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Positron annihilation radiation profile in aluminum was observed with a pair of Ge detectors in coincidence.
22Nawas used as a source of positron and the two-dimensional gamma energy spectrum was fitted using a model
function. Annihilation components of positron at rest with conduction band, 1s, 2s, and 2p electrons were
observed. The in-flight positron annihilation was also observed. The model function also took into account
the detector response function, relative efficiency corrections and the gamma backscattering. Coincidences
involving a combination of Compton effect, pileup, ballistic deficit, and pulse shaping problems were treated
as well.

1 Introduction 2 Experimental Setup

This study aimed to understand the shape of the electron-The profile of the annihilation peak of positrons frorffala
positron annihilation peak measured in coincidence by two source in metallic Al was measured with the Linear Accel-
photon detectors (Fig. 1). erator Laboratory residual radioactivity multi-detector array
(MULTI) [5]. The two annihilation gamma-rays were mea-
sured with a pair of Ge detectors in coincidence, placed in
diametrically opposed positions, separated by 15 cm, and
with a3.7 x 10° Bq (10 Ci) 22Na source. This source was
placed between two 2 mm thick aluminum sheets (9970999
pure). An'92|r source was simultaneously measured to pro-
vide references for detector calibration and follow any en-
ergy calibration drift during the experiment. The measure-
ment run lasted for 200 h, whenb x 107 events in the peak
region were accumulated.

3 Model Function

Usually the results of Doppler broadening measurement are
. v analyzed comparing the calculated annihilation probability
E; (keV) a0 470 E; (keV) density with the experimental data. In this work we opted for
Figure 1. Distribution of coincident events as a function of the another procedure. The convolution of the detector response
measured energids; and E», showing the Doppler broadening.  function with empirical functions to represent the gamma-
rays emitted after positron annihilation with 1s, 2s, 2p and
conduction electrons were calculated. All these functions
The proper fit of the 511 keV-511 keV peak requires were parametrized. This procedure avoids the dificult prob-
many analytical functions, giving information about the lem of deconvolution of the Doppler broadening spectrum
electron momentum distribution in the analyzed material. [6] -
This technique is known as Coincidence Doppler Broad-  The function model was determined from a qualitative
ening (CDB) of the electron-positron annihilation radiation analysis of the experimental data and published theoretical
[1]and is used in studies of the electronic and atomic stru- results [7, 8]. Positron annihilation with band electrons was
tures of defects in solids [2, 3, 4]. fitted by three arcs of parabola and one gaussian along the
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line B + E5 = 1022 keV:
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where F; and E5 are energies in detectors 1 and 2 respec-
tively, and «; are the cutoff parameters’( = 0 when
|E1— Es| > «). Positron annihilation with 1s electrons was
fitted by one gaussian along the liig + E5 + B1, = 1022
keV:
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whereBy is the binding energy of the 1s electrons. Positron
annihilattion with 2s electrons was fitted by two gaussians
along the lineF; + Es + By = 1022 keV:
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whereBs, is the binding energy of the 2s electrons. Positron
annihilation with 2p electrons was fitted by one gaussian
along the lineE; + E» + By, = 1022 keV:

—(E1—Ep)?

2
AQp@ 2U2p

for = V2moay,

where B,,, is the 2p electron binding energy. Finally, in-
flight positron annihilation was fitted by:
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(Fig. 2). TheA’s ando’s are the areas and widths of the
gaussians respectively. Detection effects due to ballistic
deficit, pile-up and Compton scattering (Fig. 3) were con-
sidered in the fit. Coincidences involving a combination of
Compton effect, pileup, ballistic deficit, and pulse shaping
problems (Fig. 4), backscatering (Fig. 5) and efficiency cor-
rections of the detectors in the fitting region, were taken into
account. The model functions were fitted to the experimen-
tal data and the result is shown in Fig. 6.
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Figure 2. Two-dimensional representations of in-flight positron
annihilation radiation.
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Figure 3. Two-dimensional representations of the fitted exponen-
tial tails of the electron-positron annihilation peak. The internal
exponentials tails for detectors 1 and 2 are represented in parts (a
and (b) respectively. The external exponential tails for detectors 1
and 2 are in (c) and (d), respectively.

Lo anw

log coincidence counts

E, (keV)

470 470 E; (keV)

Figure 4. Two-dimensional representations of Compton-Compton
and other effects.
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wheren;; is the number of observed events in charag])
of the coincidence spectrum (Fig. 1), ahy; is the fitted
function (Fig. 6).

| ; 4 Conclusion
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\ | \‘“UEINN\Wil\l!HIIWIN\}WI" R \IﬂNII»I i degrees of freedom, does not show a disagreement between
o5 the data and the model, suggesting that a complete statistical
. analysis of the coincidence Doppler broadening annihilation

> 520 radiation is possible. Better model functions can be consid-
510 ered in order to improve thg? value [1].
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Figure 6. The fitted coincidence spectrum.
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