining property of a mar-
tingale is therefore condition (iii), which is usually referred
to as themartingale condition. It says that the best predic-
tion of future values of the processM(t), contingent on the
information available at the present time, is the current value
Mt0 .

Because of property (iii), a martingale is usually de-
scribed as a “fair game.” To see why this is so, suppose that
Mn represents the fortune of a gambler at timen. (For con-
venience let us assume here that time is discrete.) The differ-
encehn = Mn−Mn−1 is then the amount the gambler wins
on thenth play (a negative win is of course a loss). Now let
us compute the gambler’s expected gain on the(n + 1)th
play, given the information up to timen:

E[hn+1|Fn] = E[Mn+1 −Mn|Fn]
= E[Mn+1|Fn]− E[Mn|Fn]
= Mn −Mn

= 0, (95)

where in the third equality we used the martingale property
and rule (93). We thus have that at each new play of the
game the expected gain is null, and in this sense it is a “fair”
game.

A Brownian motionW (t) is a martingale with respect
to its natural filtration. To show this, we only need to verify
the martingale condition (since the other two conditions are
trivially fulfilled):

E[W (t)|Ft0 ] = E[W (t)−W (t0) + W (t0)|Ft0 ]
= E[W (t)−W (t0)|Ft0 ] + E[W (t0)|Ft0 ]
= 0 + W (t0)
= W (t0). (96)

In the third equality above we used the fact that the incre-
mentsW (t)−W (t0) are independent ofFt0 and have zero
mean, together with property (93). It is also possible to
show that It̂o stochastic integrals are martingales. Indeed,
the theory of stochastic integration is intimately connected
with martingale theory [5].

Another important property of martingales is that their
expected value remains constant in time:

E[M0] = E[E[Mt|F0]] = E[Mt],

where in first equality we used the martingale property,
while in the second equality property (94) was used. Thus,
a necessary (but not sufficient) condition for a process to
be a martingale is that it have no drift. Therefore, a diffu-
sion process of the form (40) is not a martingales unless the
drift term vanishes. For this reason, the geometric Brown-
ian motion (50) is not a martingale. It is possible, however,
to introduce a new probability measureQ, with respect to
which the geometric Brownian motion becomes a standard
Brownian motion and hence a martingale, as discussed next.
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5.2 Equivalent martingale measures

Recall that a probability measureP on a measurable space
(Ω,F) is a functionP : F → [0, 1] that assigns to every
eventA ⊂ F a real numberP (A) ∈ [0, 1]. Suppose now
we have another probability measureQ defined on the same
space(Ω,F). We say that the probability measuresP and
Q are equivalent if the following condition is satisfied:

Q(A) = 0 ⇐⇒ P (A) = 0, for all A ∈ F . (97)

To get a better grasp on the meaning of the condition above,
consider a random variableX [on (Ω,F , P )]. If Q is a prob-
ability measure equivalent toP , then condition (97) implies
that there exists a functionρ(X) such that expected values
w.r.t Q are calculated in the following way

EQ[g(X)] = EP [ρ(X)g(X)], (98)

whereg(x) is an arbitrary function. Alternatively, we may
write (98) in terms of probability densities:

fQ(x) = ρ(x)fP (x), (99)

wherefP (x) denotes the probability density ofX w.r.t the
measureP andfQ(x) is the density w.r.tQ. (The function
ρ(x) is called the Radon-Nikodym derivative of measureQ
with respect to measureP [21].)

Consider now the Brownian motion with drift

W̃ (t) = at + W (t), 0 ≤ t ≤ T (100)

where a is some constant. (The finite-horizon condition
t < T is a technicality that is not relevant for our pur-
poses.) As already noted,̃W (t) is not a martingale (since
its expected value is not constant). However, there is an
equivalent probability measureQ, with respect to which the
processW̃ (t) becomes the standard Brownian motion (and
hence a martingale). This result is known as Girsanov theo-
rem.

Theorem 1 (Girsanov theorem) The processW̃ (t) given
in (100) is a standard Brownian motion with respect to the
probability measureQ defined by

fQ(x̃, t) = Mt(x̃)fP (x̃, t), (101)

whereMt is the process

Mt = exp
{
−aWt − 1

2
a2t

}
= exp

{
−aW̃t +

1
2
a2t

}
.

(102)

Proof. For a formal proof see, e.g., [8]. Here we shall only
sketch a proof of the fact that the processW̃ (t) is indeed
distributed according toN (0,

√
t), as the standard Brown-

ian motion. First recall from (44) that the probability density
fP (x̃, t) of W̃ (t) under the original measureP is

fP (x̃, t) =
1√
2t

exp
{
− (x̃− at)2

2t

}
. (103)

Now according to (101) and (102) we have that

fQ(x̃, t) = e−ax̃+ 1
2 a2tfP (x̃, t). (104)

Inserting (103) into (104) then yields

fQ(x̃, t) =
1√
2t

e−x̃2/2t, (105)

which is precisely the pdf for the standard Brownian motion.
Q.E.D.

One of the main applications of change of measures is to
eliminate the drift in stochastic differential equations, so that
with respect to the new measureQ the process is a martin-
gale. The measureQ is then called anequivalent martingale
measure. Constructing the equivalent martingale measure
for an arbitrary SDE of the form (41) is a rather complicated
procedure [5]. One important exception are linear SDE’s
where the Girsanov theorem gives the measure transforma-
tion in an explicit form, as shown below.

Consider the geometric Brownian motion discussed in
Sec. 3.6. For technical reasons [8], let us restrict ourselves
to its finite-horizon version:

dS = µSdt + σSdW, t < T. (106)

whereµ andσ are positive constants. This equation can then
be rewritten as

dS = σS
(µ

σ
dt + dW

)
= σSdW̃ , (107)

where
W̃t = (µ/σ)t + Wt, t < T. (108)

Now, according to Girsanov theorem,̃Wt is a standard
Brownian motion with respect to the measureQ given in
(101) witha = µ/σ, and since the SDE (107) has no drift,
its solutionSt is a martingale w.r.t. the measureQ.

