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On the Entropy of the Viana-Bray Model

J.R.L. de Almeida

Departamento de Bica, Universidade Federal de Pernambuco, 50670-901, Recife-PE, Brazil

Received on 21 August, 2003

The entropy of the Viana-Bray model at zero temperature and external field is calculated within the solution
which takes into account only delta functions for the global order parani&tey. It is shown that such
solution is unsatisfactory both from the viewpoint of stability analysis and for not reproducing the well known
Sherrington-Kirkpatrick result in the large connectivity limit thus pointing out the relevance of considering
solutions with continuous part iR (k) for such model and possibly related models.

1 Introduction this note the entropy of the VB model for the discrete com-
ponent solution at zero temperature and external field is con-

Recently a lot of work has been devoted to the study of fi- sidered and shown to be rather unsatisfactory for it is plainly

nite connectivity spin glasses and related models associatedinstable against longitudinal variations and moreover does

to the satisfiability problem (see [1] and references therein). not yield SK's result in the large coordination limit. The VB

A prototype of these finite connectivity models is the Viana- model is described by the Hamiltonian

Bray (VB) model [2] designed to study diluted magnetic

systems and applicable to optimization problems [3], spe- H= Z Jijoiojl (1)

cially the 2-SAT problem [4]. One of the most usual ana- (i)

lytical techr)ique used to tregt these.proble_ms is the replica, here o; = +1 (i = 1,2,...,N), and theJ;;’s are

method which for the Sherrington-Kirkpatrick (SK) model jqinite-ranged random interactions with probability distri-

[5] y_|elds a neggtlve entropy_at Iow temperatures within the ption given by

replica symmetric (RS) solution, signaling a problem for the

unbroken symmetry ansatz. Eventually, stability study of

the RS SO|L.Jti0n.[6] pointed oyt the _necessity to intrc_>duce P(Jij) = (1 —p/N)3(Jij) + (p/N) f(Jij). 2)

broken replica simmetry solution which led to a physically

acceptable solution [7]. Although the VB model has been It thus may describe a highly diluted system with av-

intensely studied, the stability study of its solutions has beenerage connectivity. The distribution of the active bonds

thoroughly analyzed mainly close to the percolation thresh- shall here be taken as a bimoddl(.J;;) = (6(J;; — 1) +

old both for the global order parameter with only discrete é(J;; + 1))/2. The variational free energy within the

components [8] or including continuous component [9]. In replica method takes the form [8,9]

]

—Bfn=—p/2 = pTrs{gn(0a)exp[gn(0a)l} /2TTs explgn(0a)] + +InT7, explgn(ca)] (3)

whereg, (c,) is a generalized global order parameter, with tion [10] . For our purposes it is more convenient express
2™ components (n is the number of replicas which is made fin terms of the probability distribution of the local fields
go to zero at the end of the calculation) ahe- 1/7 the in- P(h) as in [3], valid for replica symmetric solution, which
verse temperature. It is related to the functional probability reads

distribution of the local fields by a Fourier-like transforma-

]

— _ﬁ n|cos — l iz Cos
f= = [ s mfeosh(a)) - 5 [ dnP(n) nf2cosh(on)+

4 [ dTdnan £7) PP Inl1 + tanh(57) tanh(5h) tanh(51) -
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—% dJdhf(J)P(h)In[l — tanh?(8.J) tanh?(8h)] (4)

The global order parametegs(o,,) or P(h) obey their equation of motion [3,8,9] which for the latter is

P(h) = / %yr exp {—iyh Cp+p / 4T f(J) / dP(z) exp [lg tanh ™" [tanh(3J) tanh(ﬁx)}] } (5)

and the relationship between the two order parametersis the field distribution has a seemingly clear physical appeal.
To infer the form of the general replica symmetric solution
P(h) = /dy exp [—iyh + g(y)] (6) is seems better to work with g(y) as originally put forward
by Katsura [11] for the Bethe lattice and extended for the
Depending on the quantity of interest it may be easier to VB model by de Almeida et al [9]. The simplest solution at
work with one or the other of these two parameters althoughvery low temperatures is the one assuming that [3]

]

P(h) = (1=Q)(h) + Y p/o(h =)+ Y p 6(h+1) ()
=1 =1

[

which we shall take as the one valid close to zero temper-and
ature, except for vanishingly small exponential corrections,
for as shown in [12] it is found thaP (k) below the spin

glass temperature is almost constant. Using the above equa- i = exp(=pQ)Li(pQ) 9)
tion of motion forP(h) it is straigthforward to show that the
parameters in (7) satisfy wherel;(z) are modified Bessel functions of orderFrom
equation (4) it is easy to obtain the entropy per spia-
1—Q = exp(—pQ)I(pQ) (8) —df/dT, atT = 0, which reads
]
s=—5Im@)(1- Q)+ (1 - QW)+ § m@)(pf +pr)1 - Q) — [ +pr)’In(3/4) (10)

and asl;(z) = exp(z)/+/2nx), for largez, the s limit- carried out in [8],[9] and [14], although in this last one only
ing value asp — oo is positive and given by 0.117 local stability is probed. This has been done thoroughly for
. It should not be surprising that the entropy is positive in pclose to the percolation threshold [8] and the results show
view of the discrete nature of the solution (7) but in this that the solution is unstable even for just longitudinal varia-
limit SK’s result should be recovered, which is obviously tions . However, one may easily show that (7) is an unsta-
not the case, pointing out the necessity of including the con-ble solution for anyp, at zero temperature, by considering
tinuous part ofP(h), as locally carried out in [13]. Another the A— eigenvalue equations in [8,9] which for longitudinal
way to study the validity of the solution (7) is to consider variations ing,, (o) is

the fluctuations of the variational free energy around it as

]

(@) = —[p+ g@)] F(0) +p / dyK (2,5) (A + e79) £ (1) (11)

where

K(z,y) = /de(J) / g—: exp [—iuy + Z%tanh71 [tanh(8J) tanh(Su)] (12)
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and for a stable solution, at least for longitudinal variations, [4] R. Monasson, Phil. Mag. B7, 1515 (1998).

A> .0 for all p_ossible solutions of (11). For the solution (7), [5] D. Sherrington and S. Kirkpatrick, Phys. Rev. L@§, 1792,
we find the eigenvalues; = 1/p,A\2 = (1 — p)/p(1 — Q), (1975).

and)\3 = 2(1 — p)/p clearly showing that the solution (7)

is unstable fop > 1. So it seems that the continuous part
of P(h) must be taken in account for the VB model if well
known results are to be recovered and possibly similar mod- [71 M. Mezard, G. Parisi and M. Virasorc&pin Glass Theory
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els specially those relevant to the K-SAT problem and neural ~ @nd Beyond World Scientific, Singapore, 1987.
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