5.3 The ‘efficiency symmetry’ and the no-
arbitrage condition as its ‘conservation
law’

The notion of an efficient market plays a crucial role in Fi-
nance. Roughly speaking, in an efficient market all rele-
vant information is already reflected in the prices [3]. This
means, in particular, that past prices give no additional in-
formation that is not already contained in the current price.
In an efficient market prices thus adjust immediately to the
arrival of new information. Since the content of future infor-
mation and their effect on prices are unknown, it should be
impossible to make definite predictions about future price
based on the information available today. Thus, the best
prediction for the expected future price (discounted to the
present time) should be today’s price. In other words, in
a efficient market ‘discounted prices’ should be a martin-
gale. This intuitive definition of efficiency is formalized be-
low. [For technical reasons the results of this section will be
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restricted to the discrete-time case. Their extension to the
continuous-time framework, although possible to a large ex-
tent, is more complicated and will not be attempted in the
present notes; see, e.g., [5].]

Consider a market formed by two assets(B,S), where
B is our usualrisk-freefree asset andS is arisky asset. We
suppose thatS(t) follows a stochastic process on a proba-
bility space(Ω,F , P ) endowed with a filtration{Ft}t≥0.

Definition 8 Suppose the market(B, S) operates at dis-
crete timetn, n = 1, 2, .... This market is said to be ef-
ficient if there exists (at least one) probability measureQ,

equivalent toP , such that the ‘discounted price’
S(t)
B(t)

is a

martingale with respect to the measureQ, that is,

EQ

[
S(t)
B(t)

| Ft0

]
=

S(t0)
B(t0)

, for t0 ≤ t, (109)

whereEQ means expected value w.r.t. the measureQ.

The requirement of efficiency, as defined above, is some-
what reminiscent of a symmetry principle in Physics. In-
deed, we can recast definition (109) by saying that in a effi-
cient market there exists a ‘special measure Q’ with respect
to which discounted prices are invariant under a sort of ‘time
translation,’ in the following sense:

EQ

[
S(t + T )
B(t + T )

| Ft

]
=

S(t)
B(t)

, (110)

for anyT > 0.
In Physics, symmetry principles are intimately con-

nected with conservation laws. (Recall, for instance, that
the invariance of Newton’s law under time translation im-
plies conservation of energy.) It is thus only natural to
ask whether the ‘efficiency symmetry’ above also leads to
a ‘conservation law.’ Perhaps not surprisingly, this is indeed
the case, as stated in the following theorem, which is some-
times referred to as theFirst Fundamental Theoremof asset
pricing.

Theorem 2 Suppose the market(B, S) operates at discrete
timetn, n = 1, 2, .... Then this market is efficient if and only
if it is arbitrage-free.

(See [5] for a proof.)

Recall that absence of arbitrage means that any self-
financing portfolio with zero initial value, and with no
chance of becoming negative, will remain zero-valued for
all subsequent times. More precisely, the no-arbitrage con-
dition says that

V (0) = 0 and V (t) ≥ 0 a.s. =⇒ V (t) = 0 a.s.,
(111)

wherea.s. meansalmost surely, i.e., with probability 1. The
absence of arbitrage can thus be interpreted as a kind of
‘conservation law’ for the “vacuum state” of the market: if
you start in a state with zero initial money and do not take

any risks, then you remain at this state for all times. I thus
find it quite interesting that the so-called “no-free-lunch”
condition can actually be seen as the conservation law as-
sociated with the efficiency symmetry.

Another very important result is theSecond Fundamen-
tal Theoremof asset pricing, linking the completeness of a
market to the uniqueness of its equivalent martingale mea-
sure.

Theorem 3 An arbitrage-free(B, S)-market is complete if
and only if the equivalent martingale measureQ is unique.

(See [5] for a proof.)

We already know that the Black-Scholes model is com-
plete. Below we will calculate its equivalent martingale
measure explicitly, and it will become clear from the con-
struction that it is indeed unique.

5.4 Pricing derivatives with the equivalent
martingale measure

The notion of an equivalent martingale measure can be used
to price derivatives in a rather direct way, without having to
solve a PDE. The idea is that in an efficient economy all fi-
nancial assets are martingales with respect to the equivalent
martingale measureQ. More precisely, ifF (S, t) is a con-
tingent claim with maturityT and payoff functionΦ(S(T ))
then from (109) we have

F (S, t)
B(t)

= EQ
t,S

[
Φ(S(T ))

B(T )

]
, (112)

where the subscriptst, S denote that the expected value is
taken at present timet and with current valueS, i.e., condi-
tional to the information available at timet. It is not hard to
convince oneself that if the derivative priceF were not given
by (110), then there would be an arbitrage opportunity.

In the Black-Scholes model, the risk-free asset is a bank
account with fixed interest rater, i.e., B(t) = ert, so that
(112) becomes

F (S, t) = e−r(T−t)EQ
t,S [Φ(S(T ))] , (113)

or

F (S, t) = e−r(T−t)

∫ ∞

0

Φ(S′)fQ(S′, T ; S, t)dS′, (114)

wherefQ(S, t; S0, t0) denotes the probability density, under
the equivalent martingale measureQ, of the processS(t)
with initial valueS(t0) = S0. All that remains to be done
now is to find the equivalent martingale measureQ for the
Black-Scholes model. To do this, consider the process

Z(t) =
S(t)
B(t)

= e−rtS(t). (115)
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We then have

dZ = −re−rtSdt + e−rtdS

= (µ− r)Zdt + σZdW

= σZdW̃ ,

where
W̃ (t) = [(µ− r)/σ] t + W (t). (116)

Now recall that in the Black-Scholes model the stock price
follows a geometric Brownian motion

dS = µSdt + σSdW, (117)

which in terms of the process̃W (t) given in (116) reads

dS = rSdt + σSdW̃ . (118)

From Girsanov theorem we know that there is a equiv-
alent martingale measureQ that turnsW̃ (t) into a Brown-
ian motion. Equation (118) then shows that w.r.t the mea-
sureQ the priceS(t) follows a geometric Brownian motion
with mean rate of return equal tor. The probability density
fQ(S′, T ; S, t) can now be obtained directly from (54), by
simply settingµ = r andS0 = S. One then gets

c

fQ(S′, T ;S, t) =
1

S′
√

2σ2τ
exp




−

[
ln

(
S′
S

)
− (r − 1

2σ2)τ
]2

2σ2τ





, (119)

whereτ = T − t. Inserting (119) into (114) we obtain

F (t, S) =
e−r(T−t)

√
2πσ2(T − t)

∫ ∞

0

Φ(S′)e[ln(S′/S)−(r− 1
2 σ2)(T−t)]2 dS′

S′
, (120)

d

which is precisely the expression obtained for the generic
solution of the Black-Scholes equation given in (92). In the
case of a European call option we haveΦ(S′) = max(S′ −
K, 0), which inserted into (120) yields, after some algebra,
the Black-Scholes formula (84).

It is interesting to notice that under the equivalent mar-
tingale measureQ the stock price in the Black-Scholes
model follows a geometric Brownian motion with the mean
rate of return equal to the risk-free interest rater; see (118).
It is as if all investors wererisk neutral, in the sense they
would be willing to invest on a risky stock even though its
expected return is just what a risk-free bank account would
yield. For this reason, the pricing method based on the
equivalent martingale measure is commonly referred to as
risk neutral valuation. Of course, actual investors arenot
risk neutral. However, in an efficient market there is a ‘spe-
cial reference frame’ where investors can be treated as if
they were indeed insensitive to risk.

6 Beyond the Standard Model of Fi-
nance I: Non-Gaussian Distribu-
tions

We have seen above that the Black-Scholes model is an el-
egant and powerful theoretical construct: it is complete, ef-
ficient, arbitrage-free, and Gaussian (in the sense that the
stock returns are normally distributed). It is thus important
to ask whether real markets actually fit into this nice frame-
work.

There are two main ways in which real markets may de-
viate from the standard Black-Scholes model: i) the returns
may not be normally distributed or ii) there may exist long-
memory effects on the time series. In this Section we will
discuss the possibility that asset prices may follow a non-
Gaussian stable Ĺevy process, while in the next section we
investigate whether financial data might exhibit long-term
memory.

Mandelbrot [22] in 1963 was perhaps the first person
to challenge the paradigm that returns are normally dis-
tributed. He analyzed cotton prices on various exchanges
in the United States and found evidences that their distribu-
tion of returns decays as a power law and hence much slower
than a Gaussian. An example of this ‘fat tail’ behavior can
be seen in Fig. 8, where I plot the distribution for the returns
of the Ibovespa index. In this figure, it is also shown a Gaus-
sian distribution with the variance of the data, which appears
as a parabola in the linear-log scale of the graph. One clearly
sees that the empirical distribution does indeed have ‘fatter
tails’ when compared with the Gaussian distribution.

The Gaussian distribution is special for two main rea-
sons. The first one is the Central Limit Theorem [21] that
states that the sum of infinitely many independent random
variables (with finite variance) will converge to a Gaussian
variable. The second one is the fact that it is astabledistri-
bution, in the sense that the sum of two independent Gaus-
sian random variables is also a Gaussian variable. It is thus
natural to ask whether there are other stable distributions.
The French mathematician Paul Lévy showed that there is
indeed a whole family of stable distributions of which the
Gaussian is but one particular case. In what follows, I will
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first introduce the so-called Lévy stable distributions and
then briefly discuss their possible applications to financial
data.

-0.2 -0.1 0 0.1 0.2
r

0.1

1

10

p(r)

Figure 8. Distribution of the daily Ibovespa returns (open circles).
The solid line correspond to a Gaussian distribution with the same
variance as that of the empirical distribution.

6.1 The stable Ĺevy distributions

Let X be a random variable with probability density func-
tion (pdf) given byp(x). We recall that the characteristic
functionϕ(z) of a random variableX is the Fourier trans-
form of its pdfp(x):

ϕ(z) =
∫ ∞

−∞
p(x)eizxdx. (121)

Now let X1 andX2 be two independent random variables
with pdf’s p1(x1) andp2(x2). SinceX1 andX2 are inde-
pendent, the pdf of the sumX = X1+X2 is the convolution
of the original pdf’s:

p(x) =
∫ ∞

−∞
p1(s)p2(x− s)ds.

Let now ϕ(z, 2) denote the characteristic function ofX.
In view of the convolution theorem which states that the
Fourier transform of the convolution is the product of the
Fourier transforms, it then follows that

ϕ(z, 2) = ϕ1(z)ϕ2(z). (122)

Suppose furthermore thatX1 and X2 are identically dis-
tributed, that is,

X1
d= X2, (123)

or alternatively

ϕ1(z) = ϕ2(z) = ϕ(z). (124)

(Recall that the symbol
d= denotes equality in the distribu-

tion sense.) From (122) and (124) it then follows that

ϕ(z, 2) = [ϕ(z)]2.

In general, ifX =
∑N

i=1 Xi, where theXi’s are inde-
pendent and identically distributed (i.i.d.) random variables,
then

ϕ(z, N) = [ϕ(z)]N , (125)

from which the pdf ofX can be obtained by calculating the
inverse Fourier transform. Note that the pdf of the sum of
N i.i.d. random variables will in general be quite different
from the pdf of the individual variables. There is however
a special class of distribution, the stable distributions, for
which the pdf of the sum has the same functional form of
the individual pdf’s.

Definition 9 A probability distributionp(x) is stable if for
eachN ≥ 2 there exist numbersaN > 0 andbN , such that,
if X1, ..., XN are i.i.d. random variables with distribution
p(x), then

X1 + ... + XN
d= anXi + bN . (126)

In other words, a distribution is stable if its form is in-
variant under addition, up to a rescaling of the variable by
a translation and a dilation. More precisely, ifp(x,N) de-
notes the probability density ofX =

∑N
i=1 Xi, where the

Xi’s are i.i.d. variables with a stable distributionp(x), then
(126) implies that

p(x,N) =
1

aN
p

(
x− bN

aN

)
. (127)

Stability of probability distributions has a nice interpretation
from an economic standpoint. To see this, suppose that the
variablesXi represent daily increments of a given financial
asset. Stability then meanspreservationof the distribution
undertime aggregation, which is a rather natural property to
expect from financial data.

As already mentioned, the Gaussian distribution is sta-
ble. To see this, recall that the Fourier transform of a Gaus-
sian is a Gaussian and that the product of Gaussians is again
a Gaussian, so that from (125) it follows that the characteris-
tic functionϕ(z, N) will indeed be that of a Gaussian vari-
able. More precisely, we have that the characteristic func-
tion of a normal variableN (0, σ) is ϕ(z) = e−(σ2/2)z2

,
which inserted into (125) immediately yieldsϕ(z, N) =
e−(Nσ2/2)z2

. Thus, the sum ofN i.i.d. normal variables is
normally distributed with standard deviation

√
Nσ, that is,

X
d= N (0,

√
Nσ), which in turn implies that

p(x, N) =
1√
N

p

(
x√
N

)
. (128)

Thus, in the case of the Gaussian distribution we haveaN =
1/
√

N andbN = 0.
The class of stable distributions is rather small and was

completely determined by the mathematicians P. Lévy and
A. Ya. Khintchine in the 1920’s. Here we shall restrict our-
selves to the subclass of symmetric distribution. In this case,
the characteristic function is given by

ϕα(z) = e−a|z|α , (129)

where0 < α ≤ 2 anda > 0. The parameterα is called the
stability exponentanda is ascalefactor. Taking the inverse
Fourier transform ofϕα(z) we obtain the corresponding pdf
pα(x):
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pα(x) =
1
2π

∫ ∞

−∞
ϕα(z)e−izxdz =

1
π

∫ ∞

0

e−azα

cos(zx)dz. (130)

d

Unfortunately, however, only for two particular values ofα
can the integral above be explicitly calculated:

• α = 1 (Lorentzian or Cauchy distribution):

p(x) =
2a

π

1
x2 + 4a2

.

• α = 2 (Gaussian distribution):

p(x) =
1

8πa
e−x2/4a.

Note also that Ĺevy distributions are not defined for
α > 2, because in this case the function obtained from (130)
is not everywhere positive.

Although, for arbitraryα the pdfpα(x) cannot be found
in closed form, its asymptotic behavior for largex can be
easily calculated from (130). Here one finds [5] that

pα(x) ≈ Cα

|x|1+α
, |x| → ∞, (131)

where
Cα =

a

π
Γ(1 + α) sin

πα

2
. (132)

We thus see that the Lévy distribution withα < 2 has the
interesting property that it showsscalingbehavior for large
x, i.e.,p(x) decays as a power-law.

Another important scaling relation for the Lévy distri-
bution can be obtained, as follows. First note that for sym-
metric stable distribution we necessarily havebN = 0. Now
using (125) and (129), we easily find that the dilation factor
aN in (127) is

aN = N1/α, (133)

so that (127) becomes

pα(x,N) =
pα

(
N1/αx

)

N1/α
, (134)

which implies that

p(0, N) =
p(0)
N1/α

. (135)

One can then use this scaling relation to estimate the indexα
of the Lévy distribution: in a log-log plot ofp(0, N) against
N , the slope of a linear fit gives precisely1/α; see Sec. 6.3
below.

The power-law decay of Ĺevy distributions implies, of
course, the absence of a characteristic scale. The downside
of this is that all Ĺevy distributions haveinfinite variance!
In fact, all moments of order higher than 1 are infinite, since
E[|x|n] diverges forn ≥ α, as can be readily shown from
(131). Processes with infinite variance are not physically
plausible, so several prescriptions totruncatethe Lévy dis-
tribution at some large scale has been proposed, as discussed
next.

6.2 Truncated Lévy distributions

To circumvent the problem of infinite variance in Lévy dis-
tributions, several truncation prescriptions have been pro-
posed in the literature. In a general they can be written as

p(x) = pα(x)Φ(x), (136)

whereΦ(x) is a cut-off function to be chosen in such way
that the variance of the truncated distribution is finite. For
example, two possible choices that have been used to model
the distributions of financial asset prices are given below

• Abruptly truncated Ĺevy distribution (ATLD):

Φ(x) = Θ(xc − |x|),

whereΘ(x) is the Heaviside function andxc is some cut-off
length scale.

• Exponentially truncated Ĺevy distribution (ETLD):

Φ(x) = Ae−λ|x|,

whereλ > 0 andA is a normalization factor.
Other variants of truncated Lévy distributions that have

also been considered in the literature are the gradually trun-
cated Ĺevy distribution [23] and the exponentially damped
Lévy distributions [24].

Since a truncated Ĺevy distribution has finite variance,
then by the central limit theorem the distribution of the sum
X = X1 + ... + XN of N i.i.d variables with such a dis-
tribution will converge to a Gaussian distribution for large
N . However, this convergence is usually very slow—for fi-
nancial data it is typically in the order of tens of days; see
below. For shorter time scales, non-Gaussian behavior may
thus be of practical relevance.

6.3 Lévy distributions in Finance

Lévy distribution have been used, for example, by Man-
tegna & Stanley [9] to model the distribution of changes in
the stock index S&P500 of the American Stock Exchange.
They analyzed high-frequency data (one-minute quotes of
the S&P500) over the period from January 1984 to Decem-
ber 1989. From the original time seriesY (t) of the index
values, they first generated time series corresponding to in-
dex changes during intervals ofN minutes:

ZN (t) ≡ Y (t + N)− Y (t). (137)
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They then computed the empirical pdfp(z, N) and analyzed
the scaling ofp(0, N) with N . In a log-log plotp(0, N)
showed a linear behavior, as predicted by (135), with a slope
corresponding toα = 1.4 for 30 < N < 1000 minutes [9].
For N > 104 the slope ofp(0, N) approaches−0.5, in-
dicating convergence to a Gaussian behavior. In the Lévy
regime (i.e., smallN ), however, the tail of their empirical
pdf decays slower than Gaussian but faster than a pure Lévy
distribution with the exponentα found from above scaling
argument. These facts thus suggest that a truncated Lévy
distribution would perhaps be more appropriate for model-
ing the actual distribution. Indeed, Bouchaud and Potters
[10] found that the probability of 15-minute changes of the
S&P500 index is well described by a ETLD withα = 1.5.

The ETLD has also been applied by Miranda & Riera
[25] to study the daily returns of Ibovespa index of the São
Paulo Stock Exchange in the period 1986-2000. From the
daily closing valuesY (t) of the Ibovespa, they first calcu-
lated the time series for the returns in intervals ofN days

rN (t) = log Y (t + N)− log Y (t), (138)

and then computed the corresponding pdf’s forp(r,N).
From the scaling ofp(0, N) they foundα ' 1.6 − 1.7 for
N < 20 days, whereas for largerN a Gaussian-like behav-
ior (i.e.,α = 0.5) was observed.

Many other applications of Ĺevy processes in Finance
have been discussed in the literature [26]. For example, a
model for option pricing has recently been considered where
the price of the underlying asset is assumed to follow a trun-
cated Ĺevy process [27]. More recently, there have accu-
mulated evidences [28, 29, 30] that in certain cases financial
data may be better described by exponential distributions,
rather than by Ĺevy or Gaussian distributions.

7 Beyond the Standard Model of Fi-
nance II: Long-Range Correlations

In this section, we discuss the possibility that asset prices
might exhibit long-range correlations and thus may need to
be described in terms of long-memory processes, such as the
fractional Brownian motion.

7.1 Fractional Brownian motion

The fractional Brownian motion (FBM) is a Gaussian pro-
cess{WH(t), t > 0} with zero mean and stationary incre-
ments, whose variance and covariance are given by

E[W 2
H(t)] = t2H , (139)

E[WH(s)WH(t)] =
1
2

(
s2H + t2H − |t− s|2H

)
, (140)

where0 < H < 1. The FBMWH(t) is a self-similar pro-
cess, in the sense that

WH(at) d= aHWH(t), (141)

for all a > 0. A sample path of a FBM is therefore a frac-
tal curve with fractal dimensionD = 1/H. The param-
eter H is called the self-similarity exponent or theHurst
exponent. For H = 1/2 the processWH(t) corresponds
to the usual Brownian motion, in which case the increments
Xt = WH(t+1)−WH(t) are statistically independent, cor-
responding to white noise. On the other hand, forH 6= 1/2
the incrementsXt, known as fractional white noise, display
long-range correlation in the sense that

E[Xt+hXt] ' 2H(2H − 1)h2H−2 for h →∞, (142)

as one can easily verify from (139) and (140). Thus, if
1/2 < H < 1 the increments of the FBM are positively
correlated and we say that the processWH(t) exhibits per-
sistence. Likewise, for0 < H < 1/2 the increments are
negatively correlated and the FBM is said to show antiper-
sistence. Sample FBM paths withH = 0.2, 0.5, and 0.8 are
shown in Fig. 9.
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Figure 9. Sample paths of fractional Brownian motion.

Several estimators for the exponentH have been dis-
cussed in the literature; see, e.g., Ref. [31] for a comparison
among some of them. One general methodology consists
in estimating how the ‘amount of fluctuation’ within a time
window of sizeτ scales withτ . Specific methods, such as
the Hurst rescaled range (R/S) analysis [32] or the Detren-
dend Fluctuation Analysis [33, 34], differ basically on the
choice of the fluctuation measure. Here I shall discuss only
the DFA that has proven to be a more reliable estimator for
H than the Hurst R/S analysis [35].

7.2 Detrended fluctuation analysis

Suppose we have a time seriesr(t), t = 1, ..., T , corre-
sponding to, say, daily returns of a financial asset. To im-
plement the DFA, we first integrate the original time series
r(t) to obtain the cumulative time seriesX(t):

X(t) =
t∑

t′=1

(r(t′)− r), t = 1, ..., T, (143)
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where

r =
1
T

T∑

t′=1

r(t′). (144)

Next we break upX(t) into N non-overlapping time inter-
vals,In, of equal sizeτ , wheren = 0, 1, ..., N − 1 andN
corresponds to the integer part ofT/τ . We then introduce
the local trend functionYτ (t) defined by

Yτ (t) = an + bnt for t ∈ In, (145)

where the coefficientsan andbn represent the least-square
linear fit ofX(t) in the intervalIn. Finally, we compute the
rescaled fluctuation functionF (τ) defined as [35]

F (τ) =
1
S

√√√√ 1
nτ

Nτ∑
t=1

[X(t)− Yτ (t)]2, (146)

whereS is the data standard deviation

S =

√√√√ 1
T

T∑
t=1

(rt − r)2. (147)

The Hurst exponentH is then obtained from the scaling be-
havior ofF (τ):

F (τ) = CτH , (148)

whereC is a constant independent of the time lagτ .
In a double-logarithmic plot the relationship (148) yields

a straight line whose slope is precisely the exponentH, and
so a linear regression of the empiricalF (τ) will immedi-
ately giveH. One practical problem with this method, how-
ever, is that the values obtained forH are somewhat depen-
dent on the choice of the interval within which to perform
the linear fit [35, 36]. It is possible to avoid part of this diffi-
culty by relying on the fact that for the fractional Brownian
motion, the fluctuation functionF (τ) can be computed ex-
actly [31]:

FH(τ) = CHτH , (149)

where

CH =
[

2
2H + 1

+
1

H + 2
− 2

H + 1

]1/2

. (150)

In (149) we have added a subscriptH to the functionF to
denote explicitly that it refers toWH(t). Equation (149)
with (150) now gives a one-parameter estimator for the ex-
ponentH: one has simply to adjustH so as to obtain the
best agreement between the theoretical curve predicted by
FH(τ) and the empirical data forF (τ).

7.3 Fractional Brownian motion in Finance

The idea of using the FMB for modeling asset price dy-
namics dates back to the work of Mandelbrot & van Ness
[37]. Since then, the Hurst exponent has been calculated
(using different estimators) for many financial time series,
such as stock prices, stock indexes and currency exchange
rates [38, 39, 40, 41, 35]. In many cases [38] an exponent

H > 1/2 has been found, indicating the existence of long-
range correlation (persistence) in the data. It is to be noted,
however, that the values ofH computed using the traditional
R/S-analysis, such as those quoted in [38], should be viewed
with some caution, for this method has been shown [35] to
overestimate the value ofH. In this sense, the DFA appears
to give a more reliable estimates forH.

An example of the DFA applied to the returns of the
Ibovespa stock index is shown in Fig. 10 (upper curve). In
this figure the upper straight line corresponds to the theo-
retical curveFH(τ) given in (149) withH = 0.6, and one
sees an excellent agreement with the empirical data up to
τ ' 130 days. The fact thatH > 0.5 thus indicates persis-
tence in the Ibovespa returns. Forτ > 130 the data deviate
from the initial scaling behavior and cross over to a regime
with a slope closer to1/2, meaning that the Ibovespa looses
its ‘memory’ after a period of about 6 months. Also shown
in Fig. 10 is the correspondingF (τ) calculated for the shuf-
fled Ibovespa returns. In this case we obtain an almost per-
fect scaling withH = 1/2, as expected, since the shuffling
procedure tends to destroys any previously existing correla-
tion.
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Figure 10. Fluctuation functionF (τ) as a function ofτ for the re-
turns of the Ibovespa index (upper curve) and for the shuffled data
(lower curve). The upper (lower) straight line gives the theoretical
curveFH(τ) for H = 0.6 (H = 1/2).

As already mentioned, the Hurst exponent has been
calculated for many financial time series. In the case of
stock indexes, the following interesting picture appears to be
emerging from recent studies [40, 41, 35]: large and more
developed markets, such as the New York and the London
Stock Exchanges, usually haveH equal to (or slightly less
than) 1/2, whereas less developed markets show a tendency
to haveH > 1/2. In other words, large markets seem in-
deed to be ‘efficient’ in the sense thatH ' 1/2, whereas
less developed markets tend to exhibit long-range correla-
tion. A possible interpretation for this finding is that smaller
markets are conceivably more prone to ‘correlated fluctua-
tions’ and perhaps more susceptible to being pushed around
by aggressive investors, which may explain in part a Hurst
exponent greater than 1/2.
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It should also be pointed out that a considerable time-
variability of the exponentH for stock indexes has been
found [41, 35], indicating that the data in such cases can-
not be modeled in terms of stationary stochastic processes.
(A time-varyingH has also been observed in other financial
data, such as, currency exchange rate [39].) In such cases,
the stationarity assumption is only a rather crude approxi-
mation [35]. Furthermore, the time dependence of the Hurst
exponent is an indication that the underlying process might
be multifractal rather than monofractal; see below.
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Figure 11. The Hurst exponentH for the Ibovespa as a function of
time. HereH was computed in two-year time intervals, with the
variablet denoting the origin of each such interval.

A time-varying Hurst exponent has been observed for
the Brazilian stock market. This case is of particular inter-
est because in the recent past Brazil was plagued by run-
away inflation and endured several ill-fated economic plans
designed to control it. To analyze the effect of inflation and
the economic plans, Costa and Vasconcelos [35] calculated a
time-varying Hurst exponent for the Ibovespa returns, com-
puted in three-year time windows for the period 1968–2001.
A similar analysis but with two-year time windows is shown
in Fig. 11. One sees from this figure that during the 1970’s
and 1980’s the curveH(t) stays well above 1/2, the only ex-
ception to this trend occurring around the year 1986 when
H dips momentarily towards 1/2—an effect caused by the
launch of the Cruzado economic Plan in February 1986 [35].
In the early 1990’s, after the launching of the Collor Plan, we
observe a dramatic decline in the curveH(t) towards 1/2,
after which it remained (within some fluctuation) around
1/2. This fact has led Costa and Vasconcelos [35] to con-
clude that the opening and consequent modernization of the
Brazilian economy that begun with the Collor Plan resulted
in a more efficient stock market, in the sense thatH ' 0.5
after 1990. In Fig. 11, one clearly sees that after the launch-
ing of a new major economic plan, such as the Cruzado Plan
in 1986 and the Collor Plan in 1990, the Hurst exponent de-
creases. This effect has, of course, a simple economic inter-

pretation: a Government intervention on the market is usu-
ally designed to introduce “anti-persistent effects,” which in
turn leads to a momentary reduction ofH. Note also that
only after 1990 does the curvesH(t) goes below 1/2. This
finding confirms the scenario described above that more de-
veloped markets (as Brazil became after 1990) tend to have
H

<∼ 1/2.

7.4 Option pricing under the FBM assump-
tion

We have seen above that often times asset prices have a
Hurst exponent different from 1/2. In such cases, the stan-
dard Black-Scholes model does not apply, since it assumes
that returns follow a Brownian motion (H = 0.5). A more
appropriate model for the return dynamics would be the
fractional Brownian motion (FBM). Indeed, a ‘fractional
Black-Scholes model’ has been formulated, in which it is as-
sumed that the stock priceS follows a geometric fractional
Brownian motion given by

dS = µSdt + σSdWH , (151)

whereWH(t) is the standard FBM. The fractional stochas-
tic differential equation above is shorthand for the integral
equation

S(t) = S(0)+µ

∫ t

0

S(t′)dt′+σ

∫ t

0

S(t′)dWH(t′). (152)

To make mathematical sense of this equation is, of course,
necessary to define stochastic integrals with respect to
WH(t). Here it suffices to say that a fractional Itô calcu-
lus can indeed be rigorously defined [42] that shares (in an
appropriate sense) many of the properties of the usual Itô
calculus. In the context of this fractional Itô calculus is pos-
sible to prove that the solution to (151) is given by

S(t) = S(0) exp
{

µt− 1
2
σ2t2H + σWH(t)

}
. (153)

Compare this expression with (53).
One can show [42] that the fractional Black-Scholes

model is complete and arbitrage-free. To price derivatives
with this model, one can apply the same∆-hedging argu-
ment used before, which now leads to the ‘fractional Black-
Scholes equation.’ The result is summarized in the following
theorem.

Theorem 4 In the fractional Black-Scholes model, the
price F (S, t) of a European contingent claim with payoff
Φ(S(T )) is given by the solution to the following boundary-
value problem

∂F

∂t
+ Hσ2t2H−2S2 ∂2F

∂S2
+ rS

∂F

∂S
− rF = 0, (154)

F (T, S) = Φ(S). (155)



1062 Giovani L. Vasconcelos

[Compare with (88).]
For the case of a European call option the solution to

the problem above can be found in closed form. Alterna-
tively, one can obtain the option pricing formula directly
from the equivalent martingale measure, without having to
solve the above PDE. The final result for this ‘fractional
Black-Scholes formula’ is given below [43].

Theorem 5 In the fractional Black-Scholes model, the price
of a European call option with strike priceK and maturity
T is given by

C(S, t) = SN(d1)−Ke−r(T−t)N(d2), (156)

where

d1 =
ln

(
S
K

)
+ r(T − t) + 1

2σ2(T 2H − t2H)

σ
√

T 2H − t2H
,(157)

(158)

d2 =
ln

(
S
K

)
+ r(T − t)− 1

2σ2(T 2H − t2H)

σ
√

T 2H − t2H
.(159)

[Compare with (84).]
The fractional Black-Scholes formula has been applied

to price some options traded on the Brazilian market [44].
Here, however, the option prices obtained with the formula
above resulted considerably higher than those from the usual
Black-Scholes formula. The practical relevance of the frac-
tional Black-Scholes model to real markets thus needs to be
investigated further.

7.5 Multifractality in Finance

The fact that the Hurst exponents of financial data often dis-
play considerable variability in time indicates, as already
mentioned, that such time series cannot be satisfactorily
modeled in terms of a fractional Brownian motion, which is
characterized by a constantH and would thus capture only
a sort of average behavior of the actual price dynamics [35].
In such cases, it would be more appropriate to model the
data as amultifractalprocess.

The notion of a multifractal was first introduced in the
context of dynamical systems to describe physical processes
taking place on a fractal support [45]. A rigorous exposition
of multifractal measures is beyond the scope of the present
notes, and so we will content ourselves with a rather intu-
itive description of multifractality. The basic idea here is
that amonofractalprocess, such as the FBM, is character-
ized by a single exponentH, whereas for a multifractal a
whole family (spectrum) of exponents is necessary, one for
each moment of the distribution.

We have seen above that the FBM is a Gaussian process
whose standard deviation scales with time as

√
E[W 2

H(t)] = tH . (160)

If we now introduce the generalized Hurst exponentsHq as
the corresponding scaling exponent for the2q-th moment,
that is, {

E
[
W 2q

H (t)
]}1/2q

= Cqt
Hq , (161)

whereCq is a constant, it then immediately follows from
property (19) of the Gaussian distribution that

Hq = H. (162)

That is, all higher-order Hurst exponents of the FBM are
equal to H itself and hence the FBM is said to be a
monofractal. Our working definition of amultifractal will
then be a process for which the generalized Hurst exponents
Hq vary with q, or alternatively, that the quantityqHq does
not scale linearly withq.

In general, any method used to calculate the Hurst ex-
ponentH (see Sec. 7.1) can be adapted to obtain the gen-
eralized exponentsHq. For example, the multifractal gen-
eralization of the DFA consists in calculating theqth-order
fluctuation functionFq(τ),

Fq(τ) =

{
1

Nτ

Nτ∑
t=1

|X(t)− Yτ (t)|2q

}1/2q

. (163)

In complete analogy with (148), the exponentsHq are then
obtained from the scaling

Fq(τ) = Cqτ
Hq . (164)

[We remark parenthetically that the multifractal DFA de-
fined above is slightly different from the formulation intro-
duced in Ref. [46], but such minor distinctions do not matter
in practice.]

As an illustration of the multifractal DFA, we have ap-
plied this method to the Ibovespa returns. For eachq we
computed the functionFq(τ) defined in (164), plotted it in
a double-logarithmic scale, and obtained the generalized ex-
ponentHq from the slope of the curve. In Fig. 12 it is plotted
the resulting quantityqHq as a function ofq. In this figure
we clearly see thatqHq deviates from the linear behavior ex-
pected for a monofractal, thus indicating that the time series
of Ibovespa returns does indeed display multifractal behav-
ior. Evidences of multifractal behavior have been seen in
several other stock indexes [41].

Multifractality has also been observed in many time se-
ries for currency exchange rates, and this has motivated the
suggestion that there might perhaps be a formal analogy be-
tween turbulent flows and foreign currency exchange mar-
kets; see Ref. [11] for references to the original literature. In
turbulence [47], there is an energy cascade from the large
scales (where energy is fed into the system) down to the
small scales (where energy is dissipated by viscosity). In
currency markets the analog would be a kind ofinformation
cascadein time from long-term investors (that lake a longer
view of the market) to short-term investors (that watch the
market very frequently) [11].
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Figure 12. The generalized Hurst exponentsHq as a function ofq
for the Ibovespa. The dashed line indicates the linear behavior of a
monofractal FBM withH = 0.6.

8 Conclusions

In these notes, I tried to present a basic introduction to an in-
terdisciplinary area that has become known, at least among
physicists working on the field, asEconophysics. I started
out by giving some basic notions about financial derivatives
and illustrated how to price them with a simple binomial
model. After this motivational introduction, I offered a con-
cise description of Brownian motion and stochastic calculus,
which provide the necessary mathematical tools to describe
financial asset prices in continuous time. I then proceeded
to discuss the Standard Model of Finance (SMF), namely,
the Black-Scholes model for pricing financial derivatives.
The formulation of the Efficient Market Hypothesis, which
lies at the heart of the SMF, in terms of martingales and its
consequences for pricing derivatives were also discussed.
Finally, I briefly reviewed some recent work done mostly,
but not exclusively, by physicists that have produced evi-
dences that the SMF may not fully describe real markets. In
this context, some possible extensions of the Black-Scholes
model were considered.

I should like to conclude by mentioning that other al-
ternatives approaches to the problem of pricing financial
derivatives have been proposed by physicists, using meth-
ods originally developed to treat physical problems. For in-
stance, the option pricing problem was recently discussed
in the context of the so-called non-extensive statistical me-
chanics [48]. A “Hamiltonian formulation” for this problem
was also given in which the resulting “generalized Black-
Scholes” equation is formally solved in terms of path inte-
grals [49]. We refer the reader to Ref. [11] for a brief review
of these and other recent developments in Econophysics.
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A Some Basic Definitions from Prob-
ability Theory

A.1 Probability space

In probability theory one usually imagines performing an
experimentin which chance intervenes. The occurrence or
nonoccurrence of such an experiment is called anoutcome
ω. The set of all possible elementary outcomes is denoted
by Ω.

An eventA is a set of outcomes, i.e., a subset ofΩ. We
are interested in attributing a probability to events inΩ. If Ω
is finite or countable, we could introduce a probabilityP (ω)
for each individual outcomeω and then define the probabil-
ity P (A) of an eventA as the sum of the probabilities of all
outcomes that make up the eventA:

P (A) =
∑

ω∈A

P (ω).

This procedure, however, will not work whenΩ is uncount-
able, i.e.,Ω is a continuous space such asR, since in this
case the probability of any particular outcome is zero. Fur-
thermore, a typical event will have uncountably many (i.e.
a continuum of) outcomes. Hence the formula above is not
applicable. That’s why we need the notion of a probability
measure to be defined shortly.

To do this, first we need to specify the class of ‘observ-
able events’, i.e., the subsets ofΩ to which a probability
can be associated. IfΩ is finite or countable, a partition ofΩ
would be the natural candidate. (Recall that apartition {Ai}
of a setΩ is a collection of disjoint subsets, i.e.,Ai ⊂ Ω and
Ai ∩ Aj = ∅ for i 6= j, whose union covers the whole set
Ω, i.e.,

⋃
i Ai = Ω.) In the case of a continuous space this

is not possible and a different class of subsets is in order.
To be useful, such a class must be closed under the various
set operations, such as union, intersection, complementarity,
etc. This is done through the concept of aσ-algebra.

Definition 10 A familyF of subsets ofΩ is a σ-algebra on
Ω if the following conditions are fulfilled:

1. ∅ ∈ F andΩ ∈ F

2. A ∈ F =⇒ Ac ∈ F , whereAc = Ω \ A is the
complement ofA in Ω

3. A1, A2, ... ∈ F =⇒
∞⋃

i=1

Ai ∈ F

The par(Ω,F) is called a measurable space.

The elementsA ⊂ F of theσ-algebraF are calledmea-
surable setsor simply events. The idea here is that for a
given setA ∈ F it is possible to ascertain whether any out-
comeω belongs or not toA, and in this sense the eventA is
observable.

The smallestσ-algebra consists of the empty set∅ and
the setΩ itself, i.e.,Fmin = {∅,Ω}. The largestσ-algebra,
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on the other hand, is made up ofall subsets ofΩ, which
is known as the power set ofΩ and denoted by2Ω, hence
Fmax = 2Ω. Intermediateσ-algebras can be generated in
the following way. Start with a given familyU of subsets of
Ω and form the intersection of allσ-algebras that containU :

FU =
⋂
{F | F ⊃ U}. (165)

In other words,FU is the smallest algebra that containsU as
is called the algebra generated byU .

We can now attribute a ‘probability of occurrence’ to
eventsA ∈ F via a probability measure on(Ω,F).

Definition 11 A probability measureP on the measurable
space(Ω,F) is a functionP : F → [0, 1] such that

1. P (∅) = 0 andP (Ω) = 1

2. If A1, A2, ... ∈ F is a disjoint collection of elements
of F , i.e., AiUAj = ∅ if i 6= j, thenP (U∞

i=1Ai) =∑∞
i=1 P (Ai)

The triple(Ω,F , P ) is called a probability space.

A.2 Random variables

Intuitively, a random variableX is a function that attributes
to each outcomeω a real numberx, i.e., X(ω) = x. We
usually think ofX as a random number whose value is de-
termined by the outcomeω. A more formal definition is
given in terms of measurable functions.

Definition 12 Let(Ω,F , P ) be a probability space. A func-
tion f : Ω → R is measurable with respect to theσ-algebra
F , or more compactly,F-measurable, if

f−1(U) ≡ {ω ∈ Ω|f(ω) ∈ U} ∈ F ,

for all open setsU ∈ R.

The definition above means that for any given interval
(a, b) ⊂ R there is a meaningful eventA in Ω. In an abuse
of language we usually refer to this event asA = {a < f <
b}.

Definition 13 A random variableX on a probability space
(Ω,F , P ) is aF-measurable function.

A random variableX naturally generates aσ-algebra.
This is the algebra generated by all the setsX−1(U), U ⊂
R open, and is denotedFX . We think ofFX as representing
the ‘information’ generated by the random variableX. The
σ-algebraFX contains the essential information about the
structure of the random variableX; it contains all sets of the
form {ω|a < X(ω) < b}.

We also recall the definition of the probability distribu-
tion F (x) of a random variableX:

F (x) = P (X ≤ x), for x ∈ R. (166)

Random variables can be either discrete, if the only assume
a finite or countably number of valuesx1, x2, ..., or continu-
ous. Most continuous distributions of interest have a density
f(x), i.e., a functionf(x) such that

F (x) =
∫ x

−∞
f(x)dx. (167)

This allows us to compute the probability of a given event
A = {a ≤ X ≤ b} explicitly through the formula

P (A) =
∫ b

a

f(x)dx. (168)

A.3 Stochastic processes

Intuitively, a stochastic process represents a dynamical sys-
tem which evolve probabilistically in time. A formal defini-
tion is given below.

Definition 14 A stochastic process is a collection of random
variables

{Xt}t∈T ,

defined on some probability space(Ω,F , P ) and
parametrized by the variablet.

We usually think of the labelt as being time, so thatXt

would represent the (random) value of the quantityX, say,
the price of a risky asset or the position of a Brownian parti-
cle, at timet. For most of the cases, we considerT to be the
halfline [0,∞). In this case we have a continuous-time pro-
cess. Eventually, we shall also consider discrete-time pro-
cesses, in which case the variablet assumes (non-negative)
integer values, i.e.,T = {0, 1, 2, ...}.

It is perhaps worth emphasizing that a stochastic pro-
cess is a function of two variables. For a fixed timet, Xt

is a function of the random variableω, i.e., Xt = Xt(ω).
For a fixed outcomeω ∈ Ω, it is a function of time,
Xt = Xt(ω), t ∈ T . This function of time is called a
realization, path, or trajectoryof the stochastic processXt.
Note, in particular, that in this context anoutcomecorre-
sponds an entire realization or trajectory of the stochastic
processX.

A stochastic process is usually described in terms of
the distributions it induces. The finite-dimensional distri-
butions of the stochastic processXt are the joint probabil-
ity distributionsp(x1, t1; ..., xn, tn) of the random variables
Xt1 , ..., Xtn , for all possible choices of timest1, ..., tn ∈ T
and everyn ≥ 1. The finite-dimensional distributions de-
termine many (but not all) relevant properties of a stochastic
process. A special class of stochastic processes are the sta-
tionary ones.

Definition 15 A stochastic process is said to be stationary
if all its finite-dimensional distributions are invariant under
a time translation, that is,

p(x1, t1 + τ ; ..., xn, tn + τ) = p(x1, t1; ..., xn, tn),

for anyτ > 0.

Another important class of stochastic process are Gaus-
sian processes, where all finite-dimensional distributions are
(multivariate) Gaussians.
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